Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размеры атомов и химические свойства

    Аминокислоты различаются по строению, размерам, физико-химическим свойствам радикалов, присоединенных к а-углеродному атому. Функциональные группы аминокислот определяют особенности свойств разных а-аминокислот. [c.7]

    Твердые растворы замещения образуются путем частичного замещения ато,мов металла-растворителя атомами растворяемого металла. Такой процесс может происходить без возникновения в атоме значительных напряжений только в тех случаях, когда по размерам атомы не различаются значительно между собой. Элементы должны быть достаточно близкими по химическим свойствам, и лучше всего, если они будут принадлежать одной подгруппе периодической системы. Известны и другие ограничения. О твердых растворах см. 131 и 133. [c.139]


    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Атом удобно представлять состоящим из остова и определенного числа валентных электронов. Под остовом понимается ядро плюс электроны на низших энергетических уровнях, не принимающие участия в химических превращениях. Элементы одной группы отличаются друг от друга своими остовами, но имеют одинаковое число валентных электронов. На размеры атома и его способность терять или приобретать электроны оказывают влияние число заполненных энергетических уровней остова и заряд ядра, но основным фактором, определяющим химические свойства элемента, является строение валентной электронной оболочки его атомов. [c.92]

    Атом серы имеет больший размер, чем атом кислорода, что может вызывать значительные пространственные затруднения и гораздо большую поляризуемость. Изучение химических свойств тиосахаров позволяет осветить целый ряд вопросов, связанных с реакционной способностью углеводов. [c.351]

    Строение атома. Окружающий нас мир построен из разнообразных химических элементов. Наименьшей материальной частицей, являющейся носителем индивидуальных химических свойств данного элемента, является атом—сложная система, состоящая из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов. Размеры атома исчисляются стомиллионными долями сантиметра (Ю см), а размеры атомного ядра—в 10 ООО—100 ООО раз меньше. [c.9]

    Особенно важными для кристаллофосфоров являются дефекты кристаллической решетки, вызванные внедрением чужеродных данной решетке атомов или ионов, т. е. химических примесей. Подобного рода дефекты интересны тем, что количество их можно легко регулировать. Атомы или ионы примеси могут размешаться в кристаллической решетке либо в междоузлии, либо в одном из узлов. И в том и в другом случае будет наблюдаться значительное искажение периодического поля решетки, что в свою очередь может быть установлено по изменению ряда физико-химических свойств, например, по изменению спектров поглошения, твердости кристаллов и т. д. Если атом или ион встает в узел решетки и по своим размерам мало отличается от замешаемого, то искажения в этом случае невелики. Напротив, при внедрении сильно отличающегося по размерам атома или иона на место прежнего атома — хозяина или при внедрении в междоузлие искажения значительны. Образование подобного рода дефектов требует большей затраты энергии и поэтому встречается реже. [c.60]


    Электронное строение атома бериллия в газообразном состоянии — 15 25 . Увеличение заряда ядра атома бериллия по сравнению с зарядом ядра атома лития наряду с тем, что 2з-электроны только частично экранируют друг друга, приводит к двум эффектам 1) атом Ве имеет металлический радиус только 0,89 А, значительно меньше, чем в случае лития (1,22 А) 2) потенциалы ионизации Ве, 9,32 и 18,21 эв, гораздо большие, чем у Ы (5,39 эв), делают Ве значительно менее электроположительным, если рассматривать его химические свойства в сравнении со свойствами Ь. Действительно, не существует никаких кристаллических соединений или растворов, в которых ионы Ве-+ существовали бы как таковые. Все соединения, строение которых было определено, даже соединения с наиболее электроотрицательными элементами, такие, как ВеО и ВеРо, по крайней мере частично обладают ковалентным характером связи. Электронное строение атомов других элементов II группы (Mg, Са, 5г, Ва и Ка) подобно строению атома Ве. Однако больший размер этих атомов уменьшает влияние заряда ядра на валентные электроны. Так, их потенциалы ионизации ниже, чем у Ве они в основном более электроположительны, а ионная природа их соединений закономерно возрастает в группе сверху вниз. [c.67]

    Химическое поведение элементов и образуемых ими кристаллических структур зависит как от числа и распределения в них электронов, так и от размера частиц, участвующих в химическом процессе (атома, иона или молекулы). Как мы увидим, эти факторы взаимосвязаны. Тем не менее очень полезно определить функцию, которая бы описывала совместное влияние размеров частиц и электронного раопределения на химические свойства соединений. Такой функцией является так называемая электроотрицательность атома. Фактически это мера силы, с которой атом притягивает к себе электрон. Было предложено несколько шкал электроотрицательности. Несмотря на отдельные недостатки, они чрезвычайно полезны для сопоставления и объяснения многих различий в химических свойствах. В частности, шкалами электроотрицательности удобно пользоваться при обсуждении химических связей, промежуточных между чисто ионной и чисто ковалентной (см. гл. 6 и 9). [c.30]

    Особые физические и химические свойства фторорганических соединений обусловлены малым размером атома фтора и его высоким сродством к электрону и низкой поляризуемостью. Однако не существует общего правила, на основе которого можно предсказать реакционную способность фторорганических соединений. В некоторых соединениях атом фтора очень прочно связан с атомом углерода. Другие соединения обладают меньшей стабильностью по сравнению с соответствующими хлорпроизводными и склонны к выделению фтористого водорода. К, таким соединениям, например, относятся вещества, в которых фтор связан с атомами кремния или фосфора, и они быстро гидролизуются. Ацил- и сульфофториды также легко отщепляют фторид-ионы, однако такие соединения являются редким исключением. В основном фторорганические соединения намного стабильнее соответствующих соединений, содержащих другие галогены. [c.60]

    На этом пути, идя снизу вверх, я выхожу и на систематизацию видов атомов (химических элементов), следуя генеалогической родословной материи. Такое переворачивание вектора познания влечет за собой и переворачивание дефиниций некоторых естественнонаучных понятий. Раньше атом определялся как "частица вещества микроскопических размеров (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойства". В новом подходе "атом — это частица вещества, качественная определенность которой характеризуется определенным числом протонов и нейтронов в ядре и определенным числом электронов (равным числу протонов) в электронной оболочке". [c.83]

    К таким особенностям относится прежде всего насыщаемость химической связи. Эта насыщаемость проявляется, например, в том, что после соединения двух атомов водорода в молекулу третий атом не только не притягивается, но, как это мы ранее обсуждали (см. гл. XVI), отталкивается от нее. Таким образом, энергия активации, связанная с этим отталкиванием, также относится к проблеме насыщаемости. Отталкивание насыщенных молекул определяет их размеры и, следовательно, объемы и плотность твердых тел и жидкостей. Все эти характеристики также связаны со свойством насыщаемости. [c.463]

    Химическая связь — одна из ведущих проблем химии. Химическая связь в значительной степени определяет основные свойства молекул и твердых тел (энергия, реакционная способность, спектры, прочность, геометрические размеры, динамические, диффузионные характеристики и др.). Выяснение физического механизма химической связи, объяснение ее особенностей является важной задачей физики и химии. Следует отметить, что химическая связь обладает весьма специфическими свойствами. К ним относится прежде всего насыщаемость. После того как два атома водорода соединятся в молекулу, третий атом будет отталкиваться, а не притягиваться к этой молекуле. Алхимики описывали это свойство как наличие у атомов крючков, которые зацепляются друг за друга. Отталкивание насыщенных молекул определяет ряд важных свойств. Прежде всего размер всех тел определяется этим отталкиванием. Как указывалось выше при изложении кинетики химических реакций, отталкивание насыщенных связей определяет величину энергии активации. В природе нет других сил, обладающих подобным свойством насыщения. [c.320]


    Исключительна роль водорода и в химическом отношении. Если атомы всех остальных элементов (кроме химически инертного гелия) под валентной оболочкой имеют электронный остов предыдущего благородного газа и размеры их положительных ионов не намного меньше размеров нейтральных атомов, то ион Н представляет собой просто протон, размеры которого примерно в 10 раз меньше размеров атома. Поэтому положительно поляризованный атом водорода обладает исключительно сильно выраженным поляризующим действием, что является одним из основных мотивов в химии этого элемента, С этим связаны такие особые свойства элемента, как образование водородных связей, "ониевых" соединений (оксоний, аммоний и т.п.), протолитические реакции, протонная (бренстедовская) концепция кислот и оснований и пр. [c.292]

    Рентгеноструктурными, электронографическими и другими новыми методами исследования структуры углерода установлено, что чистый углерод кристаллизуется с образованием кубической (алмазы) и гексагональной (графит) форм. В узлах кристаллической решетки алмаза каждый атом углерода направляет свои четыре о-связи к четырем соседним атомам. Расстояние между атомами в решетке алмаза такое же, как между атомами углерода в органических соединениях— 1,54 А. Энергия связи между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть и большую химическую стойкость. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим при нагреве алмаза без доступа воздуха он переходит в термодинамически более устойчивое состояние — в графит. В кристалле графита (рис. 12) атомы углерода в базисных плоскостях расположены в углах шестиугольников, на расстоянии 1,42 А, т. е. на таком л<е расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находяш,ихся на расстоянии 3,345 А. Относительно большое расстояние между базисными плоскостями обусловливает специфические физико-химические и механические свойства графита. Значительное расстояние между базисными плоскостями приводит к тому, что между ними могут внедряться атомы других элементов меньших размеров. [c.50]

    В предельно гидроксилированном состоянии поверхность этих адсорбентов также и химически однородна, так как она не содержит примесей, образующих сильно специфически адсорбирующие акцепторные центры [52, 55, 81, 82]. В атом состоянии каждый поверхностный атом кремния непористого или достаточно широкопористого кремнезема удерживает в среднем одну гидроксильную группу [52, 83—85]. Эти гидроксильные группы определяют обратимую адсорбцию молекул органических оснований с образованием водородных связей [86], а также обратимую адсорбцию воды (см. обзор [54], а также [52,87—89]). Однако физически такая поверхность неоднородна, так как конденсированные кремневые кислоты образуют полисилоксановые цепи и кольца разных размеров, по-разному выходящие на поверхность, часто с разными зазорами между ними, и поэтому нет строгой периодичности в расположении и ориентации поверхностных гидроксильных групп. Тем не менее во многом адсорбционные свойства таких химически чистых поверхностей сходны с адсорбционными свойствами физически однородных поверхностей, [c.20]

    Здесь наглядно продемонстрировано существование различных типов связей, окружающих атом алюминия на поверхности. Каждый из таких центров должен характеризоваться специфичной кислотной силой, стернческим окружением и другими свойствами, которые влияют на их активность при катализе. Можно ожидать, что аморфные алюмосиликаты имеют широкий спектр кислотности активных центров, размеров пор и химического состава. Это дает возможность получать много вариантов аморфных катализаторов крекинга. В то же время неопределенность структуры и поверхности этих материалов не дает возможности решить вопрос об их активных центрах. [c.32]

    Идея промежуточного (мезомерного) состояния, к которой умозрительно прищли химики английской школы, явилась первоначальным выражением концепции резонанса, развитой в математической форме Полингом, применившим принципы квантовой механики. Особое значение концепции резонанса состоит в объяснении удивительных эффектов стабилизации, связанных с резонирующими системами. Хлористый винил в терминах теории резонанса описывается как резонансный гибрид, по характеру сходный как с формой в, так и с формой д, он не является смесью этих форм, а представляет собой самостоятельную химическую индивидуальность, сочетающую в себе свойства обеих форм и обладающую резонансной стабилизацией, которая уменьшает реакционную способность системы. Свойства формы д, в которой хлор соединен двойной связью с углеродом, проявляются в гибриде в том, что длина связи С—С1 в хлористом виниле (1.69A) на 0,08A меньше, чем в хлористом этиле (1,77А). Из сравнения размеров обеих молекул следует, что эта укороченная связь примерно на 33% является двойной, и потому в данном случае атом хлора связан прочнее, чем с насыщенным атомом углерода. Хотя более ранняя концепция мезомерии не столь определенна, как концепция резонанса, структуры типа г, указывающие направление электронного сдвига, удобны для выражения идеи промежуточного состояния с помощью одной формулы. [c.75]

    В связи с тем, что методы определения фактора устойчивости основаны на определении относительной оценки размеров асфаль-теновых частиц, а атом ванадия в ванадилпорфиринах, согласно [116], служит координационным центром в молекулах асфальтенов, наши положения о связи комплексообразующей способности исследуемых реагентов с ванадилпорфиринами нефтей и их влиянием на физико-химические свойства нефтей вполне правомерны. Анализ литературных данных также свидетельствует о существенном влиянии МПФ на структуру асфальтенов [84]. Ванадил-порфириновый комплекс соединяет листы — блоки конденсированных ароматических структур с атомами ванадия в азотной дырке . Поэтому, по предположительному структурно-молекулярному представлению, ванадил- и никельпорфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов и двухмерных строительных блоков. Согласно [116], схематически можно представить соединения ванадилпорфирино-вого комплекса с конденсированными ароматическими блоками асфальтенов. Асфальтены можно, по-видимому, рассматривать как перекрестно связанные или ассоциированные конденсаты мульти-компонентных систем, включающих индивидуальные молекулы ароматических, порфириновых и нафтеновых циклов и гетероциклов. В благоприятных химических или физических условиях эти элементы соединяются мостиками или связями, образуя молекулы. Атомы таких металлов, как ванадий и никель могут участвовать и углеводородной или гетероциклической системе. [c.149]

    Атомами называются мельчайшие, химически неделимые частицы, из которых состоят молекулы. Атом — это наименьшая частица элемента, сохраняюихая его химические свойства. Атомы различаются зарядами ядер,-массой и размерами. [c.7]

    Химические свойства этиленхлоргидрина типичны для всего класса а-га-лоидгидринов. Все эти соединения обладают высокой реакционной способностью, которую следует приписать главным образом подвижности галоидного атома в этих веществах. На реакционную способность атома хлора не оказывает большого влияния этерификация гидроксильной группы. Этим фактом пользуются в процессе приготовления новокаина действием диэтилам ина на эфир р-аминобензойной кислоты. Если хлорный атом и гидроксильная группа и хлор-гидрине разделены одна от другой одной или большим количеством групп СНз, то реакционная способность галоидного атома снижается приблизительно до размеров активности последнего в алкилхлоридах. [c.537]

    Известно, что вещества состоят из молекул, а молекулы из атомов. Атом — мельчайшая частица элемента, носитель всех его химических свойств. В химическом отношении он неделим. Атомы различных элементов характеризуются их атомной массой. В результате открытия катодных и анодных лучей, явления радиоактивности было установлено, что атомы не являются неделимыми частицами. Дальнейшими исследованиями было показано, что они состоят из ряда частиц, в том числе протонов, электронов, нейтронов. Атомы всех элементов содержат очень малое по размеру ядро, в котором сосредоточены все положительные зарядах и 0,99% его массы, и вращающиеся вокруг него отрицательно заряженные частицы — электроны. Протоны — устойчивые элементарные частицы с массой, близкой к углеродной единице. Заряд протона равен заряду электрона и противоположен по знаку. Масса электрона равна 5,49 10 углеродной единицы. Электроны вращаются вокруг ядра, как планеты вокруг солнца, однако законы движения электронов значительно ачожнее, чем планет. [c.11]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Выше мы рассматривали атом как наименьшую частицу простого вещества. Атом — это реальная материальная частица, обладающая определенными размерами и определенными свойствами. Указывалось, что в природе существует 89 видов атомов совокупность однородных атомов называется химическим элементом. Атомы одного химического элемента никогда не превращаются в атомы другого элемента, какие бы химические реакции и производились. Химик не может превратить атом меди в атом железа или атом натрия в атом хлора. Природа химических элементов при химичесгсих реакциях остается неизменной. [c.53]

    В 1904 г. английский физик Дж. Дж. Томсон предложил модель атома. Атом, по мнению Томсона, представляет собой положительно заряженный шар, в который вкраплены небольшие, по сравнению с размером шара, электроны. Несмотря на свое несовершенство, томсоновская модель позволяла объяснить возможность испускания, поглощения и рассеяния света атомами определить общее количество электронов в веществе, а, следовательно, и в одном атоме. Эта модель дала возможность установить количество электронов для легких элементов оно оказалось численно равным половине атомного веса. Сопоставляя строение атомов с положением элементов в таблице Менделеева, Томсон предположил, что электроны в атомах располагаются концентрическими слоями, а химические свойства элементов определяются внешним слоем электронов. [c.4]

    Замещение бромом имеет то преимущество, что строение стандарта идентично строению пестицида по числу и положению атомов галоида и единственное различие заключается в размере и электроотрицательности одного их этих атомов. Это приводит к весьма близким физико-химическим свойствам — вывод, который вытекает из такого хорошо известного факта, что биологическая активность соединений брома часто весьма близка к биологической активности их хлорсодержащих аналогов. Кроме того, с точки зрения хроматографии 1 атом брома в отношении влияния на удерживаемые объемы эквивалентен примернно 1,5 атома хлора. Так, пики, полученные для бромсодержащих аналогов, находятся между пиками пестицида и соединения, содержащего на 1 атом хлора больше, что сводит к минимуму осложнения, связанные с наличием примеси или родственного пестицида. Например, пики, получающиеся для метил-2-хлор-4-бромфеноксиацетата находятся где-то между пиками метиловых эфиров 2,4-дихлорфеноксиуксусной и 2,4,5-трихлорфеноксиуксусной кислот. Поэтому 2-хлор-4-бром-феноксиуксусная кислота одна или в смеси должна быть подходящим внутренним стандартом при анализе указанных двух гербицидов. [c.583]

    В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются. Так, например, в главной подгруппе V группы оксид азота (V) обладает более сильными кислотными свойствами (образует одну из сильнейших кислот — азотную кислоту HNQ3). чем оксид фосфора (V) Р2О5. Это объясняется тем, что атом фосфора имеет больший атомный радиус по сравнению с атомом азота. Поэтому действие положительных ионов фосфора на ионы кислорода и водорода слабее, чем соответствующее действие положительных ионов азота, размер которых значительно меньше. [c.132]

    Водородная связь. Промежуточный характер между валентным и межмолекулярным взаимодействием носит так называемая водородная связь. Она осуществляется между положительно поляризованным атомом водорода, химически связанным в одной молекуле, и отрицательно поляризованным атомом фтора, кислорода и азота (реже хлора, серы и др.), принадлежащим другой молекуле. То, что подобное взаимодействие не обнаруживается у других атомов, обусловлено уникальными свойствами поляризованного водорода — его малым размером и отсутствием внутрениих электронных слоев. Эти особенности водорода позволяют второму атому приблизиться на столь малое расстояние, которое h u io kuo при взаимодействии с другими положительными частицами, например [c.137]


Смотреть страницы где упоминается термин Размеры атомов и химические свойства: [c.132]    [c.340]    [c.340]    [c.456]    [c.73]    [c.441]    [c.235]    [c.243]    [c.218]    [c.176]    [c.117]    [c.50]    [c.296]    [c.428]    [c.18]    [c.425]    [c.153]    [c.87]   
Смотреть главы в:

Химическая структура и реакционная способность твердых веществ -> Размеры атомов и химические свойства




ПОИСК





Смотрите так же термины и статьи:

Атома размер размер

Атомы свойства



© 2025 chem21.info Реклама на сайте