Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиизопрен мономера

    При литиевой полимеризации (в стерильных условиях и при умеренных температурах) почти отсутствуют реакции передачи и ограничения полимерных цепей, и рост макромолекул протекает по механизму живых цепей. Средняя молекулярная масса полимеров увеличивается с увеличением глубины превращения мономера и уменьшается с увеличением концентрации катализатора. Литиевые полиизопрен и полибутадиен характеризуются линейным строением макромолекул и узким ММР [5]. В табл. 1 [c.56]


    Дальнейшие работы [2] показали, что вещества, образующие с литийорганическими соединениями комплексы донорно-акцепторного типа, снижают стереоселективность катализатора. Поэтому лишь в 1949 г. после того, как были разработаны способы тонкой очистки мономера, удалось получить синтетический полиизопрен (СКИ), приближающийся по свойствам к НК, в условиях опытно-промышленного производства. [c.200]

    Важнейшим фактором, влияющим на направление реакций полимеризации изопрена под влиянием литийорганических соединений, является чистота мономера и углеводородного растворителя. Вещества электронодонорного характера даже в очень малых количествах снижают стереоселективность действия катализатора, а при проведении полимеризации в среде электронодоноров в полиизопрене отсутствуют цмс-1,4-звенья (табл. 3). [c.209]

    Широко известные работы по прививке к полиизопрену ма-леинового ангидрида в растворе пока не доведены до промышленной разработки. С другой стороны, значительный интерес вызывает механохимическая прививка малеинового ангидрида [44, 45], реализация которой облегчается применением в промышленности для сушки при температуре свыше 150°С червячных прессов и возникающего отсюда совмещения стадий сушки и модификации в отсутствие мономера. При исследовании свойств модифицированного малеиновым ангидридом полиизопрена в одной из наиболее обстоятельных работ по физике и химии модификации [18] было констатировано улучшение когезионной прочности и динамических свойств вулканизатов и вместе с тем некоторое снижение сопротивления раздиру. Можно сделать вывод, что во многих отношениях эффект модификации не зависит от способа введения и природы функциональных групп (гидроксильная, карбоксильная, азотсодержащая) и характеризуется общими чертами физической картины изменения свойств. [c.238]

    В последующем катализаторы Циглера—Натта нашли широкое применение при полимеризации любых мономеров — пропена, бутенов, диеновых углеводородов С — С. В результате появились полипропилен, г<ис-полибутадиен и 1<ис-полиизопрен (об этом см. в разделе Соревнуясь с природой в этой же главе), различные [c.126]

    Применение катализаторов Циглера — Натта позволяет синтезировать практически 100%-ный стереорегулярный (пространственно упорядоченный) полибутадиен с полимеризацией мономеров только в 1,4-положениях и созданием u -конфигурации в каждом элементарном звене (1,4-г ис-полибутадиен). По некоторым показателям этот полимер мало отличается от натурального каучука, а по стойкости к процессам старения даже превосходит его. Этим же методом можно получать изотактический полипропилен, а также полиизопрен (1,4-г с-полиизопрен), который служит синтетическим заменителем натурального каучука. [c.398]


    Число возможных структурных изомеров увеличивается при переходе от полимеризации виниловых мономеров к полимеризации сопряженных диеновых соединений и особенно несимметричных диенов. Это объясняется реализацией дополнительных возможностей за счет присоединения звеньев в цепи по типу 1,4 с образованием цис- и транс-изомеров. Так, при полимеризации изопрена теоретически возможно получение 12 изомеров полимеризация с раскрытием 1,2-связи не эквивалентна полимеризации с раскрытием 3,4-связи, при полимеризации по типу 1,4 возможно соединение звеньев в цепи в положении голова к голове и голова к хвосту для цис- и транс-изомеров. Практически же образуются два изомера полиизопрена, построенные из 1,4-звеньев, присоединенных по типу голова к хвосту и различающихся цис-и транс-расположением основной цепи относительно двойных связей. Натуральный каучук — это 1,4-цмс-полиизопрен(1) и гуттаперча — 1,4-транс-полиизопрен (II)  [c.24]

    Химические реакции в полимерах могут быть вызваны действием света. При малой длине волны светового излучения кванты света могут вызвать отрыв боковых активных атомов или групп от макромолекул или разрыв макромолекул. В результате инициируются цепные реакции деструкции или присоединения мономеров к макрорадикалам полимерных молекул. Обычно такие изменения вызываются излучением света с длинами волн 230— 410 нм. При повышении температуры резко ускоряется процесс деструкции, который в этом случае называется фотолизом. Облучение растворов каучука ультрафиолетовым светом в инертной среде приводит к снижению их вязкости, что объясняется образованием более коротких молекул в результате деструкции. В результате облучения светом может происходить сшивание макромолекул. Так, полиизопрен при действии солнечного света размягчается и становится липким. При облучении его кварцевой лампой в вакууме при комнатной температуре выделяются летучие продукты распада, среди которых до 80% приходится на молекулярный водород. При облучении ультрафиолетовым светом толуольных растворов полиизопрена наблюдается уменьшение их вязкости, связанное со снижением молекулярной массы полиизопрена (натуральный каучук). В концентрированных растворах после снижения молекулярной массы отмечен ее рост, что связано с формированием нерастворимой фракции (гель) при соединении макромолекул полиизопрена в сетчатую структуру. [c.242]

    Полимеры с высокой теплотой полимеризации, малым выходом мономера при пиролизе, не имеющие четвертичных атомов углерода в цепи, при действии излучений в основном сшиваются (полиэтилен, полистирол, полиизопрен, полибутадиен, полиметилакрилат и др.). Разрывы цепей при облучении происходят по случайному закону, а число разрывов или сшивок пропорционально дозе облучения и не зависит от его интенсивности. [c.246]

    Хлоропрен является мономером для производства неопрена — специального маслобензостойкого каучука. Хлоропрен получают присоединением хлористого водорода к винилацетилену, который в свою очередь приготовляют димеризацией ацетилена. Полимеризация изопрена, полученного аналогично бутадиену-1,3 из s-фрак-ции после крекинга нефти, приводит к полиизопрену — каучуку, который соответствует природному каучуку. [c.233]

    Исследования температурной зависимости показали, что в полибутадиене доля присоединения 1,2- практически не зависит от температуры в интервале от —20 до 4-223° С, тогда как в полиизопрене доля присоединения 1,2- уменьшается при увеличении температуры. Доля присоединения 3,4- мало зависит от температуры. Отношение цис/транс для обоих мономеров стремится к нулю при понижении температуры. На рис. 20 показана температурная зависимость состава полибутадиена [30]. [c.96]

    Следовательно, для нахождения величины Е необходимо независимо измерить константу равновесия К и ее температурный ход. Значение К можно найти путем сопоставления молекулярного веса живого (ассоциированного) полимера с молекулярным весом того же полимера после его дезактивации. Так, было показано, что в системе полиизопрен—гексан при исходной концентрации инициатора около 1 моль/л константа К" при низкой температуре имеет порядок 1 -10- , а энергия диссоциации живых цепей (У-48) составляет около 23 ккал./моль. Если учесть эту величину, то энергия активации самой реакции роста окажется равной 4.1 ккал./моль [78]. Следствием ассоциации и протекания реакции роста только за счет диссоциированной формы является отсутствие зависимости скорости полимеризации от концентрации инициатора в системах Ъ1К—мономер—углеводород за пределами определенных значений [Ь1К] [81—84]. Один из примеров зависимости скорости полимеризации от концентрации бутиллития приведен на рис. 96. [c.348]

    Из табл. 1, данные которой получены при условиях, благоприятствующих образованию мономера, следует, что максимальный выход мономера при деполимеризации различных полимеров может быть любым — от О до 100%. Наличие мономера в продуктах реакции деструкции данного полимера зависит от ряда факторов. Если не рассматривать ненасыщенные полимеры— полиизопрен и полибутадиен, то максимальные выходы имеют место при деструкции полимеров, содержащих четвертичные атомы углерода. Если один из заместителей у этих атомов заменить на водород  [c.13]


    При строгом объяснении этого явления следует учитывать еще целый ряд факторов на это указывает ряд важных исключений из приведенного-выще общего правила образования мономера (см. табл. 1). При нагревании полистирола можно получить приблизительно 65% мономера. Если сюда добавить мономерные звенья, входящие в низкомолекулярные летучие полимеры, главным образом в димер, тример и тетрамер, то эта цифра будет значительно больше. С другой стороны, используя в качестве критерия теплоту полимеризации, полистирол следовало бы отнести к той группе полимеров, при деструкции которых не происходит образования мономера. То же самое можно сказать и о полиизопрене и полибутадиене. [c.14]

    Обнаруженное рядом авторов [41] наличие у диниза небольшой активности в прививке винильных мономеров к латексу НК может быть связано с присутствием в НК функциональных групп, например серусодержащих, коренным образом меняющих механизм прививки, что следует особенно подчеркнуть и учитывать при сопоставлении реакций синтетического и натурального полиизопренов. [c.237]

    В связи с разработкой технологии получения синтетических латексов из растворов отгонкой растворителя и мономера заслуживают внимания исследования по прививке в эмульсии это дает возможность удалить до модификации непрореагировавший мономер и применять окислительно-восстановительные системы. Прививка метакриловой кислоты в латексе сополимера бутадиена и стирола [46] наряду с улучшением свойств каучука повышает стабильность латекса. Ясно также, что прививка кислот к полиизопрену в растворе сделает полимер поверхностно-активным и облегчит создание эмульсий и латексов. [c.238]

    Изопрен входит в небольших количествах в бутилкаучук (98% изобутилена и 2% изопрена). Сейчас его с успехом полимеризуют в г г с-1,4-полиизопрен, который по своим свойствам весьма близок к естественному каучуку. Поэтому сейчас можно получать все типы каучуков, не имея плантаций. Полимеризацию г с-полиизопрена осуществляют либо при 30—40° в присутствии 0,1 % лития [48], либо с катализатором типа катализаторов Цигпера (гл. 7, стр. 136) в условиях, которые пока еще не опубликованы [49]. 2-Хлоропрен является исходным мономером для получения неопрена. Из других олефинов синтетические каучуки пока еще не производят. [c.225]

    Наиболее эффективными стереоспецифическими катализаторами полимеризации являются гетерогенные комплексные металлоорганические катализаторы Циглера — Натта. Они получаются взаимодействием металлоорганических соединений металлов I—П1 групп Периодической системы с соединениями (преимущественно галогенидами) переходных металлов IV—У1П групп. Наиболее распространенная каталитическая система —это смесь Т1С1з и А1(С2Н5)з. Варьирование компонентов катализатора позволяет получать строго избирательные каталитические комплексы по отношению к соответствующим мономерам, а также высокую стереоспецифичность присоединения мономера к растущей цепи. Открытие комплексных металлоорганических катализаторов позволило получить высокомолекулярные стереорегулярные кристаллические поли-а-олефины, полидиены, полистиролы и др. (например, изо-тактические полипропилен, поли-а-бутен, 1,2-полибутадиен, 1,2- и 3,4-полиизопрены). При полимеризации диеновых углеводородов под влиянием катализаторов Циглера — Натта получают также стереорегулярные 1,4-полидиены, в частности, 1,4-чыс-полиизопрен, , 4-цис- и 1,4-транс-полибутадиены и др. [c.27]

    Синтетические иолиизопрены, полученные методом эмульсионной полимеризации, содержат примерно 12— 14% 1,2-продукта, тогда как полиизопрен, полученный с натрием, имеет 50—55% 1,2-продукта остальное — в основном тра с-1,4-полимер и немного ( с-продукта. Установлено, что при полимеризации изопрена с титанорга-ническими соединениями, алкиллитием или с алкил-литийалюминием получают полинзопрен, который в основном идентичен цыс-1, 4-полиизопрену каучука нз гевеи. Более того, хотя металлический натрин в тонкораздробленном состоянии дает продукт, содержащий большой процент 1,2-присоединения, установлено, что тонкораздробленный металлический литий дает в основном те же результаты, что н металлоорганические производные. Приведенные ниже методики типичны для полимеризации изопрена с этим типом катализатора. Следует указать, что во всех этих реакциях полимеризации успех зависит от ряда факторов, наиболее важными из которых являются чистота мономера и отсутствие загрязнений в системе, особенно влаги или воздуха. [c.269]

    Истинный механизм образования полимеров столь стереорегулярного строения, как уыс-1,4-полиизопрен, на стереоспецифических катализаторах изучен совершенно недостаточно. Проведено углубленное исследование катализатора, состоящего из триизобутилалюминия и четыреххлористого титана [210]. При смешении этих компонентов образуется твердый осадок, в котором титан практически полностью находится в состоянии низшей валентности. С увеличением количества алкилалюминрш это твердое вещество изменяется, превращаясь из коричневого треххлористого титана в другие соединения, в которых хлор частично замещен алкильными группами. Скорость полимеризации зависит от отношения алюминий титан максимальная скорость с получением целевого г мс-1,4-полиизопрена достигается при молярном отношении 1 1 вторичный максимум скорости наблюдается при отношении 3 1 и соответствует образованию смолистого полимера. С увеличением степени превращения собственная вязкость полимера возрастает, а затем стабилизируется. С точки зрения кинетики эта реакция имеет первый порядок по отношению к концентрации мономера при постоянном отношении алюминий титан и постоянной активности катализатора энергия активации ее равна около 14,4 ккал/молъ. Кинетика суммарной реакции может быть представлена уравнением [c.199]

    В промч ти К.-и. п. осуществляют как крупнотоннажные непрерывные процессы. Полимеризацию чаще всего проводят в среде орг. р-рителя (см. Полимеризация в растворе), реже-методом газофазной полимеризации. В связи с высокой чувствительностью металлоорг. катализаторов к каталитич. ядам требуется высокая степень очистки мономеров и р-рителей от следов О2, Н2О и др. В промч ти К.-и. п. производят ок. /з общего кол-ва полиэтилена (полиэтилен высокой плотности и т. наз. линейный полиэтилен низкой плотности, т.е. сополимер этилена с небольшим кол-вом а-бутена), полипропилен, этилен-пропиленовые каучуки, высшие полиолефины, 1/ис-1,4-полиизопрен и 1/ис-1,4-полибутадиен (см. Изопреновые каучуки синтетические, Бутадиеновые каучуки). Суммарное мировое произ-во полимеров методами К.-и. п. измеряется многими млн. т. [c.465]

    Другим методом создания олеофильного продукта является способ покрытия частиц каолина полиизопреном до содержания полиизопрена 1...2 масс. % по отношению к массе каолина [27]. Данный способ основан на каталитической активности каолина, обусловленной наличием на его поверхности кислотных центров. В процессе обработки изопреном из газовой фазы происходит полимеризация мономера с частичным образованием микросетчатого полиизопрена. [c.123]

    При полимеризации изопрена получают полимер, похожий по строению элементарного звена на природный каучук, который представляет собой цис полиизопрен Чтобы получить каучук с определенными свойствами, часто используют реакцию сополимеризации — совмест ной полимеризации двух и более мономеров В производстве каучуков сополимеризуют, например, бутадиен со стиролом, акрилонитрилом и т д [c.261]

    Наибольшее распространение среди карбоцепных получили полимеры непредельных углеводородов (полиэтилен, полипропилен, полистирол и др.) и галогенпроизводных непредельных углеводородов (поливинилхлорид, фторпроизводные полимеры), а также производных ненасыщенных спирюв, кислот и их эфиров (поливиниловый спирт, поливинилацетат, полиакрилонитрил и др.) и диеновых углеводородов (полибутадиен, полиизопрен, полихлоропрен и др.). Полимеры непредельных углеводородов в промышленности получают по радикальной, ионной и ионнокоординационной полимеризации соответствующих мономеров. [c.52]

    С разрывом цепи не в случайных местах, а у концов макромолекулы, в результате которого о15разуются мо1Юмеры ли продукты, близкие по молекулярному весу к мономерам. Такая деструкция характерна лля полненойых соединений, полистирола, полиметилметакрилата и др. Так, полиизопрен деструктируется до изопрена по схеме  [c.59]

    Изопрен транс-1, 4-Полиизопрен V b на глине (70 мг) — AIR3—Ti(OR)4 Al V = 10 1, V Ti = 2 1, в бензоле (120 г), 50° С, 1,5 ч. Выход 70—80 г (из 100 г мономера) [1764] [c.255]

    Сравнительное влияние на стабильность радикала двойной связи карбоксильной группы и бензольного цикла видно при сопоставлении процессов термодеструкции полиметилакрилата и полистирола. При термодеструкции первого полимера преобладает передача цепи, тогда как для полистирола реакции передачи цепи имеют лишь второстепенное значение по сравнению с процессом отщепления молекул мономера. Влияние стабильности макромолекулярного радикала проявляется, далее, при сравнении поведения при термодеструкции полиэтилена и полипропилена с полидиенами. Пространственную доступность и реакциоино-способность атомов водорода в этих двух группах полимеров можно считать примерно одинаковыми, а подавляющая роль реакций передачи цени в первой группе полимеров объясняется высокой реакционноспособностью соответствующих макромолекулярных радикалов, тогда как при термодеструкции полимеров диеновых углеводородов заметную роль играет реакция отщепления молекул мономера, что связано с повышенной стабильностью полимерных радикалов, обусловленной наличием двойной связи в а-положении. Такая стабилизация аллильных макромолекулярных свободных радикалов еще более отчетливо проявляется в полиизопрене по сравнению с полибутадиенами, так как в этом случае добавочный стабилизирующий эффект обусловлен наличием метильной группы. [c.25]

    Экономика процесса. Эксплуатационные расходы на производство изопрена процессом Гудьир настолько низки, что получаемый из мономера полиизопрен вполне может конкурировать с натуральным каучуком как по свойствам, так и по стоимости. Более того, завод с полным циклом производства по этому процессу (до полимера) требует значительно меньших капиталовложений, чем завод бутадиенстирольного каучука. Важной особенностью процесса является и дешевизна и обилие исходного сырья. [c.79]

    Уже этого краткого рассмотрения основных характеристик полимеров достаточно для того, чтобы понять, что генезис, т. е. способ получения макромолекул из низкомолекулярных молекул мономеров, влияет практически на все основные свойства полимера. В природе полимеры (за исключением некоторых смол) образуются, как правило, с высокой степенью химической и пространственной регулярности, с правильным чередованием звеньев в структуре полимера. Это, например, молекулы целлюлозы, натурального каучука ( цыс-1,4-полиизопрен), белков и нуклеиновых кислот. В формировании природных полимеров принимают участие соответствующие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были найдены совершенные катализаторы синтеза, получались полимеры с нерегулярной структурой, малой молекулярной массой и вследствие -этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства (особенно с 50-х гг.) были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство из этих полимеров в природе не создаются. Получение полимеров осуществляется в результате реакций полимеризации или поликонденсации. [c.11]

    Взаимодействие ионной пары С"—Ме и соответствующей конфигурации диена ответственно за образование регулярной структуры Полиизопренов в случае полимеризации литийорганическими соединениями и за нарушения ее при замене лития на натрий или калий, а также при добавках эфиров и других сольватирующих агентов. Увеличение радиуса иона металла и полярности связи повышает вероятность присоединения мономера в 1,2-, 3,4- и та эаис-1,4-иоложениях. [c.538]

    В табл. 47 приведены примеры, характеризующие соответствие химического состава мономера (или мономеров) химическому составу мономерного звена полимерной цепи в таких полимерах, как полиэтилен, полистирол, полиизопрен и др. Эти полимеры образуются в результате реакций полимеризации, т. е. соединения мономеров за счет размыкания двойных или тройных связей или разрыва неустойчивого цикла. Однако в таких полимерах, как полигексамети-ленадипамид, полиэтилептерефталат и другие, химический состав. мономерного звена и исходных веществ совпадает не полностью, так как в процессе синтеза полимера выделяется вода и соответственно в полимере уменьшается число атомов водорода и кислорода. Реакции, при которых образование полимера протекает с выделением побочных продуктов, называют реакциями поликонденсации. [c.351]

    Активность диена падает при введении в него электроотрицательного заместителя X и возрастает в случае заместителей с положительным индуктивным эффектом. В этой же последовательности возрастает стаби.чьность катионов и мол. масса образующегося полимера. Чем активнее мономер в полимеризации, тем стабильней образующийся из него катион, в связи с чем становится менее вероятной передача цепи. Хотя первичная структура звеньев, возникающая при полимеризации, не может быть достаточно точно охарактеризована в связи с развитием вторичных реакций в цепи полимера, следует отметить, что по.чибутадиен и полиизопрен не содержат ис-звеньев, а по соотношению 1,4- и 1,2-или 3,4-звеньев приближаются к структуре, реализуемой при радикальной полимеризации. Полное отсутствие г/ис-звеньев может находиться в связи ве только с катионной природой активных центров, но и с низкой темп-рой полимеризации. При катионной полимеризации структура полимера определяется в основном вторичными реакциями, протекающими с участием двойных связей полимерной цепи. Это иллюстрируется низкой ненасыщенностью полимеров (25—50% от теоретич. значений). [c.348]

    Циклизация интенсивно протекает по впутримолеку-лярному механизму, что обусловлено большой стерич. вероятностью образования 6-членпых циклов. В связи с этим при очень малой глубине полимеризации полимеры диенов характеризуются сильно пониженной ненасыщенностью. В отсутствие мономера реакция в цепи полимера сопровождается образованием конденсированных циклов. Под влиянием катионных возбудителей полибутадтен и полиизопрен превращаются в стеклообразные материалы с т. стекл. (и разложения) соответственно 420 и 370° С. [c.348]


Смотреть страницы где упоминается термин Полиизопрен мономера: [c.11]    [c.145]    [c.146]    [c.284]    [c.59]    [c.214]    [c.133]    [c.78]    [c.356]    [c.404]    [c.93]    [c.263]    [c.353]    [c.357]    [c.93]    [c.350]    [c.354]   
Термическое разложение органических полимеров (1967) -- [ c.232 , c.236 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Полиизопрен



© 2025 chem21.info Реклама на сайте