Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расположение связей в пространстве

    У 1,3-диметилциклопентана в неадсорбированном состоянии обе метильные группы находятся в наиболее выгодной экваториальной конформации. Однако в процессе адсорбции на грани (111) они не могут, сохранить это столь выгодное расположение в пространстве. Чтобы не мешать молекуле разместиться наиболее компактно в междоузлиях решетки и самим расположиться на поверхности достаточно удобно , СНз-группы должны несколько отклониться в направлении аксиального Н-атома при атоме С-2 кольца. Такое смещение должно усилить 1,2-взаимодействие между этим водородом и обеими метильными группами и привести к появлению дополнительного напряжения в системе. Это хорошо видно на моделях Стюарта — Бриглеба в сочетании с моделью грани (111) платины, выполненной в том же масштабе (рис. 28). На рис. 28 изображена эта адсорбированная конформация (упомянутый выше Н-атом помечен стрелкой). Из такой конформации могут возникнуть три переходных состояния с растянутой связью а. а" или б. Естественно, что при растяжении связи а со- [c.145]


    В кристаллах, которые образуются с помощью ковалентных связей, частицами, их образующими и закономерно расположенными в пространстве, служат нейтральные атомы, связанные между собой ковалентной связью. Классическим примером таких кристаллов является алмаз. В нем каждый атом углерода связан с четырьмя другими углеродными атомами. Атомы образуют непрерывную пространственную решетку, причем связь между ними неполярная. Кристаллам алмаза по характеру связи подобны кристаллы карборунда, хотя в этом случае уже сказывается неко торая полярность связи. [c.125]

    В результате применения более совершенной аппаратуры описываемый цикл работ был продолжен [34]. С использованием метода ЭПР предприняты исследования характера связи ванадил-порфиринов с первичными асфальтенами нефти. На примере асфальтенов, выделенных из двух нефтей, были изучены сверхтонкие линии сложного спектра, обязанного своим происхождением купелированию неспаренных спинов электронов ядра N, находящегося под сильным воздействием сверхтонкой структуры "V в асфальтенах. Слабые сигналы, которые удалось зафиксировать только в результате применения прецезионных методов, обусловлены девятью равномерно расположенными в пространстве линиями с интенсивностями, приблизительно пропорциональными числам [c.228]

    Наличие в молекуле аммиака или в ионе аммония, а также в молекулах метана и воды четырех равноценных гибридных орбиталей (вр -гибридизация) предопределяет их равномерное взаимное расположение в пространстве по направлениям от центра молекулы к вершинам описанного тетраэдра независимо от соотношения между участвующими в образовании связи незанятыми орбиталями. Из-за слабого отталкивания, существующего между орбиталями, участвующими в образовании связи, и незанятыми орбиталями, валентный угол изменяется от 109°28 в молекуле метана (все четыре гибридные орбитали участвуют в образовании связи) до 107°18 в молекуле аммиака (одна орбиталь из четырех не занята) и до 104°30 в молекуле воды (не заняты две орбитали из четырех) 1). [c.36]

    Комбинация четырех орбиталей — одной а- и трех р-типа — приводит к 5р -гибридизации, при которой четыре гибридные орбитали симметрично ориентированы в пространстве под углом 109°28 (рис. 45) к четырем вершинам тетраэдра. Тетраэдрическое расположение связей и форма тетраэдра характерны для многих соединений четырехвалентного углерода, например [c.67]


    Таким образом, говоря о структуре, или надмолекулярной организации, полимеров (НМО), можно в терминах заторможенной конфигурации определить ее как внутреннюю структуру, взаимное расположение в пространстве и характер взаимодействия (связи) между структурными элементами, образующими полимерное тело. В некоторых случаях это взаимодействие осуществляется через аморфную бесструктурную матрицу, которой может и не быть. [c.44]

    Наконец, несмотря на усовершенствования, внесенные в теорию Вора другими учеными (была принята во внимание возможность движения электрона в атоме не только по круговым, но и по эллиптическим орбитам, по-разному расположенным в пространстве), эта теория не смогла объяснить некоторых важных спектральных характеристик многоэлектронных атомов и даже атома водорода. Например, оставалась неясной причина различной интенсивности линий в атомном спектре водорода не объяснялась тонкая структура спектров атомов, заключающаяся в том, что их отдельные линии расщепляются на несколько других. Сами количественные расчеты многоэлектронных атомов оказались чрезвычайно сложными и практически неосуществимыми. Теория ошибочно описывала магнитные свойства атома водорода, принципиально не могла объяснить образование химической связи в молекулах. [c.45]

    В макромолекулах вращение вокруг каждой простой связи является заторможенным и складывается из ряда колебаний. При наличии валентного угла между соседними С—С связями вращение вокруг связи /—2 (рис. 7.2) приведет к тому, что связь 2—3 расположится в любом направлении вдоль образующей конуса вращения, образованного поворотом связи 2—3 с сохранением валентного угла. Го же самое можно сказать и о расположении в пространстве последующих связей С—С. Вся совокупность перемещений приведет к тому, что макромолекула в результате теплового движения располагается в пространстве ие [c.94]

    Поместите в пробирку несколько кусочков серы и, осторожно нагревая ее, чтобы сера не воспламенилась, заметьте происходящие в пробирке изменения. При П3° С сера плавится, выше 155° С буреет, при 190° С становится весьма вязкой, не выливается из пробирки (проверьте), но затем вязкость снова уменьшается, и при 300° С жидкость становится легкоподвижной. Наконец, при 445° С сера закипает. Наблюдаемые изменения связаны со способностью серы образовать различные модификации, отличающиеся плотностью и температурами плавления. Модификации серы составлены из молекул Sg, расположенных в пространстве и соединенных между собой разными способами. В жидкой сере часть молекул диссоциирует и [c.227]

    Вместе с тем сетчатые молекулы отличаются от линейных тем, что поперечные связи, хотя и расположенные редко, предотвращают возможность разъединения макромолекул. Благодаря этому такие полимеры неплавки (не переходят в вязкотекучее состояние) и нерастворимы. Однако по отношению к растворителям резины, или сетчатые полимеры, ведут себя иначе, чем полимеры с часто расположенными связями. В некоторых растворителях резины набухают вследствие проникновения растворителя в пространство между макромолекулярными цепями на участках, не связанных поперечными мостиками. [c.30]

    При 5р -гибридизации возникают четыре равноценные орбитали, расположенные в пространстве относительно друг друга под углом 109,5°. Каждый атом углерода образует четыре ковалентные связи с другими атомами углерода и с атомами водорода. В результате образуются предельные углеводороды или алканы, у которых все валентности углеродных атомов насыщены [c.301]

    Ковалентная, как и донорно-акцепторная, химическая связь образуется между атомами, расположенными в пространстве относительно друг друга определенным образом — направленно. Это вызвано необходимостью наибольшего перекрывания волновых функций (атомных орбиталей) электронов, образующих связь, что должно приводить к минимальной энергии системы. По-видимому, [c.53]

    Ковалентная, как и донорно-акцепторная, химическая связь образуется между атомами, расположенными в пространстве относительно друг друга определенным образом — [c.65]

    Не надо забывать, что структурные формулы изображают лишь порядок химической связи атомов, а не их истинное расположение в пространстве или на плоскости (хотя это расположение теперь точно известно ). Поэтому формула I — это все тот же н-бутан, имеющий неразветвленную цепь из четырех атомов углерода формулы И и 111 изображают в разном графическом начертании изо-бутан. [c.94]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]


    Характерной особенностью твердого состояния вещества является постоянство его формы. Это значит, что составляющие его частицы (ионы, атомы, молекулы) жестко связаны между собой и их тепловое движение происходит как колебание около неподвижных точек, определяющих равновесное расстояние между частицами — расстояние, на котором потенциальная энергия притяжения имеет минимум. Относительное положение точек равновесия во всем веществе должно обеспечивать минимальную энергию всей системы, что реализуется при их определенном упорядоченном расположении в пространстве, т. е. в кристалле. Кристаллом, — по определению выдающегося русского кристаллографа Г. В. Вульфа (1863—1925), — называется твердое тело, ограниченное в силу своих внутренних свойств плоскими поверхностями — гранями . [c.151]

    Трехмерная структура молекул. Одна из особенностей многоатомных молекул состоит в том, что они характеризуются определенным пространственным строением, в котором зафиксировано относительное расположение в пространстве ковалентно связанных атомов. Как уже было сказано, связь между атомами образуется в результате взаимодействия атомных орбиталей. [c.15]

    Формулы, приведенные выше, носят название структурных формул . Они дают представление о последовательности соединения атомов, а также о природе сущ,ествующ,ей между ними химической связи, но не дают никакой информации о трехмерных аспектах молекулярной структуры, таких, как форма молекулы или относительное расположение в пространстве атомов или групп. [c.32]

    Расположение в пространстве пяти 5р с -гибридных орбиталей и расположение связей атома фосфора с атомами фтора имеют [c.96]

    Атом лития на 25-подуровне имеет один неспаренный электрон и, следовательно, соединение должно иметь состав LiH. У атома бериллия этот подуровень заполнен и нет ни одного неспаренного электрона, следовательно, бериллий не должен образовывать ни одной химической связи. У бора и следующих за ним элементов (С, N, О, F) происходит последовательное заполнение 2р-подуровня, и атомы этих элементов будут иметь определенное число неспаренных электронов. Если при образовании связей учитывать только наличие неспаренных электронов, то для этих элементов должны образоваться следующие водородные соединения ВН, СН , NH3, Н7О, HF. Отсюда видно, что, применяя только обменный механизм образования химической связи, можно вступить в противоречие с экспериментальными данными бериллий образует соединение с водородом состава ВеНг, водородные соединения бора также имеют другой состав, а простейшее соединение углерода с водородом имеет состав СН4.Устранить это противоречие можно, предположив, что атомы элементов второго периода в образовании молекул участвуют в возбужденном состоянии, т.е. происходит распаривание 5-электронов и переход их на р-подуровень. Но тут возникает другое несоответствие с опытными данными. Поскольку энергии 5- и р-электронов различны, то и энергии образуемых ими химических связей должны отличаться, а, следовательно, подобные связи Э-Н должны иметь разную длину (в зависимости от того, орбитали какого типа принимают участие в их образовании). Согласовать теорию и эксперимент можно, введя предположение об усреднении энергий 5- и р-подуровней и образовании новых уровней, на которых энергии электронов, находящихся уже на орбиталях другого типа, одинаковы. А раз это так, то по правилу Хунда, в атоме появляется максимальное число неспаренных электронов. Эта гипотеза получила название явления гибридизации, а орбитали, образующиеся в результате усреднения энергий подуровней, называются гибридными. Естественно, что при этом меняются и форма электронных облаков, и их расположение в пространстве. В зависимости от того, какие орбитали участвуют в образовании гибридных орбиталей, рассматривают различные типы гибридизации и пространственные конфигурации образовавшихся гибридных орбиталей (см. рис. 14.). Число получившихся гибридных орбиталей должно быть равно общему числу орбиталей, вступивших в гибридизацию. В зависимости от того, какие орбитали взаимодействуют между собой, рассматривают несколько типов гибридизации  [c.48]

    Другим важным свойством угловых коэффициентов является свойство взаимности — угловые коэффициенты облучающих друг друга поверхностей Рк и р1, произвольно расположенных в пространстве, связаны соотношением [c.197]

    Для одной и той же группы атомов характерна не одна линия, а некоторый интервал химических сдвигов. Это обусловлено влиянием заместителей, их расположением в пространстве, образованием водородных связей или другими факторами. Заместители в линейных и разветвленных молекулах оказывают разное влияние. Чувствительность химических сдвигов в спектре С к структурным изменениям выше, чем в ПМР спектрах, примерно на порядок, [c.257]

    Это объясняется тем, что в атоме углерода, когда он образуе ковалентные связи с четырьмя другими атомами, из одной 5- I трех р-орбиталей в результате р -гибридизации образуются че тыре симметрично расположенные в пространстве гибридные вр -( рбнтали, вытянутые в направлении к вершинам тетраэдра. [c.454]

    После второй мировой войны объем стереохимической информации стал резко расти. Теперь уже количество эксперименталь- ных данных настоятельно требовало обобщения, единой концепции. Поэтому и был заново введен в литературу старый термин, оказавшийся по своему смыслу идеально подходящим к новому времени. Второе рождение термин конформация обрел в 1950 г. в статье будущего Нобелевского лауреата Д. Бартона, в которой без каких-либо ссылок дается следующее определениез Слово конформация используется для того, чтобы обозначать различающиеся ненапряженные расположения в пространстве набора валентно связанных атомов . По нашему мнению, отсутствие ссылки на Хоуорта здесь — не случайный огрех, поскольку она отсутствует и в более поздней публикации Бартона. При этом в последней есть ссылка на статью В. Прелога, в которой в аналогичном смысле используется термин констелляция Как констелляции мы определим те формы молекул, которые проистекают из свободного вращения вокруг одинарных связей, например кресло и ванна циклогексана . В свою очередь, в этой обзорной работе Прелог не ссылается ни на Эбеля, ни, тем более, на Хоу-. орта. [c.127]

    Молекулярный граф, таким образом,—это граф, у которого атомы — вершины, а ковалентные химические связи — ребра. Такой граф, как уже упоминалось, не учитывает метрических характеристик молекулы — равновесного межъядерного расстояния, валентных углов и т. п. Следовательно, при теоретико-графовом описании отражаются особенности молекулярной структуры, зависящие от связности и сохраняющиеся при гомеодюрфных преобразованиях в противоположность свойствам, обусловленным точным геометрическим расположением в пространстве составляющих молекулу атомов. Именно в этом смысле химические графы являются топологическими (а не геометрическими) представлениями молекулярных структур [82J. [c.96]

    Отсутствие гальванической связи между выходными и входными цепями преобразователей, построенных на основе кольцевых ферритовых сердечников, позволяет включать в цепь КЗО последовательно несколько магниточувствительных элементов или ввести несколько КЗО с магниточувствительными элементами, работающими параллельно. Феррнгговый сердечник при этом вьшолняет функции алгебраического сумматора [54, 55]. Такая конструкция преобразователя позволяет измерять ортогональные компоненты или фадиент магнитного поля в заданной точке. Применение трех обмоток, подключенных к потенциальным электродам трех датчиков Холла, расположенных в пространстве ортогонально, позволяет определить модуль пространственного вектора магнитного поля. Измеряя сигнал с каждого датчика Холла по отдельности, можно найти проекции вектора на ортогональные оси, а затем определить пространственное расположение самого вектора. [c.142]

    Образонание твердой фазы значительно сложнее, чем это отражается простым уравнением химической реакции между компонентами. Для образования первичного кристалла, например осадка ВаЗО , недостаточно встречи двух ионов Ва+" и 50 , Из двух ионов не может получиться какая-либо кристаллическая структура. Образование первичного кристалла, очевидно, возможно только при встрече довольно большого количества реагирующих ионов в определенном соотношении и при определенном расположении в пространстве. Кроме того, в растворах электролитов ионы окружены гидратной оболочкой и довольно прочно связаны с ней. Большинство осадков не содержит воды или содержит ее значительно меньше, чем было связано с ионами в растворе. Очевидно, при образовании осадков одновременно разрушается гидратная оболочка реагирующих ионов. Следовательно, образование первичных кристаллов, появление первой поверхности раздела является сложным процессом, зависящим от индивидуальных свойств данного химического соединения и от ряда внешних условий. [c.54]

    Направления валентных связей углеродного атома взаимно ориентированы в пространстве. Так, если все четыре валентности его насыщены одинаковыми атомами или атомными группами (например, в СС14), то наиболее устойчивому состоянию молекулы отвечает такое расположение связей, когда угол между каждой парой связей равен 109,5° (это угол между направлениями от центра тяжести правильного тетраэдра к его вершинам). [c.200]

    Координационные числа комплексных частиц с электростатическим взаимодействием зависят также от размеров центрального атома комплексообразователя и лигандов. Они увеличиваются с увеличением размера центрального атома и уменьшением размера лигандов, например [AlFe] и [AII4]-, [BF4] и [AlFel . Для комплексных частиц с ковалентной связью координационное число определяется прежде всего электронной конфигурацией центрального атома-комплексообразователя, а точнее видом гибридизации его орбиталей и их взаимным расположением в пространстве. Последние определяют, как было показано в гл. 2, стереохимию молекулы, а следовательно, и координационное число. [c.267]

    Как объяснить, почему система с одинарными связями в случае углерода более предпочтительна, чем система с кратными связями Причиной, несомненно, являются очень высокая абсолютная и относительная прочности одинарных связей углерод—углерод (например, по сравнению с азотом). Так, в углеводороде СНз—СНз энергия связи С—С составляет 83,1 ккал/моль, тогда как в аналогичном соединении азота ЫНг—МНг энергия связи N—N характеризуется величиной только 38,4 ккал/моль [1]. Как известно, первая связь С—С в углеводородах, например, существенно более прочна, чем вторая (в системе с С = С) и третья связь (в системе с С = С). Очевидно, что для углерода вариант с образованием одинарных связей оптимален благодаря возможности высокосимметричного расположения в пространстве четырех двухэлектронных тетраэдрических ковалентных связей (алмаз), обеспечивающих минимальное межэлектронное отталкивание. В случае азота — соседа углерода по периодической системе, имеющего один дополнительный электрон, такое выгодное распределение электронных пар в пространстве невозможно у атома азота появляется неподеленная электронная пара, не эквивалентная двухэлектронной паре одинарной связи N—N. Поэтому алмазоподобная структура для азота не реализуется вместо четырех одинарных связей элемент—элемент (в алмазе) азот способен образовать только три связи N—N. и они не могут быть направлены в пространстве строго гетраэдрически, как в алмазе, из-за отталкивания неподеленной электронной пары у атома азота. [c.248]

    Модель гибридизации электронных орбиталей не обязательно распространяют на все орбитали атома. Известны случаи, когда модель требует считать часть орбиталей гибридными, т. е. усредненными по энергиям и дополнительно симметризованными по расположению в пространстве, а часть орбиталей — негибридными. Рассмотрим подобный случай на примере некоторых производных углерода. Известно, что строение таких соединений, как этилен С2Н4 и фосген СОО , объясняют одинаковым характером гибридизации орбиталей атомов углерода в этих молекулах. Из четырех одноэлектронных орбиталей атома углерода (одной 5 и трех р) три орбитали считают гибридными, они образуют своим расположением фигуру правильной трехлучевой звезды (зр -гибридизация), а одна р-орбиталь остается негибридной. Она располагается перпендикулярно к плоскости звезды, как показано иа рис, 21.12. За счет гибридных вр -орбнталей атом углерода образует три ст-связи (две —с атомами других элементов и одну —с соседним углеродным атомом, имеющим аналогично расположенную р-орбиталь). [c.256]

    П и - с в я 3 ь. Связь двух атомов может осуществляться более чем одной парой электронов. Такая связь называется кратной. Примером образования кратной связи может служить молекула азота. На рис. 19 показано расположение в пространстве полузаполненных /г-орбиталей в двух атомах азота. В молекуле азота Ял-орбиталн образуют одну а-связь. При образовании связи рг-орбнталями возникают две области перекрыва- [c.104]

    Чтобы задать расположение графа в пространстве, достаточно у каждой вершины поставить метку — координату фрагмента молекулы, изображаемого этой вершиной (рис. III.1). Любая химическая связь в молекуле может разорваться с образованием в этом месте двух функциональных групп либо появиться в результате химической реакции между ними. Поэтому следует приинмать во внимание также и расположение связей (прореагировавших групп), изображая нх на графе пасечкамп. Пара насечек, принадлежащих одной связи, имеет совпадающие метки, отвечающие ее координатам. При этом графу системы, состоящей из N мономерных звеньев, требуется ровно (/+1)jV меток. Кроме нанесения меток па элементы графа мы еще занумеруем их числами. Так, звеньям присвоим номера от 1 до iV, а группы (в том числе и прореагировавшие) независимо для каждого звена пронумеруем числами 1. 2.. ... .., /. Координату г-го звена будем обозначать Г , а его /-й группы— Гц. Пронумерованные графы (не обязательно связные) с N узлами обозначим а если граф еще и помечен — il jvir , где г соответствует множеству координат всех звеньев и функциональных групп. [c.208]

    Техника предъявляет к резиновым изделиям самые разнообразные требования. В одном случае необходима большая прочность, в другом—высокая эластичность, в третьем—термическая устойчивость. Все эти требования невозможно удовлетворить одним каким-нибудь типом каучука. В связи с этим промышленность выпускает десятки сортов синтетического каучука, полученных на основе самых различных химических соединений. Выше указывались ценные свойства хлоропреновых каучуков и бутилкау-чука. Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, гак и при высоких температурах каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью каучуки, полученные сополиме-ризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов. Наиболее массовым типом каучука, широко применяемым для изготовления шин, является каучук, получаемый сополимеризацией дивинила со стиролом (стр. 486). Эти каучуки отличаются хорошей прочностью и поэтому изготавливаются в громадных количествах. Однако по эластичности и некоторым другим свойствам они все же уступают натуральному каучуку, вследствие чего до последнего времени он являлся незаменимым для целого ряда изделий. Эти ценные свойства натурального каучука были связаны со строением полимерной цепи, которое отличалось строго регулярным расположением в пространстве отдельных звеньев. Такую структуру долго не удавалось воспроизвести в синтетических каучуках. Лишь в 50-х годах в СССР и в других странах было найдено, что проведение полимеризации в присутствии комплексных металлорганических катализаторов приводит к образованию полимеров регулярной структуры. [c.104]

    Пространств. И. обусловлена существованием соед. (сте-реоизомеров), имеющих одинаковый порядок связей атомов, но разл. пространств, расположение. Виды пространств. И. оптическая изомерия, возникающая при наличии в молекуле элемента хиральности диастереомерия, обусловленная существованием у соед. с неск. элементами хиральности групп пространств, изомеров, не являющихся энантиомерами (см. Диастереомеры), геометрическая изомерия, свойственная соед. с двойными связями и малыми циклами конформац. И., наблюдаемая у соед., для молекул к-рых возможно существование неск. конформаций. [c.210]

    М. способны к изменению формы и линейных размеров в результате теплового движенм, а именно-ограниченного вращения звеньев вокруг валентных связей (внутр. вращение) и связанного с ним изменения конформацииМ., т. с взаимного расположения в пространстве атомов и групп атомов, соединенных в цепь, при неизменной конфигурации М. Обычно в результате такого движения М приобретает [c.636]

    Расчеты в Р. с. а. проводят с помощью ЭВМ. Благодаря прецизионной обработке эксперим. данных (как при измерении интенсивности отражений в дифрактометрах, тах и при введении поправок в расчетах структурных амплитуд) можно исследовать распределение электронной плотности между атомами. Для этого строят т. наз. ф-цию деформац. электронной плотности 5р(г), описывающую перераспределение электронов в атомах при образовании хим. связи между ними. Анализ ф-ции 5р(г) позволяет установить степень переноса заряда, ковалентность связи, пространств, расположение неподеленных пар электронов и т.д. [c.241]

    СТРУКТ>ТНЫЙ АНАЛГО, определение строения в-в и материалов, т.е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов). В узком смысле С. а.-определение геометрии молекул и мол. систем, к-рую обычно описывают набором длин связей, валентных (плоских) и двугранных (торсионных) углов, С. а. обычно включает получение эксперим. данных и их математич. обработку. [c.445]


Смотреть страницы где упоминается термин Расположение связей в пространстве: [c.561]    [c.14]    [c.140]    [c.564]    [c.25]    [c.142]    [c.86]    [c.38]    [c.117]    [c.39]    [c.156]    [c.216]   
Смотреть главы в:

Теоретические основы общей химии -> Расположение связей в пространстве




ПОИСК





Смотрите так же термины и статьи:

Пространство

Химическая связь а расположение в пространстве



© 2025 chem21.info Реклама на сайте