Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация растворов и растворителей

    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента 1) экстракция нейтральными реагентами (растворителями), 2) экстракция реагентами кислотного характера, 3) экстракция реагентами основного характера по типу соединений, переходящих в органическую фазу 1) несольватированные молекулярные соединения, 2) сольватированные нейтральные смешанные комплексы, 3) комплексные кислоты, 4) внешнесферные комплексы. Состав соединения в органической фазе будет зависеть от природы экстрагируемого вещества. [c.427]


    В 1938 году В. К. Семенченко предложил новую классификацию растворов. В основе его классификации лежит соотношение в обобщенном моменте растворенного вещества и растворителя. Под обобщенным моментом он понимает величину, характеризующую реакцию молекул а молекулярное поле. Эта величина может быть определена выражением  [c.25]

    Впервые классификация экстрагентов растворителей была проведена в первой четверти XIX века. Были выделены группы кислых (азотная, серная, уксусная кислоты, царская водка ) и щелочных растворителей , производивших глубокие, видимые изменения в растворяемом веществе. Растворители, не производящие заметных изменений в растворяемом веществе, отнесли к группе так называемых индифферентных экстрагентов (вода, спирт, эфир, масла). После обнаружения гидратов было принято новое разделение группы индифферентных экстрагентов на воду (в воде преимущественно растворяются неорганические соли, кислоты и основания) и органические растворители (в которых неорганические вещества практически нерастворимы). [c.48]

    КЛАССИФИКАЦИЯ РАСТВОРОВ И РАСТВОРИТЕЛЕЙ [c.34]

    Выбрать растворитель для того или иного титрования можно, строго говоря, только на основании данных о константах диссоциации кислот и оснований и данных о ионном произведении среды. Кроме того, во многих случаях выбор неводного растворителя и условий титрования может быть сделан на основе выведенных выше уравнений и описанных примеров применения неводных растворителей для улучшения условий титрования. Для того, чтобы облегчить пользование неводными растворителями, приводим сводную табл. 48 условий титрования, составленную в соответствии с нашей классификацией применения неводных растворителей для улучшения условий титрования. В этой таблице для каждого титрования приведены объекты титрования, растворители, титрующий раствор, применявшиеся электроды (при потенциометрическом) и индикаторы (при визуальном) титровании. [c.461]

    Данная глава посвящена рассмотрению свойств растворов неэлектролитов и главным образом изучению взаимодействия растворенных молекул с растворителем. Будут рассмотрены основы термодинамики растворов неэлектролитов, классификация растворов, состав образующихся в растворе продуктов взаимодействия и методы его определения, характер сил, обусловливающих образование этих соединений, свойства продуктов взаимодействия и методы их определения. [c.215]


    Теория сольвосистем. Данная теория развита Э. К- Франклином (1905). Она основана на классификации веществ на кислоты и основания исходя из собственной диссоциации растворителя. Кислотами здесь выступают вещества, дающие в растворе те же положительные ионы, которые образуются при собственной диссоциации растворителя. Основаниями — вещества, дающие в растворе отрицательные ионы, образованные при собственной диссоциации растворителя. Например  [c.286]

    Кроме классификации коллоидов по размерам частиц (или по удельной поверхности) существуют классификации по агрегатному состоянию (табл.1), структуре (свободно или связнодисперсные системы), межфазному взаимодействию дисперсной фазы и дисперсионной среды (лиофильные и лиофобные коллоиды). Особое место занимают растворы высокомолекулярных соединений (полимеров), которые являются по существу термодинамически устойчивыми истинными растворами. Однако размеры молекул полимеров значительно превышают размеры обычных молекул (в том числе и растворителя), поэтому данным растворам свойственны многие свойства обычных классических коллоидных систем. В настоящей работе из-за ограниченного объема рассматриваются в основном только классические коллоиды. [c.41]

    Как и в случае водных растворов, в (П. 9) должны входить величины, учитывающие кислотно-основные свойства растворителя, способность его молекул давать комплексные соединения С компонентами редокс-систем. В [160] приводится классификация неводных растворителей на 6 типов полярные и неполярные кислоты [например, серная (85) и муравьиная (56) — полярные кислоты, а уксусная — неполярная (18)] полярные и неполярные основания [соответственно, гидразин (52) и пиридин (12)] полярные и неполярные растворители, не обладающие отчетливо выраженными свойствами кислот и оснований [нитрометан (36), ацетон (21) и хлороформ (5), четыреххлористый углерод (2)]. [c.90]

    Наиболее четко позиции Киевской электрохимической школы были сформулированы в докторский диссертации В. А. Плотникова Исследования по электрохимии неводных растворов , в которой отрицается идея классификации растворителей, основанная на диссоциирующей способности . В качестве основного условия образования электролитного раствора В. А. Плотников выдвинул химическое взаимодействие между компонентами раствора. Разделяя этот основной тезис химической теории растворов, В. А. Плотников широко использует весь арсенал методов физической теории растворов и именно это позволило ему решить основную проблему теории электролитных растворов того времени, дав в высшей степени убедительное и очевидное объяснение так называемым аномальным кривым электропроводности. [c.174]

    Ознакомление с приведенным перечнем убеждает в том, что он является почти всеобъемлющим. Найдется, вероятно, очень немного маслорастворимых поверхностно-активных веществ, которые нельзя было бы отнести к какой-либо из перечисленных групп. Напрашивается вывод, что классификация синтетических детергентов, основанная иа химическом признаке, вряд ли может принести практическую помощь, так как любое соединение, способное образовать в растворителе коллоидный раствор, представляет собою потенциальный детергент, пригодный для химической чистки. Но для того чтобы быть приемлемым в качестве такового, моющее средство не должно обладать запахом, быть неустойчивым и оказывать вредное действие на ткани и красители. Вместе с тем оно должно легко удаляться при прополаскивании очищенных предметов одежды, а также не усложнять фильтрацию и перегонку растворителя. [c.159]

    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента  [c.427]

    Кроме такой классификации возможна классификация растворителей по признаку их влияния на относительную силу кислот и солей, по их способности изменять соотношение в силе электролитов. По этому признаку растворители можно подразделить на нивелирующие и дифференцирующие. К нивелирующим относят те растворители, в которых кислоты, основания и соли уравниваются по своей силе, или, более осторожно, — растворители, в которых соотношения в силе электролитов, свойственные их водным растворам, сохраняются. К ним относятся прежде всего все растворители, содержащие гидроксильную группу — спирты, фенолы. В дифференцирующих растворителях проявляется значительное различие в силе электролитов, и в частности в силе кислот и оснований. К ним относятся прежде всего растворители, не содержащие гидроксильных групп альдегиды, кетоны, нитрилы и т. д. В этих растворителях соотношение в силе электролитов иное, чем в воде. Обычно такие растворители не являются донорами протонов, но и пе являются хорошими их акцепторами. Дифференцирующим действием могут обладать в той или иной степени все неводные растворители. [c.274]


    Хотя неводные растворы исследованы еще недостаточно, все же возможна некоторая классификация реакций, протекающих в этих растворах. Для неводных растворов принимают те же типы реакций, что и для водных растворов. Однако некоторые реакции в разных растворителях идут по-разному, и именно поэтому неводные растворы так интересны. [c.350]

    В отличие от серной и соляной кислот гидролиз целлюлозы в концентрированной фосфорной кислоте идет значительно медленнее (примерно в 1000 раз). Поэтому концентрированная (83...86%-я) фосфорная кислота может использоваться в качестве растворителя целлюлозы при определении ее СП вискозиметрическим методом. Целлюлоза в растворе фосфорной кислоты нечувствительна к действию кислорода воздуха и света, растворение происходит довольно быстро, получаемые растворы бесцветны. В зависимости от концентрации фосфорной кислоты в раствор переходят фракции целлюлозы с разной СП. На этом основано фракционирование целлюлозы с определением ее неоднородности по молекулярной массе методом суммирующего растворения в фосфорной кислоте (см. 17.3). Однако фосфорная кислота не растворяет фракции целлюлозы с СП выше 1200. Поэтому фосфорнокислотный метод определения СП применяют только для целлюлоз со сравнительно невысокой СП. Это же ограничение относится и к фракционированию целлюлозы. Следует заметить, что 100%-ю фосфорную кислоту в классификации растворителей целлюлозы относят к неводным растворителям целлюлозы. [c.560]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    При этом следует различать случаи, когда анодный продукт хорошо растворим и когда на аноде образуются нерастворимые соединения в виде гидроокисей, основных или нейтральных солей. Переходя в раствор, ион металла либо вступает в связь с молекулами растворителя, либо образует комплексные ионы. Наконец, нужно иметь в виду возможность повышения положительной валентности металлических ионов (соответственно понижения отрицательной валентности комплексных анионов). Если же потенциал анода достигает высоких положительных значений, то ко всем перечисленным направлениям анодных реакций добавляется окисление воды с выделением кислорода. На основании сказанного можно в следующем виде представить классификацию анодных процессов. [c.194]

    Необходимо иметь в виду, что эта классификация относительная и применима к водным средам. Электролит, сильный в водном растворе, может оказаться слабым в органическом растворителе с небольшим дипольным моментом или низкой диэлектрической проницаемостью. [c.132]

    Обычные неводные органические растворители относятся к молекулярным жидкостям и в зависимости от их химического строения принадлежат к одному из следующих классов органических соединений алифатические и ароматические углеводороды и их галоген- и нитропроизводные, спирты, карбоновые кислоты, сложные эфиры карбоновых кислот, простые эфиры, кетоны, альдегиды, амины, нитрилы, незамещенные и замещенные амиды, сульфоксиды и сульфоны (см. приложение, табл. АЛ). Классификация растворителей в соответствии с их химическим строением позволяет сделать некоторые выводы качественного характера, в общем случае сводящиеся к старому правилу подобное растворяется в подобном . Обычно соединение легко растворяется в растворителе, имеющем такие же или [c.87]

    В последующих разделах сначала будет рассмотрена реакционная способность органических соединений в газовой фазе, а затем мы обсудим наиболее важные взаимосвязи качественного и количественного характера между скоростями реакций и свойствами растворителей. В разд. 5.2 сравниваются реакции в газовой фазе и в растворах, что позволит показать огромные изменения в скоростях реакций, сопровождающие переход от газовой фазы к растворам. В разд. 5.3 рассматриваются правила Хьюза — Ингольда и границы применимости этих правил, которые качественно описывают влияние растворителей на реакции замещения и элиминирования и базируются на классификации таких реакций в соответствии с типом и распределением заряда в исходных веществах [16]. Затем будут упомянуты аналогичные правила, предназначенные для оценки влияния растворителей на органические реакции, в основу которых положены другие классификации реакций, предложенные Косо- [c.192]

    Хотя справедливость правил Хьюза — Ингольда впервые была продемонстрирована на примере реакций нуклеофильного алифатического замещения и -элиминирования, они должны быть применимы и для любых других гетеролитических реакций в растворах, в которых образование активированного комплекса связано с возникновением, делокализацией или нейтрализацией заряда. В последующих разделах будет обсуждаться влияние растворителей на другие органические реакции в свете классификации последних по Косоверу [15, 468]. Это обсуждение поможет читателю оценить эффекты растворителей в более полной мере, а при необходимости и подобрать растворитель для проводимой им реакции. [c.217]

    Растворы. Классификация растворов. Растворитель и растворенное вещество. Общие свойства истинных растворов. Насыщенный, пересыщенный и ненасыщенный раствор. Способы выражения состава раствора (массовая доля вещества в растворе, молярная концентрация, нормальная концентрация). Физическая теория растворов Я. Вант-Гоффа и С. Аррениуса. Химическая теория растворов Д. И. Менделеева. Сольваты, гидраты, кристаллогидраты, кристаллизационная вода. Растворение веществ как физико-химический процесс. Тепловой эффект процесса растворения. Растворимость веществ. Факторы, влияющие на растворимость веществ. Электролиты и неэлектролиты. Теория электролитической диссоциации С. Аррениуса. Степень электролитической диссоциации. Зависимость степени диссоциации от природы электролита, природы растворителя, концентрации и температуры раствора. Кажущаяся степень диссоциации сильных электролитов. Константа электролитической диссоциации. Диссоциация воды. Ионное произведение воды. Водородный показатель. Ионно-молекулярные уравнения реакций. Гидролиз солей. Факторы, влияющие на процесс гидролиза. Степень и константа гидролиза. [c.5]

    Чтобы иметь количественные показатели для классификации органических растворителей по адсорбируемости, введено понятие индекс адсорбции [13]. Значение индекса адсорбции находится экспериментально путем определения количества (в миллилитрах) растворителя, адсорбируемого 1 кг адсорбента нри равновесной концентрации, равной 0,2%. Индекс адсорбции нред( льиых углеводородов принят равным нулю. При определении адсорбциоппого индекса любо1 о растворите. гя пользуются 0,2%-нымн растворами их в -гептане или в дрз гом предельном углеводороде. [c.32]

    Итак, как мы могли убедиться, в качестве неподвижной твердой фазы в ТСХ применяются самые различные материалы, более того, механизмы разделения осуществляемого этим методом, также могут быть соверщенно разными, поэтому обобщить свойства применяемых в ТСХ отдельных растворителей и их смесей довольно сложно. Соотношение между природой разделяемых соединений и растворяющей системой обсуждалось в гл. 3, а элюенты, используемые для различных типов хроматографии, и их соотношение с сорбентами и разделяемыми соединениями рассматривалось в гл. 4—6. При выборе растворителя или смеси растворителей для ТСХ следует учитывать растворимость хроматографируемых соединений в подвижной фазе, а также растворяющую силу (полярность) растворителя или его избирательность. О влиянии полярности растворителя на процесс адсорбции говорилось в гл. 4, разд. 4,3. На рис. 9.9 показан состав различных смесей растворителей одинаковой полярности. Под избирательностью данного растворителя по сравнению с другим растворителем почти такой же полярности подразумевают способность первого избирательно растворять один из компонентов смеси. В статье Снайдера [58] дается классификация 82 растворителей. Общие соотнощения между хроматографируемыми соединениями, элюирующей системой и природой слоя сформулированы Германском [18]. При разделении методом ТСХ чистота растворителей, безусловно, имеет такое же важное значение, как и при разделении другими хроматографическими методами. [c.110]

    В 1946 г. В. К. Семенченко дал общую классификацию растворов, основанную на рассмотрении эффективных сил взаимодействия между частицами. Из его теории следует, что идеальность раствора обусловлена не малой интенсивностью взаимодействия молекул, а подобностью взаимодействий молекул растворенного вещества друг с другом и их взаимодействий с молекулами растворителя. Большое значение имеет введение автором разделения растворов на гомео- и гетеродинамные. [c.188]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    В настоящем разделе на основе синтеза функционального оператора процесса массовой кристаллизации из растворов и газовой фазы получим как частные случаи уравнения моделей кристаллизаторов различных конструкций. Подробный анализ конструкций кристаллизаторов приводится в работах [1—9]. Для того чтобы не описывать математическую модель каждого кристаллизатора в отдельности, рассмотрим ряд попыток классификации промышленных кристаллизаторов. Они выполняются по-разному в зависимости от поставленной задачи. Особого внимания заслуживает классификация, данная в работе [4], которая охватывает конструкции, наиболее широко используемые в мировой практике промышленной кристаллизации из растворов. Все типы кристаллизаторов классифицировались по следующим признакам- по способу создания пересыщения (охладительные, вакуум-кристаллизаторы, выиарные и т.д.), по способу организации процесса (периодические и непрерывные), по виду циркуляции рабочего потока (с циркулирующей суспензией или с циркулирующим раствором). В отличие от работы [4] в работе [1] объединены вакуум-кристаллизаторы и охладительные кристаллизаторы в одну группу и дарю название аппараты для изогидрической кристаллизации , поскольку выделение кристаллов в них осуществляется охлаждением горячих концентрированных растворов при постоянстве растворителя. В дальнейшем была предложена классификация кристаллизаторов на базе моделей движений жидкой и твердой фаз [10]. В соответствии с такой классификацией рассматриваются четыре типа кристаллизаторов [11] кристаллизатор с перемешиванием суспензии и отбором смешанного продукта (MSMPR) кристаллизатор с перемешиванием суспензии и отбором классифицированного продукта (MS PR) кристаллизатор с классификацией суспензии и отбором классифицированного продукта ( SPR) аппараты периодического действия. В данной работе будем придерживаться этой последней классификации. [c.155]

    Лекция 6. Избирательные растворители. Классификация. Силн межмоле-кулярного взаимодействия. Механизм действия избирательных раствор телей. [c.359]

    В жидких нефтяных системах размеры молекул растворенных веществ могут значительно отличаться от размеров моле-1чул растворителя. В настоящее время в литературе принято на- и.1вать молекулы с числом степеней свободы порядка 10 —10 макромолекулами [79J. Описание теплового движения макромолекул в растворах усложняется. Указанное отличие низкомолекулярных соединений от высокомолекулярных по числу сте-не1гей свободы может служить дополнением к классификации молекул по их физико-химическим свойствам (см. главу III, 2, раздел 2.2). [c.44]

    При классификации по донорно-акцепторным свойствам обычно выделяют протонные и апротонные растворители. П р отон-ные растворители обладают донорно-акнепторными свойствами по отношению к протону, т. е. могут отдавать или принимать протон и таким образом участвовать в процессе кислотно-основного взаимодействия. Апротонные растворители не проявляют кислотно-основных свойств и не вступают в протолитическое равновесие с растворенным веществом. Эта классификация в известной степени остается условной, так как большое значение имеет природа растворенного вещества. Например, обычно считающийся апротонным бензол в растворе амида натрия в аммиаке проявляет кислотные свойства. Однако для очень многих аналитически важных систем классификация вполне оправдывается. [c.34]

    Рассмотрим взаимосвязь между различными твердыми фазами. В основу предлагаемой классификации положены два признака кристаллохнмическая индивидуальность и постоянство или переменность состава фазы. Предельно общим в данной классификации является понятие о твердой фазе. Твердые фазы подразделяются на химические индивиды — фазы постоянного или переменного состава, характеризующиеся качественно своеобразной кристаллической структурой, и твердые растворы — фазы переменного состава, структура которых идентична структуре компонента — растворителя и свойства которых, следовательно, качественно не отличаются от свойств компонентов. Ниже приведена классификация твердых фаз. [c.359]

    Однако, используемые в промышленности способы получения гидратцеллю-лозных волокон и пленок, а также волокон и пленок из искусственных полимеров, часто оказываются экономически недостаточно рентабельными главным образом из-за трудностей регенерации используемых для перевода целлюлозы в растворимое состояние химических реагентов и растворителей, а также экологически вредными. Поэтому в последние годы уделяется большое внимание поиску новых растворителей целлюлозы для создания более совершенных нетрадиционных технологических процессов, в том числе неводных растворителей и неводных многокомпонентных систем. Значительное расширение круга растворителей целлюлозы приводит к необходимости их классификации. Однако, четкое отнесение того или иного конкретного растворителя целлюлозы к определенному классу затруднительно из-за отсутствия однозначного объяснения механизмов растворения. Проблема осложняется полимерной природой целлюлозы, для которой трудно провести границу между концентрированными растворами и коллоидными. [c.555]

    Классификация растворителей вытекает из свойств водородных соединений метан — инертный растворитель (и все углеводороды), аммиак — основной, вода — амфотерный, фтороводород — кислый. Важнейшая характеристика растворителей — их диэлектрическая проницаемость. По ее величине все растворители располагаются в элю-отропный ряд Цвета — Траппе. Этот ряд связан с полярностью и сор-бируемостью веществ ( 24, 45, 173). Меняя химический состав растворителя, можно изменять силу растворенных в нем кислот и оснований и преврашать соли в кислоты или основания. Например, мочевина Нз —СО—1 Н2 проявляет в жидком аммиаке кислотные свойства, в безводной уксусной кислоте — сильные основные, в водном растворе — слабые основные. [c.50]

    Рассмотрим оценки, сделанные опытным проявлениям молекулярных свойств ангиотензина II и попытаемся составить общее представление о характерных особенностях структурной организации гормона, а затем qpasHHTb его с представлением, следующим из теоретического анализа. Противоречивыми оказались первые же исследования структуры ангиотензина II методом диализа на тонких пленках. В одних работах [33, 34] сделан вывод о том, что молекула гормона в растворе имеет одну компактную форму, а в другой [8] предположено наличие конформационного равновесия двух форм. Не менее противоречивы выводы разных авторов из кинетических данных по изотопному замещению протона в водородных связях ангиотензина II. Г. Шерага и соавт. [15] отмечают одинаковую скорость обмена всех амидных протонов и делают вывод о том, что конформационное состояние гормона отвечает статистическому клубку. Р. Ленкинский и соавт. [35] отмечают аномально низкую скорость обмена амидного протона His , а М. Принтц и соавт. [24, 36] выделяют по этой же причине остатка VaP и VaP. В работе [25] амидные протоны разделены по скорости обмена на три группы, причем к группе с наибольшими скоростями отнесены протоны Asp и Arg . В классификации, предложенной Г. Маршаллом [37], все обменивающиеся протоны разделены на четыре группы. К одной группе отнесены амидные протоны всех остатков ангиотензина II, за исключением Asp и Phe , имеющие, согласно сообщению [37], одинаковую скорость обмена. По значениям констант диссоциации ионогенных групп гормона, полученных потенциометрическим титрованием [9] и с помощью спектров ЯМР и КД [38], сделан вывод о сближенности N- и С-концевых групп пептидной цепи, допускающей их взаимодействие. Расстояние между группами значительно меньше соответствующего расстояния в случае пребывания ангиотензина в состоянии статистического клубка. В работе [38], кроме того, предположено, что все ионогенные группы доступны растворителю, а имидазольное кольцо остатка [c.279]

    С—СО—, так и в форме —СО—СН—СО— какая из этих двух форм будет более устойчивой, зависит от природы заме-стителей, температуры, а в случае растворенных веществ — от природы растворителя [14]. Изучение кето-енольного равновесия этилформилфенилацетата в восьми растворителях позволило Вислиценусу сделать вывод о том, что в спиртовых растворах преобладает кетоформа, а в хлороформе или бензоле — енольная форма. Он установил, что относительное содержание каждой из таутомерных форм в состоянии равновесия должно зависеть от природы растворителя и его диссоциирующей способности, причем он предположил, что мерой этой способности может служить диэлектрическая проницаемость растворителя. Впервые эти работы были обобщены в обзоре Штоббе [18], который разбил растворители на две группы в зависимости от их способности вызывать изомеризацию соединений, склонных к таутомерным превращениям. В известной степени его классификация соответствует современному делению растворителей на протонные и апротонные. Влияние растворителя на равновесие структурной и таутомерной изомеризации позднее детально изучал Димрот [19] (на примере производных триазола, например 5-амино-4-метоксикарбонил-1-фенил-1,2,3-триазола) и Мейер [20] (на примере ацетоуксусного эфира). [c.22]

    Подчеркивалось, что рассматриваемая классификация не является строгой. Существует ряд растворителей, которые нельзя однозначно отнести ни к одной из указанных трех групп, как, например, простые эфиры, сложные эфиры карбоновых кислот, первичные и вторичные амины, Ы-монозамещенные амиды, например Ы-метилацетамид [916]. Выбор в качестве граничной величины бг=15 произволен, но оправдан, так как в растворителях с меньшей диэлектрической проницаемостью ионы ассоциируют и свободные сольватированные ионы наблюдать уже не удается (ср. разд. 2.6). Такое деление растворителей на три группы имеет главным образом эвристическое значение. Полез-I ность этой системы классификации растворителей определяется тем, что в ней особо выделены полярные апротонные раствори-, тели, обладающие чрезвычайно специфической особенностью I сольватировать ионы [73, 92—96]. [c.115]


Смотреть страницы где упоминается термин Классификация растворов и растворителей: [c.94]    [c.70]    [c.33]    [c.69]    [c.70]    [c.8]    [c.464]   
Смотреть главы в:

Аналитическая химия -> Классификация растворов и растворителей




ПОИСК





Смотрите так же термины и статьи:

Растворители классификация

Растворы классификация



© 2024 chem21.info Реклама на сайте