Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель свойства

    Адсорбенты по мере насыщения содержащимися в масле загрязнениями теряют адсорбирующую способность и подлежат замене или регенерации путем десорбции. Адсорбенты, не являющиеся дорогостоящими и дефицитными материалами (отбеливающие глины, отходы алюминиевого производства), как правило, по окончании цикла очистки заменяют свежим материалом. Широкое применение синтетических адсорбентов (силикагель, активированная окись алюминия, цеолиты) выгодно только при условии, что возможно многократное восстановление их свойств повторное использование в процессах очистки. Для восстановления качества адсорбентов их продувают горячим воздухом, обрабатывают растворителем, промывают водой, прокаливают. Эти методы можно применять как индивидуально, так и в различных сочетаниях, причем при последовательном применении двух или нескольких методов эффективность регенерации увеличивается. Наибольшее распространение получила двухстадийная регенерация — продувка адсорбента горячим воздухом при —200°С (для извлечения масла и удаления воды) и последующее [c.124]


    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]

    Силикагель можно использовать для адсорбции многих веществ. Его адсорбционная активность объясняется ненасыщенными водородными связями ОН-группы на поверхности структуры. При нагревании силикагель легко возвращает поглощенные вещества, восстанавливая при этом свои адсорбционные свойства. [c.89]

    Остаточное масло было очищено фурфуролом, взятым в количестве 400 вес. % при температуре 85°. Рафинат подвергался доочистке от смол на силикагеле. Свойства поле ченного остаточного масла приведены в табл. 121. [c.153]


    Неймарк И. E. Силикагель, свойства, применения и методы его [c.103]

    Для твердых кислот недостаточно выяснено различие и общность механизмов каталитического действия бренстедовских и льюисовских кислот. Так, по данным одних авторов [57 ] реакция дегидратации спиртов происходит только за счет апротонной кислотности Другие авторы [58] опровергают это утверждение. В ряде работ, например [59], указывается, что кислотные свойства гидратированной окиси алюминия и силикагеля не связаны с водородом их гидроксильных групп. [c.37]

    Для установления эффективности действия сульфонатных (и других) присадок в зависимости от группового углеводородного состава сырья были исследованы масляные фракции 350—420 °С и 420—500 °С и остаточные выше 500 °С, выделенные вакуумной перегонкой из мазутов трех нефтей, резко различающихся по физико-химическим свойствам и углеводородному составу (бала-ханская масляная и балаханская тяжелая нефти, а также нефть месторождения Нефтяные камни). Углеводородный состав фракций был определен адсорбционной хроматографией на крупнопористом силикагеле АСК [15, с. 73]. В результате исследования структурно-группового состава и свойств отдельных групп углеводородов, выделенных из этих фракций, было установлено, что парафино-нафтеновые углеводороды из фракций балаханской нефти являются лучшим сырьем для синтеза присадок, чем те же углеводороды, выделенные из фракций двух других нефтей, причем наиболее низким качеством отличаются парафино-нафтеновые углеводороды балаханской тяжелой нефти. [c.72]

    Однако даже высококачественный силикагель при нагреве свыше 200 °С постепенно утрачивает свои адсорбционные свойства из-за снижения степени покрытия поверхности активными центрами ОН-группы. [c.89]

    Некоторые пористые твердые тела, например активированный древесный уголь, силикагель или глинозем, обладают способностью поглощать на своей поверхности большие количества других веществ как из раствора, так и из газовой фазы. Это явление, открытое более 150 лет назад, называется адсорбцией. Твердые тела, обладающие таким свойством и называемые адсорбентами, имеют миллионы мельчайших пор, в результате чего их эффективная поверхность исключительно велика. Например, некоторые сорта древесного угля обладают удельной поверхностью более 1300 M je, а продажный силикагель может иметь удельную поверхность выше 800 м /г. [c.136]

    Силикагели, по современным представлениям, являются соединениями переменного химического состава, в структуру которых входят ангидрид кремневой кислоты в виде гидроокиси (кремнеземный каркас, являющийся неизменной составной частью силикагелей) и вода, количество которой может изменяться в относительно широких пределах (ОН-групны определяют химические свойства данного силикагеля, в частности адсорбционные и каталитические). Хорошие адсорбционные свойства, высокая механическая прочность силикагеля и особенно легкая регенерируемость, дающая возможность многократно применять его в адсорбционном процессе, сделали силикагель наиболее распространенным адсорбентом. [c.11]

    Адсорбенты при пропускании через них газовой или жидкой смеси способны задерживать определенные компоненты и таким образом очищать ог них газы или жидкости, или разделять смеси на несколько компонентов. Однако для получения очень чистых и сверхчистых веществ только адсорбентов недостаточно. Для этой цели разработаны новые способы разделения, основанные на применении так называемых молекулярных сит — природных или синтетических цеолитов. Цеолиты обладают особыми адсорбционными свойствами. Известно, что на угле, силикагеле, глинах и некоторых других адсорбентах более тяжелые газы адсорбируются гораздо лучше, чем легкие газы, молекулы которых пмеют меньшую массу и меньшие размеры. [c.100]

    Процесс обезвоживания кремневой кислотой является одной из основных операций производства всех силикагелей, так как при этом формируются поры силикагелей. Изменением условий процесса, главным образом сушки мокрого гидрогеля, можно получать силикагели с высокими адсорбционными свойствами и достаточной механической прочностью. [c.117]

    В результате обработки вытеснителем силикагель становится более термостойким, но следует помнить, что с повышением температуры вытеснителя резко, уменьшается механическая прочность силикагеля, хотя адсорбционные свойства продолжают улучшаться. [c.119]

    Большое влияние на структуру силикагелей и их адсорбционные свойства оказывает температура обезвоживания низкая температура приводит к получению тонкопористого силикагеля, в то время как повышение температуры приводит к понижению поверхностного натяжения жидкости и укрупнению пор. При постепенном нагревании силикагель претерпевает следующие изменения  [c.121]

    Следует отметить, что повышение температуры сушки силикагеля КСМ выше 250° С ухудшает его адсорбционные свойства и прочность (он начинает трескаться). Высушенный адсорбент надо сразу загружать в адсорбер или в герметичную тару. [c.111]


    Представляло также интерес выяснить характер активных центров активирующих изомеризацию при недостатке и избытке щелочи, поэтому были сопоставлены кислотные и изомеризующие свойства различных образцов силикагеля. Кислотность поверхности определяли методом сорбции хинолина из газовой фазы, так как этот метод является достаточно точным и позволяет изучить сорбционные свойства в условиях, близких к условиям проведения реакции. Кинетику сорбции и десорбции хинолина на силикагелях, модифицированных различными количествами окиси калия, изучали на динамической сорбционной массовой установке при скорости потока азота 50 мл/мин, парциальном давлении хинолина в токе азота 9,7 кПа и температуре сорбции и десорбции 320 °С. Сорбцию хинолина из газовой фазы измеряли на поверхности чистого силикагеля и силикагелей, обработанных различными количествами окиси калия. Полученные экспериментальные данные приведены в табл. 50 и на рис. 23. Параллельно на тех же образцах изучали изомеризацию олефинов, полученных при крекинге н-гексадекана. [c.161]

    Исследованы [370] фильтрационные свойства диатомита, древесной муки, силикагеля, летучей золы, сульфоугля (размер частиц 0,2—0,75 мм) с использованием суспензий гидроокисей алюминия и железа, которые разделялись на лабораторном фильтре типа воронки. Начальная толщина слоя вспомогательного вещества на фильтре составляла 60 мм при проведении серии опытов внешняя часть этого слоя толщиной 10 мм по окончании каждого опыта срезалась ножом. Получены данные о коэффициенте проницаемо- [c.356]

    Наибольшее применение для осушки жидкостей имеет активированная окись алюминия, что связано с невысокой стоимостью ее и хорошими адсорбционными свойствами. При проектировании установок влагоемкость окиси алюминия обычно принимается равной 4—5% (по массе), т. е. такой же, как и при осушке газов. Если для осушки жидкостей применяется силикагель, алюмогель или молекулярные сита, то влагоемкость этих адсорбентов принимается равной влагоемкости окиси алюминия. [c.264]

    Адсорбция твердыми поглотителями основана на избирательном извлечении вредных примесей из газа при помощи адсорбентов — твердых зернистых материалов, обладающих высокой уделЕ ной поверхностью. В газоочистке применяется как физическая адсорбция, основанная на ван-дер-ваальсовых силах, так и хемосорбция. В качестве адсорбентов для очистки газов применяют высокопористые материалы, чаще всего активированный уголь, силикагель и синтетические цеолиты (молекулярные сита). Для промышленной практики наиболее важны высокая поглотительная способность адсорбента, его адсорбционная активность, избирательность действия, термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, легкость регенерации, малое гидравлическое сопротивление потоку газа. Активированные угли различных марок и силикагели уже давно и успешно применяются в промышленности. [c.235]

    В отличие от оксида алюминия при высушивании растворителей силикагель в большей степени сорбирует примеси щелочного характера. Очень удобным осушителем является силикагель, содержащий небольшое количество хлорида кобальта. В сухом состоянии он окрашен в голубой цвет, который по мере насыщения влагой меняется на слабо-розовый. Это его свойство особенно ценно при использовании н колонках для сушки газов изменение цвета поглотителя вовремя указывает на необходимость его замены. [c.171]

    По-видимому, наиболее употребительны адсорбционные и адсорбционно-хроматографические способы, основанные на специфической адсорбции гетероатомных и смолисто-асфальтовых компонентов нефти на силикагеле или окиси алюминия. Простота регулирования свойств этих [c.15]

    По окончании процесса ТСХ разделения полосы анализируемых веществ не выводятся из хроматографической системы (слоя), поэтому после удаления растворителя можно осуществить дополнительное разделение, применив растворитель с иными свойствами [144, 146, 149 и др. ]. Специфической особенностью ТСХ является возможность дифференциации соединений в двух направлениях поочередно (двумерная ТСХ). При этом, используя соответствующие системы растворителей, можно достичь значительно более полного разделения компонентов смеси, реализуя различия в свойствах различных адсорбентов (например, силикагеля в одном и алюмогеля — в другом направлении [138]) или даже различных механизмов сорбции (например, проводя адсорбционное разделение в одном и эксклюзионное в другом направлении [153-155]). [c.20]

    Путём подбора растворителей с различными свойствами выделенные асфальтены разделяют на ряд фракций. После выделения асфальтенов из раствора осадителя извлекают смолы при помощи силикагеля, окиси алюминия или активных глин. [c.12]

    При прокаливании AljOg лН 2О постепенно теряет воду, превращаясь в оксоловые производные и в конечном счете в AI2O3. Механизм дегидратации достаточно сложен, и получаемые промежуточные продукты в зависимости от исходного вещества и условий обезвоживания имеюг различные свойства. Некоторые из них химически активны (преобладание ОН-мостиков) и легко растворяются в кислотах м щелочах, другие — химически неактивны (ОН-группы замещены на атомы О) и взаимодействуют лишь при сплавлении со щелочами. Одна из форм дегидратированного гидроксида — алюмогель используется в технике, как и силикагель, в качестве адсорбента. [c.455]

    При хроматографическом разделении на силикагеле циклановые и алкановые углеводороды десорбируются обычно совместно. В табл. 5 представлены физико-химические свойства выделенных из топлив циклано-алкановых и ароматических фракций. По сравнению с циклано-алкановыми углеводородами ароматические углеводороды имеют наибольшую плотность и наибольшую объемную теплоту сгорания. Они обладают низкими температурами помутнения и кристаллизации. Эти свойства ароматических углеводородов являются положительными. Однако ароматические углеводороды повышают нагарообразование и гигроскопичность топлив, а также имеют малую стабильность при нагревании (за исключением моноциклических с насыщенными алкильными группами), что отрицательно влияет на работу двигателей. С повышением температуры выкипания топлив содержание в них ароматических углеводородов возрастает. Максимальное количество ароматических углеводородов содержится в конечных фракциях топлив. С повышением температуры выкипания возрастает также цикличность ароматических углеводородов (табл. 6). [c.15]

    Выделение сернистых соединений и изучение их химического состава представляют значительный интерес. На основании относительно большого количества работ, проведенных к настоящему времени [25, 28, 30, 31, 32, 33, 34], можно утверждать, что сочетание хроматографических и химических методов является пока лучшим способом выделения сернистых соединений. В относительно чистом виде часть сернистых соединений удастся выделить только из ароматической фракции топлив. Сернистые соединения из ароматической части товарных реактивных топлив были выделены и исследованы авторами. Выделенце производилось хроматографическим методом на силикагеле марки АСК, затем фракции подвергались обработке 0,47-молярпым раствором сулемы и через )тутцые комплексы из них были выделены сернистые соединения 117]. Через ртутные комплексы удалось выделить лишь около 50% всех сернистых соединений, содержащихся в ароматических фракциях топлив. Физико-химические свойства выделенных сернистых соединений приведены в табл. 24 .  [c.38]

    Два важных свойства адсорбента—коэффициент разделения а и скорость адсорбции — в бсльшой степени зависят от среднего диаметра пор. Избирательное действие адсорбента проявляется только по отношению к тому слою молекул, который прилегает к его поверхности. Отсюда ясна зависимость избирательной адсорбции от удельной поверхности. По-видимому, жидкость, находящаяся в центре поры, имеет тот же состав, что и жидкость вне адсорбента. Вследствие этого величина коэффициента разделения должна убывать по мере увеличения диаметра поры. С другой стороны, увеличение диаметра поры благоприятствует увеличению скорости адсорбции. Для некоторых сортов силикагеля величина среднего диаметра поры только немного больше утроенного диаметра молекулы бензола, и в результате относительно небольшого прироста величины диаметра поры скорость адсорбции может значительно увеличиться. Идеальным является такой адсорбент, в котором достигнуто необходимое равновесие между избирательностью и скоростью адсорбции. По мере увеличения размеров молекулы или вязкости адсорбата влияние скорости адсорбции на процесс становится более ощутимым. [c.160]

    Герш, Фенске [17] и др. в 1950 г, опубликовали метод кольцевого анализа, названный М-п методом, весьма напоминающий метод Липкина и Куртца. Для анализа нафтено-парафиновых смесей, с одной стороны, и ароматических, с другой, было использовано сопоставление физических свойств (коэффициента преломления, молекулярного веса). При применении этого метода масло предварительно должно разделяться на ароматическую и нафтено-парафиновую части, например адсорбцией на силикагеле. Недавно Мартини Санкин [33] предложили новый быстрый метод определения числа ароматических и нафтеновых колец на молекулу в ароматических концентратах из нефти. Метод основан на сочетании двух ранее опубликованных соотношений (разработанных в лаборатории [c.370]

    Удельная поверхность и структура (размер и характер пор) являются важными характеристиками, определяющимн адсорбционные свойства адсорбента. Адсорбция зависит от величины поверхности чем больше пористость твердого тела, тем больше его общая удельная поверхность и способность к адсорбции. Для силикагелей, алюмогелей и алюмосиликатных катализаторов величина удельной поверхности может быть в пределах от 10 до 1000 м г. [c.24]

    Венецуэльский дистиллят смазочного масла, не содержащий парафинов, яв.чяется подходящим сырьем для получения смазочных масел среднего индекса вязкости он был подвергнут пятикратной периодической экстракции фурфуролом при 70° заключительной операцией явилась обработка силикагелем, В табл. 5 приведены выходы и свойства шести рафинатов, полученных таким путем. [c.390]

    Углеводород легко выделяется из реакционной смеси благодаря тому, что все другие присутствующие вещества растворяются в воде. Полученный углеводород тщательно промывают соляной кислотой и водой, сушат, обрабатывают силикагелем и перегоняют. Если спектральным анализом или по физическим свойствам в продукте обнаруживаются при.меси кетонного характера, его следует обработать фенилмагнийбро-мидом или же провести адсорбцию силикагелем. [c.509]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Приведены сведения об основных типах промышленных катализаторов и силикагелей, их свойства и предъявляемые к ним требования. Описаны основные технологические процессы производства катализаторов и адсорбентов приготовление водных растворов и процессы формования, мокрой обработки и обезвоживания. Рассмотрены технологические схемы катализаторных фабрик по производству природных катализаторов пз бентонитовых глин (ханларит) и синтетических каталпзаторов алюмосилпкат-ных (АС), алюмомагнийсиликатных (АМС), цеолитных (ЫаХ, СаХ) и цеолитсодержащих (ЦАС), а также высокоактивных силикагелей (АД, СД) и цеолитов. Освещены лабораторный контроль производства, контрольно-измерительные приборы, автоматизация процессов и вопросы техники безопасности в производстве катализаторов. [c.2]

    Благодаря свойствам извлекать из сложных органических смесей в определенной последовательности органические соединения различных классов адсорбенты нашли широкое применение в промышленности. В нефтеперерабатываюш ей промышленности они до последнего времени применялись главным образом для доочистки масел после их предварительной сернокислотной или селективной очпстки. Улучшение качества смазочных масел достигается за счет все возрастающ,его применения таких адсорбентов, как отбелпва-юш,ие глины (гумбрин, ханларский бентонит), крошки синтетического шарикового алюмосиликатного катализатора (отходы основного производства) и широкопористых силикагелей. Алюмосиликатные адсорбенты-катализаторы АД и СД могут быть использованы в процессах адсорбционной очистки масел и топлив, при определении группового углеводородного состава остаточных топлив (вместо силикагеля АСК) и прн каталитическом крекинге легких керосино-газойлевых фракций п тяжелых вакуумных дистиллятов. [c.128]

    Саханов отмечает, что в некоторых случаях силика-гель можно за.менить флорид1шом без ущерба для результатов, зато в других случаях ему удалось констатировать превращение типичных нефтяных смол в асфальтены исключительно благодаря полимери-зующему действию флоридина. В этом отношении силикагель вовсе не отличается шлимеризующими свойствами. [c.84]

    Так, Сидоровым [32] было показано образование эфирных связей при адсорбции метанола на силикагеле. Хироте, Фуэки и Сакаи [33] установили наличие поверхностных координационных алюминиевых комплексов при адсорбции метиламина на окиси алюминия, Захтлер с сотрудниками [34] показали, что первой стадией процесса окисления бензальдегида на окисных катализаторах является образование несимметричного бензоата металла. Эти данные свидетельствуют о том, что химические свойства веш,еств, участву-юш,их в каталитических процессах, в значительной степени сохраняются и в ходе поверхностных реакций, что может служить хорошей основой для раскрытия их механизма. [c.30]

    Эти углеводороды выделяют хроматографическим методом на силикагеле, поэтому в их составе содержатся и изопарафины, однако содержание последних невелико. Кроме того, нафтеновые углеводороды масляных фракций ефти являются смешанным.и, т. е. содержат в молекулах и па1рафиновые цепи. Нафтеновых углеводородов в негибридизираванном виде в высокомолекулярной части нефти, по имеющимся в литературе данным, вообще не со-де ржится. В работах Л. Г. Жердевой, Д. О. Гольд берг и других исследователей на основаиии определения элементного состава и физических свойств узких высококипящих фракций нафтеновых углеводородов показано, что в их составе наряду с гомологами циклогексана присутствуют и полициклические нафтены. Было установлено наличие в масляных фракциях бакинских нефтей нафтенов с 2, 3 и 4 циклами в молекуле. В работе Ф. Д. Россини показано, что число колец, содержащихся в молекулах нафтенов, зависит от пределов выкипания фракции. В легких масляных фракциях содержатся в основном гомологи циклогексана, в средних фракциях — алмилзамещенные нафтены с двумя и тремя циклами в молекуле, а в высококипящих фракциях обнаружены ди-, три- и тетрациклические конденсированные нафтеновые углеводороды. [c.9]

    Наличие системы ароматических связей придает ароматическим углеводородам более высокую способность сорбироваться по сравн. нию с другими углеводородами, особенно с парафинами и нафтенами. Ароматические углеводороды обладают значительной растворимостью в таких полярных жидкостях, как жидкий сернистый ангидрид, диэтиленгликоль, фенол, в которых углеводороды другик классов растворяются очень слабо. Оии хорошо сорбируются твердыми адсорбентами (активированным углем, силикагелем). Эти свойства ароматических углеводородов исиользуют в нромышленности для их выделения экстракцией, экстрактивной перегонкой и адсорбцией. [c.59]

    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]


Библиография для Силикагель свойства: [c.338]   
Смотреть страницы где упоминается термин Силикагель свойства: [c.60]    [c.490]    [c.315]    [c.67]    [c.110]    [c.14]    [c.15]    [c.152]    [c.88]    [c.172]   
Аффинная хроматография Методы (1988) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагель



© 2025 chem21.info Реклама на сайте