Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние концентрации раствора на подвижность ионов

    Ионная и электронная электропроводность. Проводники первого и второго рода. Прохождение тока сквозь раствор электролита механизм прохождения тока. Сопротивление проводника. Закон Ома. Единицы измерения (электрические). Основные приборы вольтметр, амперметр, гальванометр, кулонометр и т. д. Удельное сопротивление, удельная электропроводность. Мостик Уитстона. Принцип измерения сопротивления. Особенности измерения сопротивления раствора электролита (телефон, катушка Румкорфа). Влияние температуры и разведения нз удельную электропроводность. Молекулярная и эквивалентная электропроводность. Зависимость от температуры и разведения. Электропроводность при бесконечном разведении. Закон независимого перемещения ионов. Вычисление Хоо из подвижностей ионов. Вычисление степени и константы диссоциации для слабых электролитов. Сильные электролиты. Коэфициент электропроводности. Причины изменения с концентрацией в случае сильных электролитов. Скорости и подвижности ионов. Роль среды и природы иона. Электропроводность чистой воды. Введение поправки на эту величину. Определение константы прибора. Калибровка линейки. Переход от электропроводности, измеренной в данном сосуде, к удельной электропроводности. Кондуктометрическое титрование. [c.93]


    ВЛИЯНИЕ КОНЦЕНТРАЦИИ РАСТВОРА НА ПОДВИЖНОСТЬ ИОНОВ [c.11]

    Согласно теории сильных электролитов при повышении концентрации раствора подвижность ионов уменьшается под влиянием [c.137]

    Согласно теории сильных электролитов при повышении концентрации раствора подвижность ионов уменьшается под влиянием электростатического взаимодействия ионов, что и обусловливает уменьшение эквивалентной электропроводности раствора. Концентрация же ионов, оставаясь постоянной, не влияет на изменение электропроводности. Таким образом, представление С. Аррениуса [c.189]

    Возрастание эквивалентной проводимости или ионной подвижности при повышении частоты зависит от подвижности, зарядности и концентрации ионов (в конечном итоге— от времени релаксации). Чем выше концентрация и зарядность ионов, тем выше частота электрического поля, при которой эффект релаксации снижается. Влияние электрического поля высокой частоты на проводимость растворов электролитов разного состава исследовал Ермаков [125]. [c.378]

    Кривые титрования кислот средней силы изогнуты и могут иметь пологий минимум, не имеющий аналитического значения, что было установлено еще в ранних работах [189, 210]. Положение минимума в зависимости от силы кислоты, ее концентрации и подвижности ионов рассмотрено в работах [209, 215] Влияние концентрации титруемого раствора на формы кривых титрования слабых кислот описано в работе [186]. [c.184]

    Влияние концентрации электролита на электропроводность. Сильные электролиты. Сильные электролиты в водных растворах практически полностью диссоциированы и для них принимают степень диссоциации а, равную 1. Однако абсолютные скорости движения, а следовательно, и подвижности зависят от концентрации ионов в растворе, что объясняется силами межионного взаимодействия. С увеличением концентрации уменьшаются расстояния между ионами и увеличиваются межионные взаимодействия, что приводит к торможению движения катионов и анионов, а следовательно, к понижению их подвижности. Поэтому эквивалентная электропроводность сильных электролитов, имею-ш,ая максимальное значение при бесконечном разбавлении, уменьшается с повышением концентрации. [c.75]

    Влияние растворителя учитывается введением диэлектрической проницаемости Ер. Предполагается, что в растворе электролита вследствие электростатического взаимодействия между ионами (притяжение между разноименными и отталкивания между одноименными) вокруг каждого иона образуется в среднем по времени сгущение ионов противоположного знака. Такие сгущения образуют так называемые ионные атмосферы противоположного данному иону знака и, следовательно, в принципе межионное взаимодействие можно свести к взаимодействию между ионными атмосферами. Ионная атмосфера характеризуется зарядом, величина которого быстро убывает с ростом расстояния от центра. Заряд ионной атмосферы тем больше, чем больше общая концентрация ионов в растворе. При наложении электрического тока катионы и анионы двигаются в соответствующих направлениях вместе со своими атмосферами, которые в своем движении запаздывают за движением ионов и тем самым тормозят его. Кроме того, ионы испытывают тормозящее воздействие за счет притяжения между ионными атмосферами противоположных знаков. Эти тормозящие воздействия уменьшают подвижность ионов и, следовательно, уменьшают эквивалентную электрическую проводимость, что особенно заметно при увеличении концентрации. Указанные явления представляют собой физические причины существования коэффициента электрической проводимости [c.389]


    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]

    При допущении, что подвижность ионов слабого электролита не зависит от концентрации, следует учесть влияние степени диссоциации, которая увеличивается при разбавлении раствора. У сильных электролитов, которые можно считать всегда диссоциированными нацело, при разбавлении увеличиваются расстояния между ионами, уменьщаются силы взаимодействия и взаимное торможение ионов, отражаемые коэффициентом электрической проводимости /х- С ростом разбавления раствора и степень диссоциации слабого электролита, и коэффициент электрической проводимости сильного электролита возрастают до единицы при бесконечном разбавлении, что приводит к увеличению молярной (и эквивалентной) электрической проводимости до величины Х.°, хотя и вследствие различных причин [уравнения (11.34) и (11.35)]. Этим закономерностям отвечает характер кривых Я, изображенных на рис. 11.2. [c.221]

    Подвижности ионов при увеличении концентрации раствора уменьшаются вследствие возрастающего влияния ионной атмосферы. Поэтому с целью сравнения вместо удельной электропроводности удобнее пользоваться эквивалентной электропроводностью. [c.223]

    Ионообменная хроматография основана на различной способности ионов поглощаться ионитом колонки. Проявление хроматограммы проводят при помощи подвижной фазы, которая позволяет хотя бы частично вытеснить сорбированные ионы. С точки зрения определения понятия элюент (разд. 7.3.1) неверно применять термин элюирование к процессам ионного обмена, хотя это встречается в литературе. Время пребывания ионов в колонке определяется энтальпией ионообменных процессов и зависит от соотношения концентраций ионов в растворе. Подвижная фаза может двояким образом оказывать влияние на ионообменный процесс, что можно показать на уравнении (7.4.5). При прохождении растворителя через колонку равновесие-должно быть сдвинуто вправо. С одной стороны, этого можно добиться, повышая концентрацию ионов Н+ (т. е. концентрацию вытесняющего иона),. [c.380]

    Благодаря влиянию тепловой энергии, снижающей молекулярную упорядоченность и разрушающей внутреннюю структуру, предельное значение ионной подвижности при повышении температуры возрастает. Ее возрастанию в растворах умеренной концентрации способствует снижение тормозящего влияния электростатического взаимодействия между ионами. При повышении температуры ослабевает ассоциация ионов, обусловленная кулоновскими силами, и число ионов и соответственно проводимость раствора возрастают. Влияние температуры на диссоциацию ковалентных молекул гораздо сложнее. Электролитическая диссоциация — это химическая реакция между растворенным веществом и молекулами растворителя, в которой преобразуются оба типа молекул  [c.389]

    Влияние разбавления на межионное притяжение. Межионное притяжение вызывает отклонения в поведении реальных растворов аналогично тому, как межмолекуляр-ное притяжение в реальных газах влечет за собой отступления их поведения от законов идеальных газов. Чем больше концентрация раствора, тем плотнее ионная атмосфера и тем меньше подвижность ионов, а следовательно, и электропроводность электролитов. [c.140]

    По мере того как каждый ион вырывается из ионной атмосферы, он попадает в среду влияния других ионов и снова окружается ионной атмосферой. Таким образом, все ионы подвергаются электростатическому торможению на всем пути их движения к соответствующим электродам. Понятно также и то, что уменьщение подвижности ионов должно быть тем больше, чем гуще ионная атмосфера, чем больше концентрация соответствующих ионов раствора, а также зарядов. [c.78]


    Кислоты средней силы фКц с< 5) характеризуются неполной диссоциацией, поэтому равновесные концентрации ионов водорода и анионов кислоты до начала титрования меньше концентрации исходной кислоты. Нейтрализация таких кислот до точки эквивалентности сопровождается нелинейным понижением электрической проводимости раствора фис. 63). Это объясняется тем, что в начале титрования подвижные ионы водорода оказывают влияние на электрическую проводимость раствора, которая понижается по мере связывания протонов. В то же время в процессе титрования накапливаются анионы кислоты и катионы титранта, обуслов- [c.153]

    Концентрации анионов кислоты и катионов титранта до точки эквивалентности увеличиваются в равной степени фис. 64, а . После точки эквивалентности концентрация Ап остается постоянной, а концентрация продолжает увеличиваться. Характерная особенность нейтрализации слабых кислот заключается в том, что концентрация ионов водорода на протяжении всего процесса титрования настолько мала, что не оказывает заметного влияния на электрическую проводимость раствора. Концентрация гидроксильных ионов также невелика до точки эквивалентности, а после нее линейно повышается. Точка эквивалентности расположена на пересечении двух восходящих ветвей кондуктометрической кривой титрования. Такой характер имеют кривые титрования всех слабых кислот фКц с равно 5-9), при нейтрализации которых гидролиз получающихся солей не оказывает существенного влияния на процесс нейтрализации. При титровании очень слабых кислот фКц с > 9), соли которых в значительной степени гидролизуются в водных растворах, концентрация гидроксильных ионов вследствие гидролиза начинает увеличиваться раньше, чем будет достигнута точка эквивалентности. Так как подвижность ионов ОН высока, электрическая проводимость раствора вблизи точки эквивалентности увеличивается и кривая титрования закругляется. Отсутствие линейных участков на кривых титрования очень слабых кислот фКц с > 10) не дает возможности точно определи с [c.154]

    На электрофоретическую подвижность оказывают влияние параметры частицы (знак и величина заряда, размеры и форма), параметры раствора (состав, ионная сила, pH, вязкость, температура) и параметры носителя (структура, адсорбционные и электрокинетические свойства). Указанные параметры взаимозависимы. Так, при увеличении концентрации электролита растет сила тока в системе, а градиент потенциала уменьшается. Ионная сила раствора влияет на электроосмотический поток, зависящий от электрокинетических свойств наполнителя или стенок капилляра знака заряда поверхности и дзета(0-потенциала. Истинное перемещение мигранта /, складывается из экспериментально зафиксированного расстояния /,ксп и расстояния пройденного вместе с электроосмотическим потоком  [c.243]

    Физические свойства раствора обнаруживают подобное же влияние pH. На рис. 10 представлена найденная Лебом зависимость от pH вязкости растворов желатины одной и той же весовой концентрации. Кривая вязкости обнаруживает ясный минимум в изоэлектрической точке и растет при смешении коллоида с кислотой или основанием. Является ли причиной увеличения вязкости только возрастающая сольватация или же оказывает также влияние тормозящее действие противоионов, внешних по отношению к самим частицам желатины,— не совсем ясно. Рис. 11 и 12, также взятые у Леба, иллюстрируют соответствующее влияние pH на осмотическое давление (см. стр. 228) и электропроводность. На величину последней, очевидно, несколько влияет и подвижность ионов неорганического электролита, наличие которых необходимо, чтобы изменять pH. [c.223]

    Влияние изменения концентрации незначительно при концентрации растворов ниже 0,2 н. числа переноса практически остаются постоянными. Благодаря этому можно легко определить значение п при бесконечном разбавлении путем экстраполяции. Зная число переноса и эквивалентную электропроводность при бесконечном разбавлении (стр. 249), можно рассчитать подвижность ионов, решая уравнения  [c.269]

    Таким образом, при сопоставлении данных, полученных при исследовании влияния разбавления исходных растворов (рис, 1—4) и числа поперечных связей в ионите (рис. 5) на степень поглощения ионов, наблюдается полная аналогия. Такое поведение анионита с различным содержанием ДВБ дает право полагать, что иониты являются полиэлектролитами, которые можно рассматривать как растворы электролитов. Такой электролит содержит малоподвижные ионогенные группы и подвижные ионы, способные диссоциировать при контакте с раствором электролитов н менять молярную концентрацию в зависимости от числа поперечных связей. [c.30]

    Изменения числа переноса означают, что диоксан в зависимости от его концентрации влияет на ионную подвижность благодаря по крайней мере двум противоположным эффектам. Можно предположить, что диоксан разрывает водородные связи между молекулами воды, и этот эффект усиливается с повышением его концентрации. Связь молекул воды в первичной гидратной оболочке с расположенными далее ближайшими молекулами (вторичная гидратация) ослабевает и подвижность ионов поэтому повышается. Чем меньше ион, тем значительнее влияние диоксана. Поскольку дипольный момент молекул диоксана ( ad = 0,40 Д) намного меньше дипольного момента молекул воды (р,н20 = 1,84 Д), замещение молекул воды в первичных гидратных оболочках ионов молекулами диоксана становится заметным лишь в растворах с высокой концентрацией диоксана. При таком замещении размеры сольватированных ионов возрастают. Как показывают эксперименты, влияние этого процесса тем выше, чем меньше ион. Чтобы эффект стал превалирующим в растворах сильно гидратирующихся ионов Li+, необходима значительно более высокая концентрация диоксана, чем в растворах слабо гидратирующихся ионов К+. [c.430]

    Аномальная электропроводность связанного раствора электролита Хс обусловлена, во-первых, изменением концентрации ионов в его пленке и, во-вторых, уменьшением их подвижности во внешней части двойного электрического слоя. В большинстве случаев полагают, что концентрация ионов в указанном слое подчиняется экспоненциальному соотношению Больцмана и оказывает решающее влияние на изменение удельной электропроводности связанного раствора в случае малой его минерализации. Подвижность ионов пропорциональна скорости их движения, которая зависит от действующей на ионы движущей силы внешнего электрического поля, сопротивления среды, определяющейся ее вязкостью, и электрических сил, зависящих от величины заряда поверхности минеральной частицы и степени взаимодействия между гидратированными ионами. [c.21]

    Прохождение электрического тока сквозь растворы электролитов. Скорость, подвижность и электропроводность ионов. Зависимость скорости ионов от среды, температуры, напряжения, природы самого иона. Влияние гидратации (сольватации) на скорость ионов. Подвижности ионов (необходимо знать порядок величин). Законы Гитторфа. Числа переноса. Изменение концентрации у электродов и закон Фарадея. Практическое значение знания чисел переноса. Эквивалентная электропровэдность при данном и бесконечном разведении. Закон независимого движения ионов. Вычисление электропроводностей ионов л+ и X- из подвижностей ионоз, из чисел переноса и эквивалентной электропроводности при бесконечном разбавлении. Методы определения чисел переноса. Кулонометры. Схема соединения приборов при определении чисел переноса. [c.83]

    Чем менее диссоциирован электролит и чем более разбавлен раствор, тем меньше межионное электрическое влияние и тем меньше наблюдается отклонений от закона действия масс, и, наоборот, чем больше концентрация раствора, тем больше межионное электрическое влияние и тем больше наблюдается отклонений от закона действия масс. Таким образом, отклонения сильных электролитов от классической формы закона действия масс связаны с изменением подвижности ионов, зависящей в свою очередь от концентрации. [c.34]

    Поэтому ионы, подвижность которых ослаблена силами межионного притяжения, проявляют в концентрированных растворах пониженную химическую активность. Посторонние ионы, присутствующие в растворе данного электролита, также оказывают сильное влияние на подвижность его ионов. Чем выше концентрация, тем значительнее межионное взаимодействие и тем сильнее посторонние ионы влияют на подвижность ионов. [c.120]

    Широко исследовалось влияние природы и концентрации неэлектролита, температуры раствора на механизм прототропной проводимости ионов водорода и гидроксила. Можно полагать, что ионы оксония (Н3О+) и гидроксила переносят электричество не только путем перехода протонов, но также обычйой гидродинамической миграцией. Для облегчения интерпретации экспериментальных данных по изучению проводимости растворов следует определить долю участия в переносе электричества каждого механизма переноса. Эти два типа проводимости нельзя измерить и изучить раздельно, однако их можно приближенно вычислить, полагая, что значения гидродинамической подвижности ионов Н3О+ и 0Н не отличаются заметно от значений подвижности ионов, равных им в данной среде по размеру и заряду и не переносящих электричество по протопропному механизму. В кристаллической решетке радиус иона оксония гнзО+ =1,38—1,40 А, иона гидроксила гон-= 1,32—1,40 А. Радиусы ионов К+ и F почти равны этим ионным размерам (гк+ = 1,33 А, гр-=1,33 A), поэтому в первом приближении можно полагать, что разница между проводимостью растворов НС1 и КС1 в одинаковых условиях соответствует проводимости иона водорода по прототропному механизму, тогда как разница между проводимостью растворов КОН и KF представляет прототропную проводимость ионов гидроксила. С другой стороны, сравнение значений проводимости растворов KF и КС1 дает информацию об изменении условий в растворе при переходе от величины ионного радиуса гр- = 1,ЗЗА до гс1-=1,81 А. [c.437]

    Растворы сильных электролитов (солей, сильных кислот и сильных оснований) не подчиняются закону действия масс. В их растворах находятся только катионы и анионы данного растворенного вещества и практически нет недиссоциированных молекул этого вещества. Но экспериментально определенная степень диссоциации сильных электролитов очень невелика. Закон действия масс выведен без учета действия сил притяжения и отталкивания между ионами растворенного вещества и молекулами растворителя. Эти силы особенно заметны в растворах сильных электролитов, где все молекулы растворенного вещества диссоциированы на ионы, несущие разноименные электрические заряды. В концентрированных растворах слабых электролитов также наблюдаюгся отступления от закона действия масс, потому что в них концентрация электрически заряженных компонентов раствора значительно больше, чем в разбавленных растворах. По теории растворов сильных электролитов при повышении концентрации растворов подвижность ионов в растворе уменьшается под влиянием взаимодействия ионов, так как среднее расстояние между ионами уменьшается. [c.37]

    Эти уравнения однако, выполняются лишь при невысоких кон центрациях растворов В зависимости от концентрации, природы электролита и растворителя и других факторов наблюдаются не только количественные отклонения от этих уравнений, но и закономерности которые качественно отличаются от описанных Электрическая проводимость растворов электролитов зависит от температуры и природы растворителя При увеличении тем пературы она обычно возрастает приблизительно на 2% на каж дый градус Большое значение при этом имеет влияние вязкости на подвижность ионов Если бы радиус сольватированного иона не зависел от температуры то следовало бы ожидать выполнения правила Вальдена и Писаржевского которое в действительности соблюдается лишь для практически негидратированных крупных органических ионов [c.222]

    В центральной части капилляра, вне пределов двойного электрического слоя, числа переноса будут такие же, как и в сво-, бодном растворе без мембраны, так как подвижности и концентрации ионов раствора, наполняющего капилляр в центральной части и в свободном растворе, одинаковы. В цилиндрической оболочке, входящей в двойной слой, вследствие влияния электростатических сил поверхности, подвижности и концентрации находящихся там ионов будут отличаться от свободного раствора и поэтому числа переноса в этом слое будут иные, чем в свободном растворе. Очевидно, что при больших радиусах капилляра объем центральной его части, вне пределов двойного слоя, будет составлять подавляющую часть общего объема капилляра, и поэтому то изменение, которое вносится ионами диффузного слоя, ничтожно, и суммарное значение числа переноса по всему сечению капилляра не изменяется по сравнению со свободным раствором. [c.205]

    Последнее уравнение позволяет решить вопрос о влиянии разбавления раствора электролита на его эквивалентную электропроводность. Единственной переменной величиной в этом уравнении является степень диссоциации ос. В пределе, когда концентрация раствора ста 10внтся близкой к нулю, т. е. при бесконечном разбавлении, а 1. В этом случае электропроводность электролита приближается к сюему предельному значению, равному сумме подвижности ионов, [c.8]

    Влияние ионной концентрации на величину заряда исследова лось Натансоном на растворах олеата триэтаноламина в транс форматорном масле Как и следовало ожидать, заряды увеличи вались с ростом проводимости растворов Пропорциональность между д 1У и N не могла быть проверена непосредственно, но срав нение 2 между а /У и проводимостью растворов (которая предпо лагалась пропорциональной УУ) показало, что приблизитель но пропорционапьто N Отклонение от прямой пропорционально сти с ростом концентрации раствора могло быть вызвано умень шением подвижности ионов вследствие образования комплексов По мнению Фукса эти опыты являются несомненным доказатель ством флуктуационной природы зарядов, возникающих при меха ническом распылении жидкостей [c.90]

    Под влиянием развернувшейся дискуссии по поводу теории Д. Гоша профессор физики Высшей технической школы в Цю рихе П. Дебай (1884—1966) совместно со своим ассистентом Э. Хюккелем (1896) начал в 1918 г. теоретические исследования растворов сильных электролитов. В 1923 г. разработанная ими теория была опубликована. Отправными положениями новой теО рии было, во-первых, допущение, что ионы в растворах находятся в электрическом взаимодействии и поэтому распределены (в объёме) в определенном порядке, отличном от хаотического распределения молекул в газе. Это возникает вследствие того что вокруг отдельных ионов под влиянием электростатических сил образуется облако из ионов противоположного заряда. Если теперь ион под влиянием приложенного электрического поля приобретает движение, то окружающее его ионное облако деформируется, а затем распадается. Одновременно вокруг иона возникает новое облако ионов противоположного знака. Исчезновение первоначального облака требует некоторого времени (время релаксации), вследствие чего позади движущегося иона всегда остается рой ионов противоположного заряда, оказывающих тормозящее действие на рассматриваемый движущийся ион. Этот ион будет испытывать также тормозящее действие, оказываемое ионами противоположного знака, двигающимися (в электрическом поле) в обратном направлении. Общее действие обоих факторов на уд еньшение подвижности иона оказывается пропорциональным Ус, где с — концентрация ионов. [c.245]

    Электрофорез—это движение заряженных частиц в растворе под влиянием электрического поля. Если В или А представляют собой ионы, то константы устойчивости системы можно иногда получить изучением миграции одной или более форм. Методы изучения электрофореза рассматривались Робинсоном и Стоксом [59] и Мукерджи [53]. Наиболее часто используется метод движущейся границы. Теория и практика этого метода хорошо описаны Лонгсвортом [49]. Эксперименты обычно проводят в и-образной трубке Тизелиуса, содержащей растворенное вещество в подходящем буферном растворе или ионной среде, покрытых слоем чистого раствора среды. Структуру и движение границы, образованной между двумя растворами, наблюдают с помощью оптической системы Шлирена, которая отмечает градиенты показателя преломления, соответствующие градиентам концентрации. Полученная диаграмма Шлирена зависит от числа присутствующих форм, от их подвижностей и от скорости установления равновесия между ними. [c.377]

    В классической теории электропроводности растворов электролитов применяют предположение о независимости ионного движения (см. разд. 10.4) Вместе с тем в реальных растворах значения подвижностей и, и ионных электропроводностей к, отдельных ионов зависят от обшей концентрации раствора, что, например, находит свое отражение в законе квадратного корня Кольраупга. Эти значения зависят также от природы других ионов. Все это указывает на влияние межионных взаимодействий на движение ионов в растворе. [c.197]

    Шнндевольф [841 измерял проводимость и числа переноса полифосфатов и рассчитывал для них степень диссоциации и подвижности ионов. Кривая зависимости эквивалентной проводимости от длины цепи имеет максимум. Басу и Дас Гупта изучали проводимость и вязкость водных и водно-диокса-новых растворов солянокислого полиглюкозамина, полученного щелочным гидролизом из панциря черепахи. Изменения этих свойств с концентрацией согласуются с предложенной ранее Фьюоссом [Зб теорией. Изучено влияние нейтральных электролитов на вязкость полиэлектролита [851. Дас Гупта и сотрудники [871 изучали также проводимость и вязкость растворов альгината натрия в воде и в смесях воды с диоксаном. В этих растворах находятся изгибающиеся цепочечные молекулы, диссоциация которых повышается с разбавлением. [c.16]

    Электродиализ представляет собой процесс мембранного разделения, в котором ионы растворенного вещества переносятся через мембрану под действием электрического поля. Таким образом, движущей сшюй этого процесса является градиент электрического потенциала. Под действием электрического поля положительно заряженные ионы (катионы) перемещаются по направлению к отрицательному электроду (катоду). Отрицательные ионы (анионы) движутся по направлению к uoJЮЖитeJIьнo заряженному электроду (аноду). Электрическое поле не оказывает влияния на незаряженные молекулы. При использовании проницаемых для ионов неселективных мембран можно разделять электролиты и неэлектролиты. Когда применяются мембраны, более проницаемые для катионов или, наоборот, для анионов, с помощью электродиализа можно повысить или понизить концентрацию раствора электролита [13]. С этой целью используют ионообменные мембраны анионообменные и катионообменные. Матрица анионообменной мембраны содержит фиксированные катионные группы. Заряд фиксированных катионов нейтрализован зарядом подвижных анионов. [c.439]

    Влияние напряженности поля на электростатическое взаимодействие (первый эффект Вина). В обычных условиях ионы мигрируют довольно медленно. Так, при комнатной температуре абсолютная подвижность иона К" " примерно =0,0007 см- с- . Ионная сфера возмущается, и при малой скорости иона проявляется эффект запаздывания однако нон остается в пределах своей ионной сферы и увлекает ее за собой. При очень высокой напряженности поля скорость миграции иона настолько значительна, что он покидает ионную сферу. Последняя вследствие конечного значения времени релаксации не успевает перестроиться. Время релаксации в растворах КС1 с концентрацией 0,01 м порядка 0,5-10 с. Под воздействием поля с напряженностью З-Ю В-см ион К+ мигрирует со скоростью около 210 см-с . Следовательно, за время релаксации он покрывает расстояние примерно 12-10- см, которое почти втрое превосходит толщину ионной сферы (1/х). Таким образом, в этих условиях нет достаточного времени для перестройки ионной сферы. Эффект запаздывания ионной сферы при повышении напряженности поля по- степенно ослабевает и затем исчезает. Электрофоретический н релаксационный эффекты уменьшаются, и эквивалентная проводимость в растворе умеренной концентрации достигает иредельного значения, соответствующего бесконечному раз-убавлению. [c.374]

    При изучении подвижности ионов щелочных металлов и галогенид-ионов в водных растворах, содержащих О— 15 мол. % диоксана, Кей и Бредуотер [286] отметили, что повышение подвижности ионов в растворах с концентрацией до 10 мол. % не является следствием более сильного упорядочивающего влияния ионов, а связано с дегидратацией ионов, [c.430]


Смотреть страницы где упоминается термин Влияние концентрации раствора на подвижность ионов: [c.35]    [c.394]    [c.334]    [c.80]    [c.80]    [c.38]    [c.80]    [c.103]    [c.430]   
Смотреть главы в:

Электромиграционный метод в физико-химических и радиохимических исследованиях -> Влияние концентрации раствора на подвижность ионов




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации

Влияние концентрации ионов

Влияние концентрации раствора

Ионная концентрация

Ионная подвижность

Ионная подвижность Подвижность

Концентрация ионов

Концентрация растворов

Подвижность иона

Подвижность ионов

Раствор ионный



© 2025 chem21.info Реклама на сайте