Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение других мономеров Получение стирола Стирол, его свойства и получение

    К другой группе латексов этого типа относятся латексы, полученные при высоком отношении стирол-бутадиен (65 3585 15). По свойствам такие латексы приближаются к пластмассам. Полимеризацию проводят при высокой температуре до глубокой конверсии мономеров. Выпускаются также латексы с сополимером промежуточного состава (типа СКС-50). [c.603]

    Большой интерес вызывает получение полимеров, подобных по своим свойствам тем или иным природным веществам. Многие типы синтетического каучука представляют собой полимеры бутадиена, сополимеризованного с другими мономерами, вступающими в реакции полиприсоединения. Сополимерами называют продукты реакций полимеризации, в которых принимают участие два (или несколько) различных мономера. Одной из наиболее распространенных комбинаций мономеров, используемых для сопо-лимеризации, является пара бутадиен —стирол, которая дает сополимер следующего состава  [c.473]


    Методы полимеризации в эмульсии особенно применимы для получения сополимеров стирола с другими мономерами эти сополимеры обладают разнообразными интересными и полезными свойствами. [c.187]

    В США разработаны методы прививки к полиэтиленовым цепям других мономеров с помощью облучения или у-лучами. Прививка акрилонитрила к полиэтилену повышает его температуру размягчения до 160 °С и улучшает адгезионные свойства, а прививка стирола делает возможным сульфирование этого материала с целью получения катионообменных мембран. [c.160]

    Большое значение для синтеза новых полимеров с заранее задан-кы п свойствами имеет получение привитых сополимеров. Метод состоит в том, что к цепи полимера присоединяют цепь, имеющую другую химическую природу. Иначе говоря, данный мономер полимеризуется совместно с полимером, полученным из другого мономера. Папример, если полимеризовать стирол в каучуковом латексе, то образуется привитой сополимер, обладающий большой твердостью и гораздо меньшей хрупкостью, чем полистирол. [c.338]

    Мономеры и олигомеры, используемые в сочетании с полималеинатами. Большая часть промышленных марок полиэфиров содержит в качестве мономера-растворителя стирол. Это обусловлено его низкой стоимостью, хорошей совместимостью с полиэфирами, низкой вязкостью полученных растворов и высокой скоростью их отверждения, высокой водостойкостью и хорошими механическими и электрическими свойствами отвержденных продуктов. К недостаткам стирола относятся его сравнительно высокая летучесть, токсичность и низкая температура кипения и вспышки. Несколько менее летучий а-метилстирол имеет пониженную реакционную способность при сополимеризации с ненасыщенными полиэфирами и применяется в сочетании со стиролом для повышения стабильности растворов ненасыщенных полиэфиров при хранении, а также для уменьшения скорости отверждения и экзотермического эффекта реакции. Моно- и дихлорстирол имеют более высокую температуру кипения, чем стирол, и используются при получении самозатухающих продуктов. Другой мономер с повышенной температурой кипения — винилтолуол, выпускаемый в виде смеси м- и л-изомеров, образует с полиэфирами высокореакционно- [c.12]

    Полистирол — термопластичный полимер, продукт полимеризации стирола. В зависимости от метода полимеризации получают блочный, суспензионный и эмульсионный полистиролы. Полистирол обладает высокой химической стойкостью и отличными диэлектрическими свойствами, но характеризуется недостаточной термостойкостью и повышенной хрупкостью при действии ударных нагрузок. Блочный и суспензионный полистиролы легко перерабатываются в изделия методом прессования, литьем под давлением и экструзией. Эмульсионный полистирол очень плохо перерабатывается литьем под давлением, поэтому его применяют чаще всего для изготовления пенистых изделий и облицовочных плиток. При сонолимери-зации стирола с другими мономерами, например акрило-нитрилом, а-метилстиролом и др., значительно улучшаются тепловые и прочностные свойства полимера. К таким стирольным пластикам относятся сополимеры, полученные при сонолимеризации стирола с акрилонитри-лом марок СН, СН-28 и СН-20. Совмещением сополимера СН-20 с нитрильными каучуками СКН-26 и СКН-40 получен пластик СН-П (прочный) с улучшенными механическими свойствами, а совмещением полистирола с каучуком СКН-18 — литьевая масса марки ПКНД и ударопрочный полистирол для переработки литьем под давлением и экструзией. [c.83]


    Во втором случае молекулы каучуков не содержат серы в цепи (меркаптановые каучуки). Они имеют более регулярное строение и более склонны к кристаллизации. Для улучшения технологических свойств, повышения морозо-, масло- и теплостойкости, твердости и других характеристик в каучуки вводят наполнители (сложные эфиры, сажи, каолин, мел, барит). При получении сополимеров в качестве второго мономера можно использовать стирол, нитрил акриловой кислоты и др. Содержание второго мономера обычно не превышает 20%. Характерной особенностью хлоропренового каучука является его способность к вулканизации без серы и вообще без вулканизующих агентов. Практически вулканизацию проводят в присутствии 4—5% окислов металлов (окись цинка, окись магния, окись свинца). [c.331]

    На основе стирола и других мономеров получают сополимеры с различными свойствами. В промышленности выпускаются двойные и тройные сополимеры. К двойным сополимерам относятся материалы СН, СН-20 и СН-28П, полученные суспензионной полимеризацией стирола и нитрила акриловой кислоты (НАК). В сополимере СН-20 содержится 18—20% НАК, а в сополимере СН-28 —25-28% НАК. [c.171]

    Примерно с конца 40-х годов XX века стала быстро развиваться новая очень важная в практическом и теоретическом отношении область синтеза полимеров—так называемая стереоспецифиче-ская полимеризация, т. е. получение высокомолекулярных веществ, обладающих не только строго регулярным химическим строением, но и регулярной пространственной формой. Стереорегулярные полимеры существенно отличаются от обычных (неупорядоченных) полимеров температурами размягчения и механическими свойствами. Методами стереоспецифической полимеризации можно получать из таких мономеров, как стирол, пропилен и другие, пластические материалы высокого качества. При этом следует различать два типа стереоспецифической полимеризации. [c.469]

    Одной из возможностей увеличения скорости осаждения является охлаждение подложки. Подробное изучение структуры полимеров, образованных этим способом, показало, что они представляют собой своеобразный класс материалов, отличающихся стехиометрией от полимеров, синтезированных обычными химическими методами. Причем структура и свойства полученного полимера (стабильность, однородность, эластичность и т. д.) зависят от подбора соответствующих мономеров для сополимеризации. Итак, метод тлеющего разряда дает возможность получать очень тонкие, однородные и без пор покрытия [1,3—5,12], обладающие рядом ценных качеств стойкостью по отношению к органическим растворителям [3, 12], повышенной диэлектрической проницаемостью (из аминосиланов) [5], водостойкостью (на основе виниловых, акриловых, аллиловых мономеров) [4] и т. д. Такие пленки могут быть использованы при производстве конденсаторов, для временной защиты стальных изделий от коррозии вмест смазочных материалов, для нанесения защитных покрытий (стирол) на внутренние поверхности консервных банок и упаковочной тары и т. д. В США и Англии покрытия, полученные в поле тлею щего разряда на оцинкованной стали, выполняют роль грунта перед последующей окраской [23]. В США разрабатывается процесс полимеризации в тлеющем разряде для отделки внутренней поверхности емкостей пищевых продуктов. Метод наиболее пригоден для специальных областей, требующих применения тонких равномерных пленок, а также в тех случаях, когда покрытия необходимого качества трудно наносить другими способами (например, фтор-углеродные покрытия) [23]. [c.62]

    Указанные недостатки бутадиенового каучука могут быть в известной степени устранены путем изменения условий полимеризации (применение лития в качестве катализатора вместо натрия), а также при получении сополимеров бутадиена с другими мономерами. Используя для процесса сополимеризации с бутадиеном мономеры, содержащие различные функциональные группы, можно в широких пределах изменять свойства получаемых каучукоподобных полимеров. Этим обстоятельством объясняется уменьшение объема промышленного производства бутадиенового каучука. В настоящее время наиболее широко применяются в качестве синтетических каучуков сополимеры бутадиена с различными винильными соединениями (стирол, акрилонитрил, а-метилстирол). [c.739]

    Живая ионная полимеризация используется в промышленности для получения блок-сополимеров. Общий метод состоит в том, что по окончании полимеризации одного мономера к его живым цепям добавляется другой мономер. В некоторых случаях важен порядок, т.е. очередность полимеризации разных мономеров. Так, живые цепи полистирола могут инициировать полимеризацию метилметакрилата, но не наоборот. Отсюда следует, что существуют лишь двух- и трехблочные (в зависимости от инициатора) блок-сополимеры этих мономеров. В общем случае путем последовательной живой анионной полимеризации разных мономеров могут быть получены мультиб-лочные сополимеры, содержащие много разных блоков. Наиболее известными из блок-сополимеров являются так называемые термоэластопласты, в которых один блок относится к эластомерам, другой - к пластикам. Термоэластопласты обладают комплексом необычных свойств, промежуточных между свойствами каучуков и пластиков. Среди термоэластопластов наиболее распространены блок-сополимеры стирола с бутадиеном и изопреном. [c.238]


    Виниловые полимеры. При эмульсионной полимеризации стирола применяются алкилароматические сульфонаты 130], сульфоэтерифицированные спирты и эфиры (например, сульфоэтерифицированное спермацетовое масло) [31. Сульфоэтерифицированные полиоксиэтиленовые производные жирных кислот или спиртов обеспечивают высокие выходы при полимеризации стирола и не ухудшают свойств конечного полимера [32]. Показано, что при получении полистирольных латексов выгодно применять смеси поверхностноактивных веществ, например неионогенных моющих веществ с мылом [33] или с додецил-бензосульфонатом [34]. Неионогенные соединения можно растворить в мономере и добавить в водный раствор анионактивного вещества. Очень устойчивая эмульсия, пригодная для покрытий или для пропитки бумаги и ткани, получается при использовании нефтяных сульфонатов в качестве эмульгатора в процессе полимеризации стирола или сополимеризации стирола с другим мономером [35]. Эта полимеризационная система примечательна тем, что эмульгатор растворяется в мономере и что эмульсия образуется при добавлении в воду раствора эмульгатора в мономере. [c.478]

    Для снижения кристаллизуемости каучуков, полученных при пониженной температуре, рекомендуется нарушение регулярности полимерной цепи путем сополимеризации хлоропрена с другими мономерами. Введение в хлоропрен 5 и 10% стирола позволяет получать наириты, практически не кристаллизующиеся в течение длительного времени (рис. 157). При этом физико-механические свойства вулканиза-тов таких сополимерных наиритов оказываются такими же, как и у серийных каучуков, получаемых в настоящее время при 40° С. [c.452]

    Рецепт полимеризации и приготовление растворов. Для производства товарных латексов характерен больший набор компонентов в рецепте эмульсионной полимеризации, что связано с весьма разнообразными требованиями к свойствам латексов со стороны потребителей. Основными мономерами. в производстве латексов являются бутадиен, хлоропрен и стирол (а-метилстирол, широко используемый в производстве товарных каучуков, при получении латексов практически не применяется). Для производства латексов применяют также акрилонитрил, пиперилен (с целью его утилизации), винилиденхлорид, 2-винилпиридин и 2-метил-5-ви-нилпиридин, акриловые кислоты и их эфиры (главным образом, метилметакрилат) и другие мономеры. [c.398]

    Процесс этерификации проводят при 170—200 °С при работающей мешалке и в токе инертного газа. Выделяющаяся вода отгоняется через прямой холодильник. Контролируют процесс по кислотному числу и вязкости смолы. Полученная смола растворяется в мономере — стироле или метилметакрилате — и сливается в тару. Соотношение смолы и мономера определяет текучесть раствора, а соотношение мономера и ненасыщенных кислот — жесткость полимера и другие его свойства. При получении изделий смолу отверждают добавлением перекисных и гидроперекисных соединений и активаторов. Процесс отверждения можно вести без нагревания, при нагревании или при действии ультрафиолетовых лучей. [c.257]

    Новый промышленный продукт, перекись ди-тре/п-бутила, представляет значительный интерес как инициатор полимеризации ненасыщенных мономеров, а также других типов цепных реакций [5, 6, 10, 15] перекись может служить очень хорошим инициатором при получении ценных сополимеров из ненасыщенных глицеридных масел или их производных со стиролом или винилтолуолом [3, 11, 17]. Упомянутая перекись применяется [18] и для улучшения качества самих глицеридных масел. Она отличается стабильностью, высокой температурой разложения и способностью легко давать свободные радикалы. Скорость образования радикалов не зависит от среды. Основные физические свойства перекиси ди-тре/п-бутила [5, 14] следующие  [c.140]

    Клеи на основе как чистых фурановых, так и совмещенных смол пригодны для соединения различных материалов. Известен универсальный клей БОВ-1, полученный из мономера ФА, стирола, эпоксидной смолы ЭД-5 и отвердителя — полиэтиленполиамина [24]. Он пригоден для склеивания полистирола и пенопластов на его осйове, стеклопластиков, декоративно-слоистых пластиков, древесностружечных плит, фенопластов, керамики, бетона, асбоцемента, металлов, бумаги, дерева и других материалов, но не пригоден для склеивания полиэтилена и поливинилхлорида. Клей БОВ-1 обладает высокими адгезионными свойствами. Прочность склеивания мало изменяется в пределах температур от —60 до 250° С. Вследствие повышенной водо- и химической стойкости, а также [c.580]

    Для получения алкидных покрытий, быстро высыхающих на воздухе или при невысоких температурах (60—80 °С) успешно используют продукты взаимодействия алкидных смол, модифицированных высыхающими маслами, со стиролом или другими ненасыщенными мономерами — винилтолуолом, акрилатами, метакрилатами и др. Применение таких продуктов, помимо ускорения высыхания, способствует получению светлоокрашенных, а иногда и совсем бесцветных покрытий и уменьшению расхода масел оно оказывает также влияние на прочностные свойства пленки. [c.62]

    Химическое модифицирование — наиболее устойчивое изменение поверхности пигмента оно достигается проведением реакций эте-рификации, алкилирования, ионного обмена и других, причем сопровождается выделением побочных продуктов реакции. К химическому модифицированию относится механохимическая прививка. Механохимической прививкой к поверхности пигментов органических радикалов с заданными функциональными группами или двойными связями можно получить материалы с важными технологическими свойствами. При совместном диспергировании пигмента с мономерами происходит прививка мономеров к поверхности пигмента. Так, при диспергировании в вибромельнице смеси пигмента со стиролом происходит самопроизвольная полимеризация и прививка полистирола к поверхности пигмента [6]. Способы прививки полимеров к поверхности пигмента еще не нашли практического применения. Существуют методы получения пигментов в полимерной оболочке, например путем суспензионной полимеризации мономеров в присутствии пигмента в среде органической жидкости. [c.14]

    В последние годы все большее промышленное значение получают тройные сополимеры бутадиена, стирола и нитрила акриловой кислоты с некоторыми добавками, обладающие термопластичными свойствами (смолы ABS). Сополимеры получаются путем полимеризации в эмульсии по радикальному механизму, при воздействии обычных инициаторов. Специфической особенностью процесса в этом случае является то, что для получения наиболее ценных в техническом отношении продуктов по меньшей мере один компонент должен полимеризоваться в присутствии уже образовавшегося полимера или сополимера, в условиях, дающих возможность прививки образующихся полимерных цепей. Можно сополиме-ризовать стирол и акрилонитрил в присутствии полибутадиена, бутадиен в присутствии сополимеров стирола и акрилонитрила, но возможны и другие, самые разнообразные комбинации. Сополимеризация мономеров в эмульсии по принятой технологии к желаемым результатам не приводит. [c.389]

    Сополимеры стирола обладают улучшенными физико-механическими свойствами по уравнению с гомополим-ером, и поэтому вопросам сополимеризации стирола с различными винильными мономерами (производными стирола, ненасыщенными кислотами и их эфирами, акрилонитрилом) уделяется большое внимание. Широкое распрострапение в последние годы получила модификация свойств полистирола путем прививки к нему других полимеров, а также обработка полимера сшивающими агентами и каучуками. Свойствам, методам получения и переработки сополимеров стирола посвящены обзоры Сополимеризация стирола с его производными б °з-5718 осуществляется так же, как гомополимеризация этих мономеров — радикальным и ионным путем. [c.332]

    Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез живущих полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроанион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС стирол — бутадиен — стирол) обладают ценными свойствами они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100°С). Из них готовят изделия для медицинской промышленности, обувной (низ обуви) и другие изделия, где не требуется высокая термостойкость, но нужна прочность и высокоэластичность при комнатной и более низких температурах. [c.25]

    Стирол и акрилонитрпл чистотой 99 % применяют как исходные продукты для производства синтетических веществ, в частности, как компоненты для синтеза некоторых сортов каучука. Однако они содержат загрязнения, которые оказывают влияние на процесс полимеризации и па свойства полимера, если их концентрация составляет больше 0,1%. Как установил Охлингер [1], достаточно, например, чтобы в стироле, применяемом для получения полимеров, содержалось около 0,01% дивинилбензола, чтобы он стал непригодным для этой цели. Необходимо поэтому изучать влияние посторонних веществ в техническом продукте па полимеризацию и на свойства продукта полимеризации, для этого нужно глубоко и всесторонне анализировать мономеры. В стироле может находиться в качестве примесей 26 и более комиопентов, а в акрилонитриле — обычно около 10—И. В таких случаях газовая хроматография является лучшим методом анализа по сравнению с другими методами. Она позволяет при небольших затратах времени провести разделение смеси с более точной идентификацией ее отдельных компонентов. [c.84]

    Имеются сообщения о синтезе и исследовании свойств целого ряда р-дикетоно 1х хелатов уранил-иона Эти соединения использовались как окрашивающие агенты для синтетических полимеров на основе метилметакрилата и других мономеров 2. Хелаты ураннла с ацетилацетоном, 8-оксихинолином, теноилтрифторацето-ном и купферроном используют для получения топливных элементов. Для этого их смешивают с мономерами типа акрилатов, метакрилатов, алкидов и стиролов, добавляют 1—10% металлического алюминия и циркония для рассеивания тепла при ядерном расщеплении и. последующего отверждения радиацией 2 . Хелаты ура-нила, полученные из салицилового альдегида и амина, добавляемые в количестве не более 10 вес. %, являются хорошими свето-стабилизаторами для термопластичных смол 2 .  [c.310]

    Снижение температуры полимеризации приводит к увеличению регулярности строения макромолекул и соответственно скорости кристаллизации. Если полимеризация проводится при О °С, то ее продуктом является кристаллическое вещество, напоминающее по свойствам гуттаперчу (гране-1,4-полиизоирен). Быстрая кристаллизация затрудняет применение хлоропренового каучука для получения изделий, работающих в условиях многократных деформаций. Для уменьшения склонности к кристаллизации хлоропрен со-полимеризуют с 10—20% стирола, дихлорбутадиена, хлоризопре-на, акрилонитрила или другого мономера. Такие хлороиреновые каучуки не кристаллизуются длительное время. [c.110]

    Низкая теплостойкость и небольшая механическая прочность полистирола могут быть устранены путем сополимеризации стирола с другими мономерами или совмещением его с каучуками различными методами. Для получения сополимеров с повышенной теплостойкостью и хорошими электрическими свойствами применяют многоядерные виниловые соединения (ви-нилнафталин, аценафтилен и др.). [c.105]

    Весьма интересной является реакция со п о л и м е р и з а ц и и, сущность которой заключается в том, что в образовании длинной полимерной молекулы участвуют разные моно.меры, разные 1кирпичики . Если само слово сополимеризация вам, возможно, мало знакомо, то с сополимерами вы, безусловно, встречались. Более того, вы их держали в руках. Ведь в самом деле, пластмассовые корпуса больщянства авторучек изготовлены из сополимера стирола и метилметакрилата. Или другой пример—иитрильные каучуки. Так, если взять бутадиен, соединение, имеющее две двойные связи и состоящее из четырех атомов углерода и шести атомов водорода, и провести реакцию полимеризации совместно с акрилонитрилом, соединением, также имеющим двойную связь, но содержащим в своем составе помимо углерода и водорода еще азот, то мы получим полимер, который правильнее назвать сополимером. Этот продукт состоит из цепочек, в которых более или менее закономерно чередуются бутадиен и акрилонитрил. Само собой разумеется, что свойства полученного сополимера будут отличными от свойств полимеров, изготовленных из однотипных мономеров. [c.22]

    В последнее время проводятся работы по модификации свойств ХСПЭ с целью получения на его основе.новых материалов с повышенной адгезией, масло- и бензостойкостьго и улучшенными физико-механическими свойствами. С этой целью осуществляют графт-сополиме- ризацию ХСПЭ с винилхлоридом, стиролом, акрилонитрил( 1 и другими мономерами, прививку на ХСПЭ хлорстирола, метилметакрилата, ди-хлорбутадиена, хлоропрена, эпоксидирование, модификацию эфирами, триоксаном , фенолами , диметиламинами, пиперидином, морфоли-ном, пирролидоном. [c.57]

    Публикаций, посвященных радиационной прививке мономеров на полимеры с целью получения ионообменных мембран, относительно мало. Известны работы по привитой сополимеризации стирола, виннлппридина, стиролсульфокислоты, Л -вннилкарбазола и других мономеров на полиэтиленовую пленку [1—4]. Приводятся некоторые данные по основным ионообменным свойствам мембран, полученных на основе этих сополимеров. Имеется ряд работ но прививке акрилонитрила, винилпиридина, акриловой и метакрило-вой кислот и некоторых других мономеров на различные полимеры (полиэтилен, полипропилен, тефлон, поливинилхлорид, поливиниловый спирт, найлон) 15—8] с получением сополимеров, которые можно использовать в качестве ионообменных мембран. [c.20]

    Исследования в области полимеризации, сополимеризации олефинов и алкилирования олефинами заметно развиваются в последние годы благодаря большому разнообразию весьма ценных свойств получаемых продуктов. Так, при сополимеризации этилена, пропилена, децена-1 в присутствии диэтилхлоралюминия получены олигомеры, обладающие депрессорными свойствами [1]. Синтезированы высоковязкие продукты с аналогичными свойствами путем сополимеризации олефинов Сю—С24 со стиролом [2]. Имеются данные [3, 4] о получении олигомеров олефинов с другими мономерами, характеризующихся депрессорными, моющими и диспергирующими свойствами. [c.71]

    Известны в настоящее время полимеры германия, построенные аналогично кремнийорганическим и по своим свойствам напоминающие последние. Полимеры германия, полученные из иодистого германия и фениллития при —25° С, построены из цепей и циклов, составленных из атомов германия они разлагаются при 400—450° С [283]. Среди полимеров, содержащих германий, имеются представители, относящиеся к группе карбоцепных высокомолекулярных соединений и содержащие германий в боковых ответвлениях. Так, описаны различные производные акриловой и метакриловой кислот, стирола и других мономеров, содержащие германий и способные полимеризоваться [284]. [c.47]

    Наиболее распространены два типа структур матриц. Если матрицу синтезируют без добавления других веществ (особенно растворителей), то в результате сополимеризации стирола и ДВБ образуется каркас гелевого типа. Этот тип матрицы состоит из взаимопроникающих сеток, образованных индивидуальными цепями. Размер пор, который определяется расстоянием между индивидуальными полимерными цепями, очень мал. Ионообменники, имеющие каркас с подобными свойствами, называются гелевыми, или микросетчатыми смолами. Другой тип структуры матрицы образуется при введении в полимеризационную систему растворителя, растворяющего мономер. Полученная таким образом матрица имеет макропористую или макросетчатую структуру. Такие матрицы имеют губчатую структуру, состоящую из агрегатов сфер нормальной гелевой пористости, пронизанных порами большого диаметра. Размер пор можно регулировать в процессе получения матрицы. Ионообменники, имеющие такую матрицу, называют макропористыми. [c.19]

    Помимо дивинила, хлоропрена и изобутилеиа для получения синтетических каучуков применяется много других мономеров. Некоторые из них не имеют самостоятельного значения, так как при полимеризации не дают продуктов с каучукоподобными свойствами. Однако, в смеси с другими мономерами, например дивинилом, они способны давать полимеры каучукоподобного характера, обладающие к тому же особыми свойствами, например, повышенной маслостойкостью. К числу таких мономеров принадлежат стирол и нитрил акриловой кислоты. Несмотря на свою вспомогательную роль в производстве синтетических каучуков, стирол применяется в весьма больших количествах, так как ди-виииловые каучуки с добавками стирола производятся в очень широких масштабах. [c.254]

    Определены константы сополимеризации акрилонитрила с аллиловым спиртом, проведенной под воздействием -облучения, которые составляют Гх = 5,5, Гг = 0,1 Исследована сополимеризация этой же пары мономеров в присутствии инициатора КгЗгОв — аскорбиновая кислота (1 1) в водной среде при 20° С в течение 12 час. с увеличением в исходной смеси содержания аллилового спирта скорость полимеризации и выход сополимера резко снижаются относительные активности радикалов в этом процеосе следующие Т1 = 1,99 0,5 Гг=0,03 0,02 Сополимер аллилового спирта со стиролом получают восстановлением (при помощи литийалюминийгидрида) сополимера стирола с метилакрилатом. Основная фракция полученного полимера (75,5%) растворима в ацетоне и других растворителях, ее температура плавления 240—270° С и мол. вес 10 500 2 При сополимеризации аллилового спирта со стиролом и его производными при 100—250° С с 0,1—25% перекиси (Н2О2, перекись грег-бутила) образуется сополимер с мол. весом 300—4000 после этерификации этого сополимера жирными кислотами получают продукт, обладающий улучшенными пленкообразующими свойствами по сравнению с высыхающими маслами 4 [c.577]

    Основным сырьем для получения полистирола и сополимеров на основе стирола являются стирол, а-метилстирол, га-хлорсти-рол, 2,5-дихлорстирол, К-винилкарбазол, аценафтилен, р-винил-нафталин, акрилоЙ1трил, винилтолуол, метилметакрилат и другие. Основные физические свойства некоторых мономеров приведены в табл. 14. [c.270]

    К настоящему времени разработан целый ряд композиций, позволяющих наносить полимерные покрытия с определенными свойствами в промышленных условиях на приборы, инструменты и другие изделия [2, 3, 13, 23, 24]. Так, например, мягкие эмалевые пленки получают на основе малеиновых аддуктов масел [13 ]. Их сополимеризация с различными виниловыми мономерами (стиролом, винилтолуолом, акриловыми эфирами) улучшает твердость, светостойкость, прочность к истиранию покрытий по сравнению с пленками, получаемыми обычными способами. На основе сополимеров малеиновых и фумаровых аддуктов тунгового масла с метил- и этилакрилатами получены коррозионностойкие покрытия [13]. Имеются сведения о получении покрытий с повышенными электроизоляционными свойствами и хорошей химической стойкостью (например, к концентрированной азотной кислоте) на основе тройных сополимеров—метилметакрилата с метакриловой кислотой и ее солями (натрия или калия) в диметилформамиде [5[, а также на основе малеинизированных масел, модифицированных алкидных смол и смол эпоксиэфиров [2]. [c.37]

    Как показано в работе [118], на примере стеклотекстолитов на основе смол, содержащих в качестве мономеров стирол и ТГМ-3, применение последнего приводит к ухудшению диэлектрических свойств. Особенно заметно преимущество стеклотекстолита на основе стиролсодержащих смол при длительной выдержке материалов в воде его tgo после пребывания в воде в течение около 120 сут составляет менее 0,02 (при 7000 МГц), тогда как для стеклотекстолита, полученного с применением ТГМ-3, он равен примерно 0,03. Исследована температурная зависимость электроизоляционных свойств сополимеров ненасыщенных полиэфиров различного состава [20, 93, 94, 114, 116, 117], в том числе модифицированных антраценом или циклопентадиеном. В области температур 25—60°С значение р изменяется незначительно и составляет для разных сополимеров 10 —10> Ом-м. Повышение температуры от 60 до 150°С приводит к резкому уменьшению р (почти в 1000 раз) с повышением температуры от 175 до 200°С значение р,, м ёдленно уменьшается и составляет 10 °—10 Ом-м [116]. Незначительное изменение р в области температур 20—70°С (т. е. температур ниже 7 с) было отмечено и для других сополимеров жесткого типа [94]. Установлено, что выше Гс зависимость [c.180]

    Свойства и, соответственно, области применения полимеров (смол) определяются рядом показателей, специфических для этих соединений молекулярным весом, растворимостью, адгезией, химстойкостью, способностью к формованию и литью и др. Уже давно было замечено, что некоторые важные свойства полимеров одного и того же состава изменяются с изменением молекулярного веса. При повышении до известного предела молекулярного веса полимера увеличивается механическая прочность, повышается эластичность, твердость, устойчигость к высоким и низким температурам. Но наряду с этим, ряд других ценных свойств полимеров заметно снижается, например, ухудшается растворимость полимеров и внешний вид получаемых продуктов. Кроме того, известно, что молекулярный вес полимеров не определяет всего комплекса их свойств. Например, гигроскопичность, химическая стойкость, теплостойкость, диэлектрические свойства, адгезия (клеющая способность) зависят не от молекулярного веса, а от химструктурных особенностей молекул полимера. Поэтому, применяя для синтеза полимеров различные мономеры и изменяя степень полимеризации, можно получить материалы с требуемыми свойствами. Так, например, для получения негорючих полимерных материалов, устойчивых к действию кислот и щелочей, целесообразно применять мономеры, содержащие галоген (винилхлорид, тетра-фторэтилен). Вводя в молекулу мономера атом фтора или нитрильную группу СМ, можно повысить светостойкость материала. При введении фенильной группы в состав мономера (стирол) значительно улучшаются диэлектрические свойства материала. В табл. 2 приведены некоторые данные, иллюстрирующие влияние характера функциональных групп в элементарных звеньях макромолекул на свойства полимерй. [c.16]


Смотреть страницы где упоминается термин Получение других мономеров Получение стирола Стирол, его свойства и получение: [c.113]    [c.441]    [c.207]    [c.22]    [c.441]    [c.159]    [c.11]    [c.384]    [c.344]    [c.293]   
Смотреть главы в:

Общая технология синтетических каучуков Издание 2 -> Получение других мономеров Получение стирола Стирол, его свойства и получение




ПОИСК





Смотрите так же термины и статьи:

Другие мономеры

Другие свойства

Свойства стирола и его получение

Стирол получение

Стирол физ. свойства

получение и свойства



© 2025 chem21.info Реклама на сайте