Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация и фрагментация

    Масс-спектрометрия основана на ионизации молекул при воздействии пучка электронов на образец. При распаде (фрагментации) образующегося положительно заряженного молекулярного иона возникает смесь полол<ительных ионов, которая затем ускоряется и разделяется в сильном магнитном поле на [c.26]

    Достоинства метода ионизации сложных смесей фотонами при энергии 10,2 эВ рассмотрены в работе [199]. Эти же авторы применили фотоионизационную масс-спектрометрию по методике молекулярных ионов для анализа высоко- и низкокипящих фракций нефти [189]. Такая техника близка к низковольтной масс-спектрометрии электронного удара, но благодаря изменению характера физического взаимодействия с веществом при переходе от электронов к фотонам и сохранении интенсивного пика молекулярных ионов, повышается доля наиболее энергетически выгодных (обычно наиболее ценных для структурного анализа) первичных процессов фрагментации. Ионизация фотонами в сочетании с химической ионизацией [200] была применена для получения отпечатка пальцев и частичного количественного анализа смесей аренов и алканов. [c.135]


    В последнее время развивается новое направление— двумерная (тандемная) масс-спектрометрия (МС — МС, масс-спектрометр — масс-спектрометр). Метод включает ионизацию молекул и разделение по массам ионов, образующих масс-спектр, выбор из этого спектра определенного иона-предшественника и получение масс-спектра продуктов его фрагментации в результате мономолекулярного разложения мета-стабильных ионов с малым временем жизни ( Ю с) или в результате дальнейшего возбуждения иона-предшественника столкновениями с инертным газом. Получаемые спектры могут использоваться и для решения аналитических задач, и для идентификации отдельных соединений в сложных матрицах. По сравнению с сочетанием газовой и жидкостной хроматографии с масс-спектрометрией МС—МС имеет преимущество в селективности, чувствительности и скорости анализа. Наибольшее преимущество масс-спектрометри-ческого разделения компонентов смеси — менее строгие требования к летучести образцов. [c.756]

    Значительная роль принадлежит масс-спектрометрии в изучении кинетики и механизмов химических реакций, особенно элементарных химических актов, в том числе ион-молекулярных, процессов возбуждения, ионизации, фрагментации и перестройки молекул. [c.55]

    В ИК-диапазоне частот молекула может накапливать энер-гию излучения, поглощая два, три и большее число фотонов (многофотонное, многочастотное поглощение [146]). Молекула таким образом приобретает энергию, достаточную для ее диссоциации на мелкие фрагменты. С помощью лазерной техники установлена также возможность многофотонной ионизации и фрагментации многоатомных молекул под действием видимого и УФ-излучения. Было обнаружено, что кислород также может поглощать излучение в ИК-области установлена возможность, многофотонного поглощения света молекулой азота, приводящего к диссоциации молекулы на атомы в основном состоянии. [c.115]

    По мере увеличения энергии электронного пучка вероятность ионизации при столкновении возрастает и возникают пики с большей интенсивностью. При дальнейшем росте энергии электронов большая ее часть передается образующемуся молекулярному иону. Она может быть настолько большой, что в ионе рвутся связи, и происходит фрагментация частицы. Ускоряющий потенциал бомбардирующего электрона, которого только-только хватает для начала фрагментации, называется потенциалом возникновения фрагментарного иона. Если энергия электрона достаточно высока, то в молекуле может происходить разрьш более чем одной связи. Следующая последовательность реакций описывает процессы с участием гипотетической молекулы В — С — О — Е, когда она бомбардируется электронами  [c.318]


    Ионизация и фрагментация органических соединений в сильном электрическом поле (полевая ионизация) представляет собой комбинацию трех процессов 1) распад молекулярных ионов, получивших избыточную энергию от электрического поля по закономерностям, сходным с фрагментацией при электронном ударе 2) рас- [c.134]

    Методы ионизации, используемые в аналитической масс-спектрометрии, можно классифицировать на различной основе (см. табл. 9.4-3). Важное значение имеет деление на методы мягкой и жесткой ионизации. При жесткой ионизации молекулам аналита предается значительное количество энергии, что с большой вероятностью приводит к реакциям мономолекулярной диссоциации. Ионизация электронным ударом, как уже обсуждалось ранее, является типичным примером жесткой ионизации. Большинство других способов относятся к мягкой ионизации. Обычно они приводят к незначительной фрагментации, и таким образом можно получить информацию о молекулярной массе. Классификация методов мягкой ионизации может основываться на способах ввода вещества, хотя некоторые комбинированные способы могут не укладываться в четкие рамки такой классификации. Наиболее важные методы мягкой ионизации будут подробно обсуждены в последующих разделах. [c.266]

    Анализ области молекулярного иона. Обнаружение в спектре пика молекулярного иона является важнейшей предпосылкой успешной интерпретации масс-спектра. Поэтому для более надежной регистрации слабых пиков М+- иногда повторно записывают масс спектры при относительно малой энергии ионизирующих электронов (10— 15 эВ), незначительно превышающей потенциалы ионизации большинства органических соединений (7—12 эВ), когда глубина фрагментации меньше, чем при 70 эВ. [c.182]

    При обычной энергии ионизации (70 эВ) интенсивность пика молекулярного иона М- , претерпевающего последующие реакции, уменьшается. Поэтому максимальный пик в спектре — не всегда ппк М- . К тому н е и пик с наивысшей массой может не соответствовать М- , так как а) возможна полная фрагментация М и б) наличие изотопов приведет к образованию меньших по интенсивности пиков с величинами т е, равными М + 1, М + 2 и т. д. В спектре эти изотопные пики и будут пиками с наивысшими массами. Тщательное рассмотрение рис. 28-14 позволяет обнаружить такие пики с т е выше 136. [c.524]

    При сольволизе a- и у-разветвленных алкилгалогенидов может наблюдаться фрагментация с образованием олефина и карбокатиона. В зависимости от условий карбокатион подвергается далее элиминированию или замещению. Реакция идет по механизму Е1, первая стадия которого заключается в ионизации галогенида или протонированного спирта. Иначе говоря, [c.73]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    Методы фотоионизации довольно слабо использовались для идентификации промежуточных продуктов, однако с появлением лазеров в ионизационных измерениях их диапазон существенно расширился. Основная идея заключается в том, что пучком фотонов с одинаковой энергией можно ионизовать промежуточный продукт реакции (например, СНз), не вызывая ионизации и фрагментации вещества-предшественника (например, СН4), или ионизовать молекулы вещества в высоком возбужденном состоянии, не затрагивая молекулы в более низких состояниях. При этом достигается высокая чувствительность, так как ионы образуются лишь тогда, когда есть промежуточный продукт, для идентификации ионов по массе можно использовать масс-спектрометры. Многоквантовая ионизация и резонансно-усиленная многоквантовая ионизация (см. разд. 3.9) обеспечивают ионизацию различных веществ без использования источников вакуумного УФ-излучения. Под действием лазерного излучения высокой интенсивности можно получить очень высокие квантовые выходы ионизации. [c.198]


    Масс-спектроскопия является аналитическим методом, при котором исследуемый образец, находящийся в газообразном состоянии в высоком вакууме (10- мм рт. ст.), подвергается ионизации н фрагментации. Образовавшиеся [c.145]

    Ион М+ называют молекулярным ионом, поскольку его отношение массы к заряду соответствует молекулярной массе Мг исследуемого соединения. В основном в результате ЭУ образуются однозарядные ионы. В процессе ионизации электронным ударом образовавшемуся молекулярному иону передается избыточная энергия. Таким образом, ионы характеризуются распределением внутренней энергии, зависящим от свойств аналита и энергетических характеристик бомбардирующих электронов. Максимальная энергия, которая может быть передана при ионизации, равна разности между энергией электрона (обычно около 70 эВ) и энергией ионизации изучаемого соединения, которая обычно находится в диапазоне от б до 10 эВ (0,6-1 МДж/моль). Обычно средняя внутренняя энергия составляет около 2-6 эВ. Избыток внутренней энергии и радикальный характер молекулярного иона могут быть причиной мономолекулярной диссоциации, в результате которой образуются осколочные ионы, характерные для данной структуры. Далее приведены типичные реакции фрагментации молекулы М под действием электронного удара. Ионный фрагмент [c.260]

    Процессы фрагментации при ионизации электронным ударом подробно обсуждаются в разд. 9.3.4. Спектры ЭУ хорошо воспроизводимы. Созданы обширные базы данных спектров ЭУ, которые можно использовать для компьютерной обработки результатов (см. разд. 9.4.3). [c.261]

    В количественном анализе в большинстве случаев масс-спектрометрию используют в сочетании с хроматографическими методами. В этом случае масс-спектрометр работает в режиме полного сканирования или, гораздо чаще, в режиме селективного сканирования ионов (см. разд. 9.4.2). Очевидно, что преимущества селективного сканирования ионов заключаются в увеличении отношения сигнал/шум из-за большего времени накопления данных для интересующих ионов. Однако селективное сканирование ионов также означает и уменьшение объема информации, получаемой из масс-спектра. В связи с этим контролирующие органы часто требуют результатов работы в режиме полного сканирования. Хорошим компромиссом является определение нескольких специфичных ионов для каждого компонента при использовании селективного сканирования ионов. В этом случае интересующее нас соединение считается найденным только тогда, когда относительные интенсивности выбранных пиков находятся в заданных пределах, а выбранные пики имеют максимальную интенсивность в заданном окне времени. Когда в количественном анализе используют методы мягкой ионизации, как, например, в случае сочетания масс-спектрометрии и жидкостной хроматографии, то необходимо использовать тандемную МС, так как из-за отсутствия фрагментации только сам специфический ион присутствует в спектре. Селективный мониторинг реакции при помощи тандемной масс-спектрометрии обеспечивает более высокую надежность определения. [c.298]

    При решении задач определения структуры молекул часто хотят получить как можно больше информации об ионах, образовавшихся в процессе ионизации. Это особенно актуально при использовании методов мягкой ионизации. Нужно подчеркнуть, что фрагментация при электронном ударе происходит в основном из-за избытка внутренней энергии молекулы, полученной в процессе [c.282]

    Все более широкое применение масс-спектрометрия находит при определении полярных, нелетучих и (или) термически нестабильных соединений. В том случае, когда описанные выше методики дериватизации оказываются неприемлемыми, и (или) аналитическая методика не позволяет включить (часто очень сложную) стадию дериватизации, масс-спектрометрический анализ таких веществ можно осуществить только при помощи методов мягкой ионизации (разд. 9.4.2). С точки зрения проблемы выяснения структуры соединений, методы мягкой ионизации имеют тот недостаток, что, хотя молекулярную массу определить достаточно легко, в общем случае не наблюдается значимой фрагментации, позволяющей сделать какие-то выводы о структуре соединений. В этом случае, методы мягкой ионизации следует сочетать с тандемной масс-спектрометрией (разд. 9.4.2). Фрагментацию частиц с четным числом электронов, полученных методами мягкой ионизации, можно провести при помощи диссоциации, вызванной соударениями. [c.302]

    Тандемную МС вначале использовали как способ фрагментации ионов, образующихся в ионном источнике, например, при мягкой ионизации. В таких экспериментах первый масс-спектрометр использовали для выбора родительского иона, при диссоциации которого образовались дочерние ионы, детектируемые вторым анализатором. Это режим сканирования дочерних ионов. Однако можно реализовать и другие режимы сканирования (табл. 9.4-6). Режимы сканирования родительских ионов и нейтральных частиц особенно полезны при скрининге (см. разд. 9.4.4), а режим селективного мониторинга реакций (СМР) — в количественном анализе. Использование тандемной масс-спектрометрии, особенно в режиме СМР, чрезвычайно важно при количественном анализе объектов окружающей среды и биологических объектов, когда мешающее влияние компонентов матрицы может ухудшить пределы обнаружения. Контроль конкретной реакции, вызванной столкновениями, в режиме СМР существенно улучшает селективность и приводит к резкому улучшению отношения сигнал/шум. [c.284]

    При получении масс-спектров ионов, образующихся из родительских ионов посредством мягкой ионизации, механизмы фрагментации существенно отличаются от механизмов, известных для ионизации ЭУ, поскольку фрагментируются четно-электронные частицы, а не радикалы с нечетным количеством электронов. Реакции фрагментации четно-электронных частиц не так хорошо изучены, как реакции при электронном ударе. [c.285]

    Учитывая указанное выше значение методов мягкой ионизации и их использование в сочетании с тандемной МС, следует уделить внимание фрагментации протонированных молекул. В общем случае, можно сказать, что данный тип фрагментации изучен не столь глубоко и систематически, как ионизация электронным ударом. Общие правила совпадают со случаем ионизации электронным ударом, например в отношении устойчивости ионов. Однако в то время, как в случае ионизации электронным ударом молекулярные ионы с нечетным числом электронов могут фрагментироваться с образованием осколочных ионов, имеющих как четное, так и нечетное число электронов (уравнения 9.4-21 и 9.4-22), протонированные молекулы с четным числом электронов при фрагментации обычно теряют нейтральную частицу, а не радикал [c.297]

    Ситуация, в которой одна и та же реакция фрагментации может быть использована в режиме сканирования или нейтральных молекул, или родительских ионов, является сравнительно редкой. В большинстве случаев только одна из двух частей молекулы является предпочтительной. При фрагментации за счет химической ионизации часть молекулы, имеющая большее сродство к протону или наименьшую энергию ионизации, будет наблюдаться как ионный пик в масс-спектре, тогда как комплементарная ей часть теряется как нейтральная и, следовательно, не детектируется. [c.305]

    Химическая ионизация. При химической ионизации (ХИ) вещество ионизируется при газофазной ион-молекулярной реакции. Для этого в источник ионов при относительно высоком давлении (0,01-2 мм рт.ст.) вводится газ-реагент (обычно метан, изобутан, аммиак или вода), из которого в результате ионизации под действием электронного удара генерируются ионы. Определяемые молекулы ионизируются непосредственно за счет ряда реакций с газом-реагентом, при которых во время столкновений на молекулы аналита переносится небольшая порция энергии с достаточно узким распределением. Это объясняет, почему ХИ часто называют мягким методом ионизации. Мягкая ионизация приводит к меньшей фрагментации и поэтому к большей интенсивности пиков молекулярных ионов по сравнению с ЭУ. Низкий [c.601]

    Для объяснения механизмов возбуждения и комбинированных процессов ионизации/возбуждения или фрагментации/возбуждения, происходящих в плазме, предложены различные реакции, учитывающие большое число электронов низкой энергии, которые особенно эффективны в рекомбинантном возбуждении  [c.615]

    В ТРС-ЖХ-МС ионизация мягкая, а степень фрагментации низкая, что обеспечивает лишь ограниченную структурную информацию. [c.623]

    ТС-интерфейсы работают по принципу распыления поступающего из колонки элюата при проходе его через нагретый металлический капилляр, из которого он выходит в виде сверхзвукового потока мелких капель. Если к элюату добавить электролит, например ацетат аммония, то ионы образуются без какого-либо другого внешнего воздействия (термоструйная ионизация). Этот метод позволяет ионизировать без разложения крайне нелетучие соединения. При термоструйной ионизации фрагментация, как правило, очень мала. Иногда при необходимости для повышения [c.886]

    Открытие явлений многофотонного и многочастотного поглощения ИК-, видимого и УФ-излучения, приводящих к аккумулированию молекулами лучистой энергии до уровня, при котором молекула не может оставаться стабильной и подвергается спонтанной ионизации и фрагментации, позволяет пересмот-реть ранее существовавшие представления о механизме процессов, протекающих в предпламенной зоне. Экспериментально наблюдавшаяся фрагментация молекул горючего в предпламенной зоне может быть объяснена воздействием излучения пламени на горючую смесь. [c.115]

    Одним пз эффективнейших средств установления состава смесей и структуры органических соединений в настоящее время является масс-спектрометрия (МС). Принципиальная основа метода состоит в ионизации и (при достаточной энергии возбуждения) фрагментации молекул с последующим разделением и количественным анализом ионов, характеризующихся тем или иным массовым числом (отношением массы иона к его заряду, mie). Детальное оппсапие теории и аппаратурного оформления метода дацо в многочисленных монографиях [301—305 и др.]. [c.36]

    Для соединений, не имеющих кратных связей или гетероатомов, алканов и циклоалканов, распределение заряда в ионах М" - предсказать сложно, и их фрагментацию объясняют стабильностью образующихся частиц. Например, в случае алканов при электронном ударе преобладает разрыв связей С—С в месте разветвления цепи, а у циклоалканов— в альфа-положении к циклу (а-распад), так как при этом образуются вторичные и третичные ионы. Локализация заряда на образующихся частицах определяется правилом Стивенсона заряд сохраняется преимущественно на фрагменте, имеющем меньший потенциал ионизации (ПИ). Сопоставление таких данных для молекул и радикалов позволяет объяснять и предсказывать характер фрагментации органических соединений  [c.176]

    В соединениях, содержащих гетероатомы и кратные связи, заряд ионов М+- локализован преимущественно на этих фрагментах, так как при ионизации теряются наименее прочно связанные электроны неподеленных пар гетероатомов и л-связей. Основные процессы фрагментации таких соеди-вений при электронном ударе затраги-нают ближайшие (а- или Р-) связи к месту локализации заряда. Образование и удлинение системы сопряжения в молекуле способствует делокализации заряда в молекулярных ионах и обычно приводит к увеличению их стабильности (возрастает значение д,). [c.177]

    Ионизация молекулы с помощью энергетически бедных термических элек-)нов (2—4 эВ) приводит, напротив, к захвату электрона и обра.эованию отри-гельных молекулярных ноиов. Этот метод спектроскопии электронного захва-особенно пригоден для определения молекулярной массы, так как вследствие (начительиой энергии электронов подавляются процессы фрагментации. [c.146]

    Вт/см и т. д. В столь интенсивном поле атом или молекула из конечного состояния дискретного спектра обычно быстро переходит в ионизац. непрерьганый спектр (континуум) соответствующий (п + 1)-фвтонный процесс наблюдается по возникновению в системе заряженных частиц (электронов или ионов). В случае молекул часто происходит их фрагментация и наблюдается масс-спектр молекулярных и фраг-ментных ионов и радикалов. [c.99]

    Как следует из табл. 13.1 и 13.2, достижение предельно высоких анодных потенциалов, помимо использования тетрафтор-боратов н гексафторфосфатов, возможно при понижении температуры [59] нли при использовании таких растворителей, как трифторуксусная [60, 67, 68] и фторсульфоновая [57, 69—72] кислоты. Окисление углеводородов проводили также в ннгроме-тане, нитроэтане, пропиленкарбонате, сульфолане и дихлорме тане [73]. Наблюдавшиеся потенциалы в случае необратимого окисления постоянны, и их можио предсказать. Во многих случаях этн потенциалы хорошо коррелируют с потенциалами ионизации [56, 58, 74] и с константами о+ [63, 64] в последнее время потенциалы ио11нзации обычно измеряют методом фотоэлектронной спектроскопии. Общая тенденция изменения потенциалов окисления может быть выведена исходя нз структур углеводородов на основе механизма, включающего перенос электрона с последующим быстрым разрывом связей углерод—водород или углерод—углерод Для таких случаев на наблюдаемый потенциал влияет скорость последующей реакции. С этим связаны относительно низкие потенциалы окисления напряженных углеводородов, катион-радикалы которых, как можно ожидать, способны подвергаться фрагментации (см табл 13 4) Таким же образом можно объяснить низкий потенциал окисления циклогексадиена-1,4 (см. табл. 13.3) в этом случае быстрое отщепление протона катион-радикалом приводит к циклогексаднениль-ному радикалу. [c.409]

    Процесс химической ионизации является ион-молекулярной реакцией (бимолекулярной), в то время как фрагментация протонированной молекулы является мономолекулярным процессом (как в ионизации ЭУ). Эти процессы протекают по разным механизмам, поскольку в них участвуют разные частицы—с четным количеством электронов (четно-электронные частицы) и ион-радикалы. [c.268]

    Ионизация электронным ударом. В ионизации электронным ударом (ЭУ) молекулы пробы, попадающие в источник ионов из газохроматографической колонки, ионизируются потоком тепловых электронов, эммитируемых из вольфрамовой или рениевой нити накала (катод) и ускоряемых в сторону анода. Столкновение электронов с молекулами пробы, во время которых часть кинетической энергии электронов передается молекулам, приводит к их возбуждению, фрагментации и ионизации. Поскольку распределение внутренней энергии непосредственно влияет на вид масс-спектра и сильно зависит от энергии электронного пучка Е и последняя обычно устанавливается на стандартном уровне е1 = 70 эВ. [c.601]

    Ионизация определяемого вещества осуществляется либо путем химической ионизации с использованием растворителя, либо за счет термораспыления. В первом случае используются электроны с распылительного электрода или нити накала для ионизации молекул растворителя, что затем инициирует перенос заряда на определяемое вещество. Другой вариант основан на механизме ионного испарения из капель, в которые включен летучий растворитель. В зависимости от того, используется ли разрядный электрод, изменяется механизм ионизации, что сильно изменяет селективность. Ионное испарение обычно приводит к ионам [М-ЬН]" " для проб с высоким сродством к протону. Или же детектируются ионы [М4-КН4] , если в буфере присутствует, например в форме ацетата аммония. Если детектируют отрицательно заряженные ионы, обнаруживаются либо ионы [М+Н] , либо отрицательно заряженные кластерные ионы, образуемые молекулами определяемого вещества и растворителя или анионами буфера. Однако оба варианта ионизации являются мягкими, поэтому приводят лишь к ограниченной фрагментации. Тем не менее, для получения характеристичного спекара фрагментации в ТРС-ЖХ-МС-анализе часто используют двойные квадрупольные приборы. В отличие от одинарных квадрупольных приборов, МС/МС-приборы позволяют получать фрагментационный спектр молекулярных ионов, выделяемых первым квадру-полем (рис. 14.3-3). Ионы вводятся через отсекатель с маленьким отверстием, который достигает непосредственно ионизационной камеры. Это позволяет достигать высокого вакуума, требуемого для разделения ионов. [c.623]

    Сравнение различных ЖХ-МС-интерфейсов затруднительно. Общие рекомендации по использованию ЖХ-МС-интерфейсов дать невозможно выбор интерфейса сильно зависит от конкретной задачи, которую необходимо решать (см. табл. 14.3-2). Если требуется максимальная чувствительность, часто наилучшим оказывается интерфейс АДХИ (с тепловым распылением) возможно, лишь в некоторых случаях он будет превзойден интерфейсом с электрораспылением. Однако методы ХИ вряд ли могут обеспечивать какую-либо структурную информащ1Ю. Для этих целей следует использовать методы с ионизацией ЭУ, такие, как интерфейс с пучком частиц. Выигрыш в химической информации (когда может бьггь получен типичный характер фрагментации) может компенсировать значительно более низкую чувствительность. Сравнение различных интерфейсов по подходяш им для них скоростям потока и пределам обнаружения проведено в табл. 14.3-1 и 14.3-2. [c.629]

    Распад гетероцикла производных 1,2,4-триазиндиона-5,6 связан с удалением стабильных нейтральных молекул, таких как моноокись углерода, цианистый водород. Кроме того, триазины, содержащие две и больше оксигруппы, после ионизации могут элиминировать также молекулу HN O. Основное направление распада 1,4,5,6-тетрагидро-1,2,4-триазиндионов-5,6 заключается в отщеплении заместителей в положении 3 или 4 с последующим выбросом молекулы азота. Фрагментация оксо- и меркаптотриазинов происходит в двух направлениях, обусловленных наличием двух таутомерных форм (оксо-гидрокси и тиоксо-меркапто). [c.18]


Смотреть страницы где упоминается термин Ионизация и фрагментация: [c.315]    [c.63]    [c.264]    [c.264]    [c.264]    [c.74]    [c.146]    [c.662]    [c.274]    [c.283]    [c.292]   
Смотреть главы в:

Методы и достижения в физико-органической химии -> Ионизация и фрагментация




ПОИСК





Смотрите так же термины и статьи:

Общие закономерности ионизации и фрагментации. . — Требования к анализируемому-образцу



© 2025 chem21.info Реклама на сайте