Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства целлюлозы и процесс формования

    Для получения так называемой созревшей вискозы раствор ксантогената очищают от различных механических примесей на рамных фильтр-прессах и выдерживают определенное время (24— 60 ч, процесс созревания вискозы) при установленной постоянной температуре (14—17°С). Во время созревания происходит изменение химических и коллоидных свойств вискозы, раствор становится менее вязким, уменьшается стабильность и увеличивается способность к коагуляции. В результате частичного омыления ксантогената понижается степень этерификации целлюлозы. Пузырьки воздуха, попавшие в растор, медленно выделяются из него происходит обезвоздушивание. Обычно вискоза содержит целлюлозы 6— 9%, едкого натра 6—7,5%, серы 2,2— 2,3% и воды 80—83%. После фильтрации и обезвоздушивания подготовленный прозрачный желтоватый раствор ксантогената подается сжатым воздухом или при помощи зубчатого насоса в прядильный цех на процесс формования (прядения) волокна. Зубчатый насос, забирая определенное количество вискозы, продавливает ее через фильтр. Затем вискоза при 45— [c.210]


    Определение способности целлюлозы к набуханию имеет большое практическое значение. Между степенью набухания целлюлозы и ее способностью к размолу и, следовательно, свойствами получаемой бумаги существует тесная взаимосвязь [1]. Известно, что волокна неразмолотой целлюлозы являются относительно жесткими и хрупкими. При использовании целлюлозы для изготовления бумаги большое значение имеет повышенная пластич-ность и гибкость волокон. Эти свойства волокон в значительной степени связаны со способностью их к набуханию, так как значительное набухание волокон способствует меньшему их повреждению в процессе размола, что в свою очередь отражается на свойствах бумаги [2]. Способность целлюлозы к набуханию имеет особенно большое значение в производстве искусственного волокна. Это свойство целлюлозы определяет ее поведение при мерсеризации, при ксантогенировании щелочной целлюлозы, а также при различных других химических реакциях. Набухание целлюлозы при мерсеризации способствует удалению из нее низкомолекулярных фракций. В набухшую целлюлозу лучше диффундирует сероуглерод в процессе ксантогенирования. Формование и вытяжка волокон также связаны с процессом набухания. [c.180]

    Введение в раствор вторичного ацетата целлюлозы или полиакрилонитрила в диметилформамиде небольших количеств полиуретанов значительно повышает устойчивость получаемого волокна к истиранию. Добавка каучука к раствору волокнообразующих полимеров повышает эластичные свойства волокна. Достигаемое в процессе формования волокна из растворов смесей полимеров смешивание волокнообразующих полимеров на уровне образования надмолекулярных структур обеспечивает, как правило, суммирование ценных свойств, характерных для каждого из полимеров, участвующих в образовании надмолекулярных структур. По-видимому, в ряде случаев улучшение требуемых свойств волокон, достигаемое этим методом, не может быть получено при использовании других методов модификации свойств волокон, в частности метода привитой сополимеризации. [c.151]

    Состав и свойства прядильного раствора. Состав прядильного раствора и его свойства, в частности концентрация ацетата целлюлозы и вязкость, оказывают большое влияние на условия формования и расход растворителя. Чем выше концентрация ацетата целлюлозы в растворе, тем меньше испаряется растворителя в процессе формования и тем ниже может быть температура воздуха или выше скорость формования. Обычно при формовании диацетатной нити сухим способом прядильный раствор содержит 22—25% ацетата целлюлозы. Некоторое понижение концентрации полимера, в растворе целесообразно только при повышении молекулярного веса ацетата целлюлозы. [c.491]


    Варьирование основных параметров вискозного процесса, таких, как степень полимеризации исходной целлюлозы, степень ее деструкции на стадии предсозревания, степень ксантогенирования и состав осадительной ванны, а также добавление модификаторов и использование различных условий формования и вытягивания волокна позволяют получать вискозное волокно с самыми разнообразными свойствами. Особенно важное значение имеют высокопрочная кордная нить, на долю которой приходится основная часть производимого вискозного волокна, и высокомодульные волокна, которые по своим физико-механическим свойствам и наличию фибриллярной структуры близки к натуральному хлопку. Одним из видов высокомодульных волокон являются полинозные волокна, которые отличаются устойчивостью к набуханию в концентрированных (свыше 5 М) растворах едкого натра и поэтому могут быть использованы в смесях с хлопком в процессе мерсеризации. [c.314]

    Основные физико-механические свойства вискозного волокна в очень большой степени зависят от условий формования волокна и его надмолекулярной структуры. Как уже указывалось раньше, макромолекулы целлюлозы в процессе формования волокна могут располагаться весьма различно. В момент ориентации их вдоль оси волокна целлюлозные цепи дают новые образования, соединяясь в пачки, от порядка расположения которых зависит надмолекулярная структура волокна. Размеры пачек могут быть различны, и поэтому плотность волокон может [c.173]

    В волокнах регенерированной целлюлозы или ее сложных эфиров не обнаруживается ориентации кристаллитов, если они в процессе формования специально не подвергались вытяжке. Этим способом изменения структуры пользуются, кстати, для улучшения некоторых механических свойств волокон, например при получении искусственного шелка типа фортизан (волокно О, состоящее из регенерированного триацетата, омыляемо-го под натяжением). [c.106]

    СВОЙСТВА ЦЕЛЛЮЛОЗЫ И ПРОЦЕСС ФОРМОВАНИЯ [c.27]

    Для получения искусственных волокон хлопковую целлюлозу целесообразно применять в тех случаях, когда в процессе растворения или этерификации целлюлозы не удаляются низкомолекулярные фракции полисахаридов, находящихся в исходной целлюлозе (получение ацетатного и медноаммиачного волокна), или когда необходимо получать волокна, обладающие более высокими механическими свойствами. Полидисперсность и, в частности, содержание низкомолекулярных фракций в хлопковой целлюлозе меньше, чем в древесной. Это обстоятельство обусловливает повышенную прочность, особенно в мокром состоянии, искусственных волокон, получаемых из хлопковой целлюлозы, по сравнению с волокнами, вырабатываемыми в тех же условиях из древесной целлюлозы. Более низкое содержание низкомолекулярных фракций в хлопковой целлюлозе имеет особенно большое значение при производстве высокопрочного вискозного волокна. При одних и тех же условиях формования и вытягивания вискозная кордная нить, получаемая из хлопковой целлюлозы, обладает несколько более высокой прочностью и значительно лучшими эксплуатационными свойствами (в частности, повышенной усталостной прочностью и устойчивостью к многократным деформациям), чем кордная нить из древесной целлюлозы. [c.185]

    Между качеством целлюлозы и процессом формования существует тесная связь. Нарушения процесса формования в первую очередь зависят от свойств исходной целлюлозы. [c.27]

    Аналогично полимерам, полученным прядением из расплава, механические свойства целлюлозного волокна сильно зависят от степени молекулярной ориентации. Но если в полимерах, полученных прядением из расплава, эта ориентация возникает при вытяжке, то в случае целлюлозы ориентация и формование конечной структуры волокон непосредственно связаны с самим процессом химической регенерации, причем связь эта довольно сложна. Для разъяснения остановимся подробнее на процессе регенерации. Раствор вискозы экструдируют через фильеру непосредственно в ванну с кислотой. При этом происходят следующие два процесса. Во-первых, ксантогенат целлюлозы, немедленно выпадающий из раствора, образует сильно набухший гель молочного цвета, содержащий большое количество воды. Во-вто-рых, скоагулированный ксантогенат под влиянием серной кислоты медленно разлагается с образованием целлюлозы. В ходе этого процесса вода диффундирует из [c.167]

    Прочностные свойства, определяемые растяжением пленок до их разрыва, соответствуют таковым для эфиров целлюлозы и даже несколько уступают последним. Однако эти свойства резко увеличиваются при вытяжке пленок в одноосном направлении в процессе их формования или после дополнительного вытягивания при соответствующих тепловых режимах. Обычно нерастянутые пленки из поликарбоната обладают повышенной [c.553]


    Прядильные растворы ацетатов целлюлозы вполне стабильны. При выдерживании раствора даже в течение длительного времени химический состав ацетатов и физико-химические свойства растворов не изменяются. Это обстоятельство определяет технологию и аппаратурное оформление процесса растворения ацетатов целлюлозы и подготовки растворов к формованию. В отличие от условий приготовления вискозных или медноаммиачных прядильных растворов ацетаты целлюлозы растворяют при нормальной или даже повышенной температуре, а фильтруют обычно только при повышенной температуре. [c.477]

    С помощью оперативно-технического учета в производстве осуществляется постоянный контроль количества и качества поступившего и израсходованного сырья, основных материалов (химикатов) параметров технологического процесса (например, содержания а-целлюлозы в прядильном растворе, вязкости и зрелости вискозы, температуры и состава осадительной ванны, скорости формования и др.) качества полуфабрикатов по всем технологическим переходам и готовой продукции (например, контроль физико-механических свойств волокна — прочности, удлинения, крутки, внешнего вида). [c.249]

    Известно большое число эфиров целлюлозы и среди них — смешанные эфиры, например ацетобутираты целлюлозы, однако наиболее подходящими для формования волокна являются ацетаты целлюлозы. Были также получены и переработаны в волокно эфиры целлюлозы и муравьиной кислоты —формиаты целлюлозы. Если для модификации свойств ацетатного волокна и тканей необходимо ввести в состав волокна остатки других кислот, это лучше всего может быть достигнуто путем обработки волокна растворами хлорангидридов кислот в инертных растворителях, т. е. растворяющих хлорангидриды и не растворяющих ацетилцеллюлозу. Такой процесс наиболее целесообразно проводить в присутствии органических оснований, например пиридина, который связывает хлористый водород, образующийся при взаимодействии хлорангидридов со свободными гидроксильными группами эфира [c.173]

    Полимеры с чрезмерно короткими макромолекулами (молекулярный вес <15 000) непригодны для формования волокон. Хотя перевод подобных полимеров в прядильный раствор или расплав осуществляется легко, и вязкость прядильной массы невелика, но формуемые из них волокна характеризуются плохими физико-механическими свойствами. Это объясняется в первую очередь тем, что благодаря высокой подвижности короткие макромолекулы в процессе ориентационного вытягивания успевают дезориентироваться. Формование химических волокон из полимеров с молекулярным весом менее 15000 мокрым способом вообще невозможно, так как значительная часть полимера растворяется в осадительной ванне. В отдельных случаях указанные выше пределы молекулярного веса еще более сужаются. Например, для линейных полиамидов рекомендуемый молекулярный вес составляет 18 000— 30 000, для полиакрилонитрила и его сополимеров — 30 000— 100 000, для целлюлозы в вискозе — от 50 000 до 100 000. [c.21]

    Было решено, что целесообразно не касаться непосредственно технологии отдельных производств, а выделить только те процессы, которые связаны со взаимодействием целлюлозы с водой. При этом сделана попытка истолкования наблюдаемых явлений е позиции тех представлений, которые характерны для современного состояния науки о полимерных системах вообще. В этих целях основному материалу книги предпослана глава об общих закономерностях поглощения жидкостей и их паров полимерами. Далее следуют две главы, посвященные непосредственно теоретическим вопросам поглощения воды целлюлозой из паровой и жидкой фаз. В главах, относящихся к прикладным аспектам проблемы взаимодействия воды с целлюлозой, рассмотрены с указанных позиций такие вопросы, как активация целлюлозы при ее химической переработке, механизм образования межволоконных связей при формовании бумаги, деформационные свойства целлюлозных материалов, процессы сушки и придания водоустойчивости этим материалам и некото- [c.7]

    Гидрофильность неогвержденных фенольных смол является тем решающим фактором, который определяет их исиользоваиие для пропитки бумаги и хлопкового волокна, идущих иа изготовление слоистых пластиков электротехнического и декоративного назначения, формованных изделий, фильтровальной бумаги и прокладок для пластин аккумулятора. Обладая низкой молекулярной массой, одноядерные фенолоспирты проникают в капилляры целлюлозных волокон и там отверждаются, тогда как смолы с высокой молекулярной массой обволакивают волокна, в результате чего они приобретают водоотталкивающие свойства. В процесс отверждепия (150—190 °С) между целлюлозой и фенолоспиртами протекают химические реакции, которые способствуют повышению химической стойкости и водонепроницаемости материала [1]. [c.181]

    На качестве искусственного волокна наиболее вредно сказывается увеличение в процессе предсозревания содержания р-целлюлозы, которая при формовании выпадает из прядильного раствора и остается в волокне. Чем выше содержание р-целлюлозы в щелочной целлюлозе после предсозревания, тем ниже показатели механических свойств волокна . [c.286]

    Метод структурной модификации целлюлозы, заключающийся в изменении взаимного расположения и степени ориентации макромолекул и, особенно, элементов надмолекулярной структуры в волокне, дал много ценного для улучшения свойств гидратцеллюлозных и эфироцеллюлозных волокон и пленок. Изменяя надмолекулярную структуру волокон в процессе их формования или последующей обработки, удалось повысить разрывную прочность вискозного кордного волокна в 1,5 раза, а в опытных условиях — почти в 2 раза [4, с. 328—338]. Получено высокопрочное вискозное штапельное волокно (так называемое полинозное или высокомодульное волокно), не уступающее по основным показателям хлопковому и имеющее более низкую стоимость [4, с. 341—343]. [c.10]

    Резкое повышение прочности в результате ориентации заставляет искать такие условия проведения процесса формования волокон, при которых пластические свойства застудневающей системы сохранились бы на более продолжительное время. Для этого прибегают не только к повышению температуры или обработке волокиа пластифицирующими агентами, но и к торможению диффузионных процессов (введение модификаторов) или процессов, ведущих к снижению набухаемости иолимеров (например, введение формальдегида в осадительные ванны вискозного производства с целью блокировки и захмедления разложения ксантогеновых групп, обеспечивающих повышенную набухаемость целлюлозы). Однако разбор этих приемов выходит за пределы задач настоящего раздела и более уместен в мо-нографи-ях ПО технологии производства химических волокон. [c.288]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Как уже указывалось, формование предусматривает не только придание формы волокна вытекающему прядильному раствору, но и фиксацию его при охлаждении расплава, застудневании раствора в осадительной ванне или при испарении растворителя. Одной из важных стадий технологического процесса, которая определяет структуру и свойства готового волокна, является начальная стадия формования — перевод жидкой струи, выходящей из фильеры, в отвержденнз ю нить. Вследствие фазовых превращений, происходящих в системе, возникают надмолекулярные образования, морфология которых определяется фазовым распадом системы. Именно на этой стадии закладываются основные элементы структуры волокна. Так, ввиду жесткоцепного характера молекул целлюлоза при формовании вискозной нити не должна претерпевать больших изменений, а лишь некоторую ориентацию элементов структуры. [c.243]

    Для технологической практики особый интерес представляет изменение вязкости растворов ксантогената целлюлозы и их зрелости (изменение устойчивости растворов по отношению к коагуляции). Величиной вязкости контролируют такие технологические операции, как фильтрация, дезаэрация и процесс формования пленки в осадительной ванне. От зрелости же раствора, т. е. от его устойчивости по отношению к действию коагулирующих агентов осадительной ванны, зависят условия формования пленки и ее физико-механические свойства. [c.212]

    Равномерное проведение процесса формования и соответственно получение волокна с наиболее высоким комплексом свойств можно осуществить только в условиях, когда омыление ксантогената происходит по возможности с одинаковой скоростью по всему сечению образующегося волокна. В этом случае ориентация агрегатов макромолекул в волокне и взаимное расположение в нем кристаллитов будет наиболее равномерным. Однако в обычных условиях производства текстильной нити и штапельного волокна это условие не выполняется. При вытягивании формующегося волокна, когда поверхностные слои находятся в пластичном состоянии, во внутренних слоях коагуляция ксантогената целлюлозы полностью не завершена и, следовательно, ориентация агрегатов макромолекул не происходит. В результате, вискозное волокно, получаемое при формовании в ваннах нормального состава, имеет неоднородную структуру. Степень ориентации и плотность агрегатов макромолекул на поверхности волокна всегда больше (наличие так называемой ориентированной оболочки), чем внутри волокна. [c.306]

    Зрелость раствора. Под этим термином понимается изменение стойкости вискозы к действию э л е к т р о л н т о в. От зрелости вискозы зависят скорости процессов разложения ксантогената и регенерации целлюлозы при формовании волокна, многие физико-механические и химические свойства волокна, в частности его накрашиваемость, прочность, удлинение и др. [c.146]

    Так происходит образование структурных элементов волокна, от которых зависят физико-механические свойства волокна. Для получения однородного волокна, обладающего структурой оболочки, катионы цинка должны по возможности равномерно прореагировать по всей глубине формующейся В1Искозной струйки. Для этого необходимо регулировать соотношение скоростей процессов коагуляции и регенерации целлюлозы. Это может быть достигнуто подбором составов осадительной ванны и вискозы. Процесс формования волокна происходит во времени, и поэтому структура формующегося волокна неоднородна. При [c.172]

    Как уже упоминалось при описании свойств целлюлозы, приемлемой для производства является лишь фильтрующаяся вискоза. Под этим понимают следующее поры фильтрматериала не должны засоряться слишком быстро, и поэтому фильтрматериалы не должны часто менять, так как это связано с большими потерями вискозы отфильтрованная вискоза не должна содержать никаких загрязнений, которые могли бы осложнить процесс формования. Способность вискозы фильтроваться тесно связана с процессом растворения и растирания ксантогената. Чем тоньше дисперсия, тем лучше фильтруется вискоза. Фильтруемость вискозы зависит и от содержания в ней определенных побочных продуктов и неорганических примесей. Отсюда следует, что способность вискозы к фильтрации определяется целым рядом факторов, которые заложены частично в анатомических и химических свойствах исходного сырья, частично в способе производства и свойствах целлюлозы и, наконец, в производственных условиях получения вискозы. [c.247]

    Состав композиции подбирают таким образом, чтобы содержание а-целлюлозы составляло [2] 7,5—17% от массы ПТФЭ. Такое соотношение между основным и вспомогательным полимером обеспечивает стабильность процесса формования и удовлетворительные свойства готовых волокон. [c.466]

    Формование волокна. Формование вискозного волокна, как принято в производстве химических волокон, называют прядением, а вискозу, соответственно, - прядильным раствором. Формование - важнейшая стадия технологического процесса, условия которой определяют структуру и свойства волокна. Формование осуществляют мокрым способом, т.е. прядильный раствор продавливают через фильеры (нитеобразователи) с отверстиями диаметром 0,04...0,10 мм в осадительную ванну -раствор, содержащий серную кислоту и ее соли. Серная кислота необходима для разложения ксантогената с получением регенерированной целлюлозы. Соли (сульфаты натрия, цинка и др.) регулируют процесс коагуляции. Состав ванны зависит от вида формуемого волокна. [c.593]

    Широкое развитие иромышленпости пластических масс наступило только после того, как появились синтетические полимеры, способные переходить в пластичное состояние при нагревании и фиксировать приданную им форму при охлаждении. Природные полимеры, и в первую очередь целлюлоза, не. могут непосредственно перерабатываться цо схеме расплавление — формование — фиксация формы при охлаждении, поскольку их температура плавления лежит выше температуры интенсивного термического распада. Только некоторые производные целлюлозы (главным образом сложные эфиры — нитраты и ацетаты) получили относительно широкое применение в промышленности пластических масс, так как в определенных условиях, в частности при введении пластификаторов, они превращаются в термопластичные материалы. В настоящее время, когда имеется относительно широкий набор термоцластичиых и термореактивных полимеров (причем такие процессы, как, например, со-полимсризация, позволяют очень тонко регулировать их свойства), почти не существует препятствий для дальнейшего развития производства объемных полимерных изделий. [c.10]

    Значительное число мембран, используемых в качестве ультрафильтров, получают методом спонтанного студнеобразования. Как следует из рассмотренной выше диаграммы фазового равновесия (рис. 3.7), необходимым условием спонтанного студнеобразования является более высокая упругость паров растворителя по сравнению с упругостью паров нерастворителя. Факторами, определяющими структуру и свойства мембран, помимо химического состава полимера являются природа растворителя и нерастворителя, концентрация полимера в растворе, скорость испарения растворителя, температура, при которой происходит распад раствора на фазы. Закономерности процесса во многом сходны с закономерностями стадии предформования при получении мембран методом сухо-мокрого формования. Распад исходного раствора на фазы может быть зафиксирован по изменению оптической плотности системы [83]. Проведенные с помощью этого метода исследования показали, что кинетика спонтанного студнеобразования в системе ацетат целлюлозы — ацетон — вода существенно зависит от концентрации исходного раствора (рис. 3.14). На кинетику процесса оказывают влияние также молекулярная. масса полимера (рис. 3. 15), концентрация нерастворителя в системе (рис. 3. 16) и температура испарения (рис, 3.17). Обычно увеличению размера пор способствует снижение концент  [c.106]

    При формовании кордного волокна его усЗг на выходе из осадительной ванны доходит до 20 и выше благодаря увеличению содержания ZnS04 (80—90 г л) и введению модификаторов. Наконец, использование очень мягких осадительных вайн при формовании полинозных волокон позволяет проводить пластификационную вытяжку волокна с усза ДО 30. Итак, еще раз следует подчеркнуть, что очень большое значение имеет скорость ПАП ксантогената целлюлозы в гидратцеллюлозу. Регулирование кинетики этого процесса является одним из способов направленного регулирования надмолекулярной структуры и свойств волокон. [c.126]

    Для увеличения химического сродства ПВХ к красителям полимеризацию винилхлорида или его смеси с другими мономерами, например с акрилонитрилом, предложено проводить в присутствии полимеров и сополимеров акриламида и, метакриламида и их производных Процесс прививки осуществляется в водной среде или в смеси БОДЫ с растворителем с использованием инициаторов перекисного типа. Привитые сополимеры негорючи, обладают хорошими физико-механическими свойствами и повышенной растворимостью в органических растворителях, что особенно важно при формовании из них пленок и волокон. Согласно патентным дaнным , привитую полимеризацию смесей винилхлорида с акрилонитрилом на сополимер К-изопропилакриламида с 2-метил-5-винилпиридином можно проводить по непрерывному методу в водной суспензии в присутствии окислительно-восстановительных инициирующих систем при 25 °С. Имеется также сообщение о возможности прививки смеси винилхлорида с акрилонитрилом на гидроксилсодержащие эфиры целлюлозы с использованием в качестве инициатора персульфата калия. [c.382]

    В то же время повышение концентрации влечет за собой увеличение вязкости раствора, затрудняюш ее проведение некоторых операций технологического процесса. При соотношении спирта и эфира 1 1,2 происходит полное растворение нитрата целлюлозы, содержащего около 12% связанного азота. Если такое соотношение спирта и эфира вполне удовлетворительно в процессе растворения полимера, то в процессе пленкообразования оно обладает значительными недостатками. Основной недостаток в том, что нри пленкообразовании в первую очередь будет испаряться эфир, обладающий более высокой упругостью пара, чем спирт. Поэтому к моменту стеклования системы растворяющее действие смеси может нарушиться и вследствие того, что спирт не является растворителем нитрата целлюлозы, может произойти частичное осаждение его. Кроме того, нри таком соотношении спирта и эфира в пленке нри ее формовании возникают значительные внутренние напряжения, приводящие к повышенным усадочным свойствам. [c.300]

    Химическую модификацию ацетилцеллюлозы предложено проводить введением небольшого количества остатков олеиновой кислоты В результате этого снижается температура стеклования, увеличивается общее удлинение и уменьшается хрупкость (повышается число двойных изгибов) пленок из ацетоолеатов целлюлозы, по сравнению с теми же свойствами триацетатных пленок, полученных в одинаковых условиях. Вопрос о целесообразности получения волокон из ацетоолеатов целлюлозы может быть решен только после тщательного исследования условий формования и свойств модифицированных волокон, так как нужно учитывать относительно высокую стоимость олеиновой кислоты и усложнение процесса производства смешанных эфиров, по сравнению с получением триацетата целлюлозы. [c.200]

    Свежеприготовленный прядильный раствор непригоден для немедленного формования волокна. Для получения так называемой созревшей вискозы раствор ксантогената очищают от различных механических примесей на рамных фильтр-прессах и выдерживают определенное время (24 —60 ч, процесс созревания вискозы) при установленной постоянной температуре (14—17° С). Во время созревания происходит изменение химических и коллоидных свойств вискозы, уменьшается стабильность и увеличивается способность к коагуляции. В результате частичного омыления ксантогената понижается степень этерификации целлюлозы. Пузырьки воздуха, попавшие в раствор, медленно выделяются из него происходит обезвоздуши-вание. Обычно вискоза содержит целлюлозы 6— 9%, едкого натра 6— [c.235]

    Из сказанного, однако, не следует, что из зрелых вискоз однованным способом вообще нельзя получить равномерное волокно. При формовании волокна из зрелых вискоз необходимо изменить параметры процесса и состав ванны, чтобы снизить скорость омыления ксантогената целлюлозы. Зрелость вискоз, поступающих на формование, должна быть всегда одинаковой. Уже небольшие колебания зрелости ( 0,5 мл по ЫН4С1) обусловливают разницу в свойствах, в частности в накрашиваемости волокна. [c.328]

    В производстве текстильную нить из растворов частично омыленного триацетата целлюлозы всегда получают сухим способом формования. Основными параметрами, определяющими условия проведения процесса и свойства получаемого волокна, являются скорость формования, высота прядильной шахты, концентрация паров растворителя в шахте, температура воздуха в шахте, толщина элементарного волокна и состав прядильного раствора. [c.487]


Смотреть страницы где упоминается термин Свойства целлюлозы и процесс формования: [c.92]    [c.33]    [c.56]    [c.6]    [c.99]    [c.424]    [c.424]    [c.206]    [c.322]    [c.300]   
Смотреть главы в:

Производство вискозных волокон -> Свойства целлюлозы и процесс формования




ПОИСК





Смотрите так же термины и статьи:

Процесс свойства

Процессы формования



© 2025 chem21.info Реклама на сайте