Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракционирование условия

    Практически наибольщий интерес представляет методика выделения парафиновых углеводородов нормального строения из содержащих их смесей. Для этого должны быть выполнены некоторые условия и в первую очередь высокая концентрация мочевины и низкая температура. Наиболее целесообразно проводить такое фракционирование с применением насыщенных водных растворов мочевины. [c.56]


    В последние годы появилось новое требование к качеству высокооктановых бензинов — равномерное распределение октановых чисел по фракциям бензина [6]. Это свойство имеет важное значение для обеспечения нормальной работы двигателя на переменных режимах, в частности при разгоне автомобиля. Увеличение числа оборотов коленчатого вала двигателя достигается в результате резкого открытия дроссельной заслонки. При этом создаются особенно неблагоприятные условия для распыливания и испарения бензина вследствие того, что в первый момент после открытия дросселя значительно падает скорость подачи воздуха и уменьшается разрежение во впускной системе. Основная часть бензина оседает на стенках впускного трубопровода, а паровоздушная смесь обогащается низкокипящими углеводородами, т. е. происходит фракционирование бензина. Сразу после открытия дросселя в цилиндры поступает лишь паровоздушная смесь, поскольку она обладает меньшей инерцией, чем жидкая пленка. Таким образом, в начале в цилиндры двигателя поступает горючая смесь, обогащенная низкокипящими углеводородами. [c.15]

    ГК характеризуется высокой селективностью и гибкостью при незначительном изменении условий процесса существенно изменяется характер продуктов. Например, в процессе юникрекинг на одном и том же катализаторе можно получать максимальные количества различных целевых продуктов (от бензина до печного топлива) только путем изменения условий фракционирования, температуры реакции (в пределах шести градусов) и производительности (табл. V. 7). [c.112]

    При переработке газообразных в нормальных условиях углеводородов методика применения избытка углеводорода сравнительно проста, так как температуры кипения исходного углеводорода и продукта его хлорирования значительно различаются. Выходящие из реактора газы, которые при проведении реакции с полным использованием хлора состоят из непревращенного углеводорода, хлористого водорода и продуктов хлорирования, подвергают фракционированию при условиях, при которых исходный углеводород остается в газообразнО М состоянии. [c.197]

    N2 (1 1). Колонна работает при 2 ат и 50 °С в этих условиях надуксусная кислота не разлагается со взрывом. Продукты окисления и непрореагировавшее сырье выходят сверху колонны и направляются на фракционирование. [c.157]


    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    Задача заключается в том, чтобы не только выделить указанные соединения, но и очистить их до соответствия их качеств жестким требованиям технических условий. Часто содержание в одном соединении других не должно превышать десятых и даже сотых долей процента [120]. Подобная задача не может быть решена при помощи простого фракционирования для этого нужны специальные методы перегонки. [c.94]

    Увеличение числа оборотов коленчатого вала двигателя дости-- гается открытием дроссельной заслонки. В этот момент создаются особенно неблагоприятные условия для распыливания и испарения бензина, потому что вначале резко падает скорость воздуха и уменьшается разряжение во впускной системе. Значительная часть бензина оседает на стенках впускного трубопровода, а паро-воздушная смесь значительно обогащается низкокипящими углеводородами, т. е. происходит фракционирование бензина. Сразу же после открытия дроссельной заслонки в цилиндры поступает паро-воздушная смесь, поскольку она обладает значительно меньшей инерцией, чем жидкая пленка. Таким образом, в течение какого-то периода времени в цилиндры двигателя попадает горючая смесь, значительно обогащенная легколетучими низкокипящими углеводородами. [c.36]

    В последние годы исследователями замечено, что фактические октановые числа бензинов резко уменьшаются и значительно отличаются от полученных в лабораторных условиях на переходных режимах работы автомобильных двигателей. Это явление связывают с фракционированием бензина во впускном трубопроводе двигателя. В начале разгона автомобиля двигатель работает на малых оборотах и при полностью открытом дросселе, давление во впускном трубопроводе приближается к атмосферному. Скорость проходящего воздуха довольно низкая, и бензин распыливается плохо. Только часть его имеет достаточно тонкий распыл и подхватывается потоком воздуха, направляясь в цилиндры двигателя. Более крупные капли оседают на стенках впускного трубопровода, образуя пленку жидкости. [c.120]

    Поскольку с помощью радиоактивного излучения и последующей химической обработки можно получать мембраны с порами заданного диаметра, а распределение пор по диаметрам чрезвычайно узкое, ядерные мембраны очень перспективны для микроаналитических исследований в цитологии и элементном анализе, для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом применялись для изучения размеров и формы различных типов клеток крови (в частности, для выделения раковых клеток из крови), для изучения вязкости крови и слипания ее клеток в зависимости от различных условий, для получения очищенной от бактерий воды в полевых условиях и многих других целей [59, 65—67]. [c.57]

    Очевидно, что при этих условиях использование в расчетах процесса ультрафильтрации основного положения гипотезы просеивания — определенное соотношение между размерами пор и растворенного вещества— может привести к ошибке, особенно существенной, если рассчитывается фракционирование ВМС. В этом случае необходимо знание пе истинного диаметра пор, а рабочего или эффективного, т. е. диаметра пор с учетом толщины слоя связанной жидкости (см. стр. 105). [c.211]

    Фракционированная экстракция основывается на том же самом принципе противоточно-перекрестного движения молекул целевого компонента между двумя фазами, что и фракционированная дистилляция. Между этими процессами можно провести далеко идущую аналогию [33]. В обоих процессах мы имеем дело с двумя фазами при дистилляции—с жидкой и парообразной, при экстракции—с двумя жидкими фазами, которые образуют не смешивающиеся друг с другом растворители. Обе фазы совершают замкнутые циклы. В состоянии равновесия компоненты исходного раствора присутствуют в обеих фазах в разных концентрациях. При дистилляции это происходит вследствие различных давлений пара компонентов, при экстракции—вследствие неодинаковой растворимости. Фазы направляются противотоком и во время движения относительно друг друга приводятся в соприкосновение либо ступенчато, либо непрерывно. Во время контакта фаз происходит—в поперечном направлении к основному движению—обмен компонентами, доходящий в соответствующих условиях до состояния равновесия или приближающийся к нему. Применяя соответствующее число ступеней или длину пути, можно добиться любой глубины обмена, а вместе с ним и разделения компонентов исходного раствора. [c.189]


    Большого успеха достигла экстракция в фармацевтической промышленности, где уже завоевал себе положение ряд конструктивных решений промышленного масштаба. Постоянно появляющиеся новые патенты также свидетельствуют о дальнейшем расширении и развитии экстракции в этой области. Большинство органических соединений, применяющихся в медицине, как например, гормоны, антибиотики и витамины, нестойко к действию повышенной температуры и добавляемых в процессе производства веществ, которые уничтожают при длительном воздействии их целебные свойства [250]. Поэтому при получении этих соединений в чистом виде широко применяется экстракция растворителями, которую можно осуществить в исключительно строгих условиях. Применяется экстракция одним растворителем и фракционированная. Так как часто можно допустить контакт лишь на очень короткий промежуток времени, то в фармацевтической промышленности получили широкое применение центробежные экстракторы (Подбильняка и др.) несмотря на их высокую стоимость. [c.419]

    Путем многоступенчатой обработки кристаллическим карбамидом с использованием в качестве растворителя бензола, а в качестве активатора—метанола было проведено [74, с. 225] фракционирование парафинового гача (табл. 41). В результате из этого сырья, содержащего всего 0,55% (масс.) масла, выделено 15 фракций твердых углеводородов. Это дает возможность, с одной стороны, увеличить отбор комплексообразующих углеводородов, а с другой—получить твердые парафины различных состава и свойств, которые можно использовать в разных отраслях промышленности в зависимости от требований к их качеству, целей и условий их применения. [c.239]

    В форме порфириновых комплексов мон<ет содержаться от 5 до 50% присутствующих в нефтях ванадия и никеля [784, 785]. Вследствие летучести порфирины попадают в заметных количествах уже во фракции с начальной температурой кипения около. 300°, обусловливая тем самым присутствие в них ванадия [786]. С точки зрения нефтедобычи и нефтепереработки представляют интерес поверхностно-активные свойства порфиринов как соединений, влияющих на образование и устойчивость водонефтяных эмульсий [787, 788]. Эти свойства могут играть также определенную роль в процессе формирования состава нефтей, обеспечивая перенос металлов пз водной среды в нефтяную. По составу нефтяных порфириновых фрагментов можно судить о физико-химических условиях и процессах, протекающих при формировании нефтяных систем, кроме того, при миграции нефтей происходит направлен-пое фракционирование порфиринов вследствие неодинаковой сорбции на породах молекул различной полярности. Это позволяет использовать информацию о составе порфиринов для решения ряда задач нефтяной геологии [789—791]. [c.140]

    Процесс получения 12,6-10" кмоль/сек вещества Я из чистого вещества Л (с концентрацией 16 кмоль/м при стоимости I руб/кмоль) можно проводить в одиночном проточном реакторе идеального смешения или в системе, состоящей из проточного реактора идеального смешения и расположенной после него экстракционной колонны. Эта колонна предназначена- для отделения непрореагировавшего вещества А от продукта Я. Вследствие благоприятных условий фазового равновесия выходящие потоки почти целиком состоят из чистых веществ А а Я. Стоимость разделения составляет 8 руб/сек плюс дополнительные затраты 0,1 руб/м смеси, поступающей на фракционирование. Амортизация проточного реактора идеального смешения составляет 8 руб/сек плюс дополнительные затраты 0,01 руб/сек на 1 объема реактора. Примем плотность смеси при любых соотношениях веществ А и Я постоянной. [c.161]

    Наиболее широко распространенным реагентом, применяемым для осушки природного газа под давлением, является три-этиленгликоль. Он кипит при 287,4°С и атмосферном давлении. В технологических условиях содержание в нем влаги меняется от 3—5 об. 7о ( сухой ) до более 10 об. % ( влажный ). Влажный гликоль осушается путем фракционирования при атмосферном давлении, причем водяные пары выходят через верхнюю, а осушенный гликоль — через нижнюю часть системы. Степень осушки зависит от скорости циркулирующего раствора гликоля. Например, если па вход скруббера поступает раствор с содержанием гликоля, равным 97 об. %, а на выходе его содержание составляет 90 об. %, то для отвода 1 кг водяного пара из газа потребуется 12,9 кг абсорбента. [c.30]

    В процессе фракционирования нефти можно в какой-то мере регулировать количество металлов в дистиллятах, направляемых на каталитический крекинг. Это вполне выполнимо, поскольку содержание металлов в дистиллятах резко увеличивается по мере утяжеления фракций [176]. Считают, что металлы могут попадать в состав дистиллята при вакуумной перегонке вследствие летучести органических соединений металлов, а также из-за уноса капель жидкости в процессе. Поэтому на характер распределения металлов по фракциям существенное влияние оказывает используемый метод ректификации. По влиянию условий работы колонны и величины отбора вакуумного газойля на содержание в нем металлов весьма показательны данные, приведенные в работе [c.181]

    Была проведена работа [212] по получению в лабораторных условиях церезинов марок 67 и 75 из высоковязкого рафината фенольной очистки деасфальтизата II ступени Ново-Уфимского НПЗ. Результаты работы показали возможность получения церезинов с температурами плавления 65 и 75 °С путем депарафинизации, обезмасливания и фракционирования смесью ацетона и толуола. [c.179]

    Дистилляты, отобранные из нефти в определенных температурных интервалах, называют температурными фракциями или просто фракциями, а сама перегонка нефти в этом случае носит название дробной или фракционированной перегонки. Дробную перегонку в лабораторных условиях применяют для изучения фракционного состава нефти, а чаще для определения фракционного состава вырабатываемых светлых нефтепродуктов, являющегося одним из важнейших показателей их качества. [c.84]

    Промышленный метод производства водорода из ОКГ основан на ступенчатой (фракционированной) конденсации газа при глубоком охлаждении его до температуры ниже температур конденсации всех компонентов кроме водорода. Следовательно, температура охлаждения ОКГ должна удовлетворять следующему условию  [c.206]

    Иными словами, по этим кривым можно судить о том, какое количество воды нужно брать для полного (максимального) выхода н-парафинов. При подаче 70% и более воды можно выделить при соответствующих температурах практически все к-парафины, содержащиеся в комплексе, а при подаче воды в меньших количествах ни нри каких температурах нельзя добиться 100%-ного выделения к-парафинов. Выделение из комплекса всех к-парафинов нужно проводить при температурах не выше 65° С, поскольку при более высокой температуре резко снижается количество выделяемых к-парафинов, так как увеличивается количество к-парафинов, переходящих в эмульсию. Кривые, показанные на рис. 43, подтверждают, что при прочих равных условиях фракционирование к-парафинов целесообразно осуществлять при более низких температурах, которые обеспечивают пологость кривой выделения м-парафинов при подаче различных количеств воды. В-третьих, удалось установить значения минимальных количеств [c.97]

    Пример 111-1. Найтп распределение продуктов фракционирования, условия для которого приведены в табл. 7. [c.70]

    Разделяемый газ идет навстречу непрерывно движущемуся слою активированного угля и, в зависимости от условий работы и молекулярного веса составляющих газа, в большей или меньше степени адсорбируется углем. Активированный уголь после насыщения, двигаясь к низу колонны, в части ее, расположенной ниже места ввода исходного газа, приходит в соприкосновение с тяжелыми углеводородами, испарившимися из угля в нижней части колонны. Тяжелые углеводороды вытесняют из угля адсорбированные им углеводороды меньшего молекулярного веса и последние выводятся из колонны через специальный боковой газоотвод. При этом происходит фракционирование и прп соблюдении необходимых рабочих условий возможно разделение, как и в обычных ректификационных колоннах. Схема гиперсорбционного процесса приведена на рис. 36. [c.75]

    Промышленное выделение этих двух ароматических углеводородов из бензинов прямой гонки нельзя осуществить простым фракционированием или четкой ректификацией из-за образования азеотрои-ных смесей (в особенности с нафтенами) и проводится азеотропной или экстракционной перегонкой избирательной экстракцией и адсорбцией в системе жидкость—твердая фаза. Выбор оптимального процесса зависит от конкретных технико-экономических условий и в значительной степени от природы сырья. [c.57]

    Меняя условия процессов рексформинга и экстракции на указанной установке, можно получать и чистые ароматические углеводороды [181]. Сырье в этом случае подвергают фракционированию для получения нафтенов, которые и направляют на риформинг. [c.155]

    Помол крошки. Основные сложности при размоле шарикового катализатора или его крошки на мелкодисперсные частицы (порошкообразный катализатор) состоят в том, чтобы получить экономически приемлемые выходы целевых фракций и оформить весь процесс фракционирования с максимальной механизацией и соблюдением санитарных условий труда. Отсеявшаяся на грохо-не может быть использована па установках ката-крекинга в движущем слое, но с успехом приме- [c.88]

    Химические методы разделения и исследования состава нефти основлваются на применении групповых реакций ее компонентов. В пределах даже широких фракций, таких как бензин ил1[ 1 еросан, по реакционной способности гомологи мало отличаются друг от друга, и поэтому химическими методами пх разделить трудно. С другой стороны, в любых фракциях различия между классами и группами соединений проявляются в заметной степени, в ряде случаев достаточной для аналитических целей. При обработке данного вещества определенным химическим реагентом в строго установленных условиях можно разделить смесь по типу молекул. Здесь, как и при исследовании физическими методами, наиболее надежные результаты получают прп работе с узкими фракциями. Когда предварительное разделение вещества на узкие фракции по техническим причинам невозможно, химической обработке должно все же предшествовать фракционирование, хотя бы и не очень четкое (па 30—50-градусные фракции). Тогда компоненты смеси, выделенные химическим методом, или компоненты, оставшиеся не затронутыми этой обработкой, исследуют в дальнейшем при помощи новой комбина-пии физических и химических методов. [c.87]

    Для того чтобы фракционирование было эффективным, его следу( Т осуп ествлять в адиабатических условиях, т. е. при отсутствии теплообмена колонки с окружающим воздухом. РГеобходи-мое равнов8( ие между стекающей вниз флегмой п идущими вверх парами не может установиться, если стенки колонки сильно охла-укдаю гея. При работе с веществами, кипящими ниже комнатной темпе эатуры, хорошая изоляция достигается применением посеребренной вакуумной рубашки. [c.147]

    Нативные компоненты нефтей достаточно устойчивы в условиях недр, но могут претерпевать существенные химические изменения в лабораторных и промышленных условиях фракционирования и переработки нефти. ГАС, особенно содержащие гетероатомы в насыщенных фрагментах молекул, относятся к числу наиболее лабильных компонентов сырых нефтей. Изучать их строение, количественное распределение и свойства следует, соблюдая специальные меры, направленные на сохранение ирходной природы веществ. Такие меры предпринимались, например, в работах Американского Нефтяного Института (АНИ, США) [17—26 и др.]. В этих исследованиях все процедуры проводились в атмосфере чистого азота (примесь О2 не более 0,0002%), температура при операциях, связанных с нагревом образцов, не превышала 225°С, причем воздействие температур выше 100°С продолжалось не более 1 мин действие света, контакты с каталитически активными поверхностями исключались. [c.7]

    О Наличие в бензоле даже незначительных количеств влагй приводит к необратимой дезактивации хлорида алюминия, который превращается в гидроксид алюминия. В соответствии с этим осушке бензола следует уделять особое внимание. В промышленных условиях осушку осуществляют методом фракционированной перегонки до содержания влаги 0,006—0,003% (масс,). [c.150]

    Распределение боковых цепей в полимерах различной молекулярной массы частично зависит от условий полимеризации, и, возможно, от вида а-олефина, используемого в качестве со-мономера, но степень разветвленности всегда выше во фракциях с более низкой молекулярной массой. Это иллюстрирует рис. 6, на котором показана зависимость концентращш боковых цепей от среднемассовой молекулярной массы (М ) фракций, полученных при колоночном фракционировании сополимера этилена и гексена-1 с индексом расплава 0,2 и плотностью 0,94 [52]. Вторая кривая рис. 6 характеризует зависимость молекулярной массы каждой фракции от массового процента полимера, накопленного к средней точке каждой фракции. Обратная зави- [c.179]

    Таким образом, для совмещенного процесса многоступенчатого испарения и конденсации возможны два режима с равновесными встречньши потоками пара и жидкости, которые могут быть реализованы на прагстике, что позволяет уменьшить энергетические затраты на фракционирование за счет разделения смеси в условиях, близких к термодинамически обратимолгу разделению. [c.30]

    Чуракова С.К., Езунов И.С., Романов ВЛ., Богатых К.Ф., Боков А.Б. Оценка эффективности работы перекрестноточиой насадочной колонны при фракционировании мазута с получением масляных дистиллятов. - 1995.- №9.- С. 13-16. З.Чуракова J . Влияние условий фракционироваяия на эффективность насадочных контактных устройств в основной атмосферной колонне установки АВТ // Материалы Всероссийской научной конференции "Теория и практика массообменных процессов химической технологии" (Марушкинские чтения). -Уфа Изд-во УГНТУ, 1996. - С. 153-154. [c.56]

    Большой объем работ, связанных с разработкой двухстадийного алкилирования, был проделан целым рядом нефтеперерабатывающих фирм [3]. В этом процессе существенно уменьшается фракционирующая часть, являющаяся наиболее дорогостоящей секцией установки. Наряду с исследовательскими работами на пилотной установке было проведено несколько испытаний в заводских условиях. Олефин абсорбировали отработанной или рециркулирующей серной кислотой, нереакционноспособные компоненты и парафиновые углеводороды удалялись на стадии абсорбции, а смесь кислоты с олефинами поступала на алкилирование. Удаление инертных примесей способствовало повышению октанового числа алкилата и снижению нагрузки на колонну депропанизации, где получают циркулирующий изобутан. Однако слабым местом процесса являлся более высокий расход кислоты. Еще одним недостатком (или, во всяком случае, усложнением) процесса было то, что когда абсорбцию проводили с очень высокой степенью превращения серной кислоты в эфиры в жидкой фазе, значительное количество нейтральных эфиров (диалкилсульфатов) оказывалось преимущественно в углеводородной фазе, а не в кислотной. Хотя фракционирование и является наиболее дорогостоящей секцией установки, введение в практику системы охлаждения отходящим потоком в 1953 г. [4, 5] и системы изостриппинга в 1956 г. способствовало снижению затрат на фракционирование. Обе эти системы позволили уменьшить колонну деизобутанизации и снизить эксплуатационные затраты на выделение циркулирующего изобутана фракционированием. [c.226]

    Защитные воски Омск-1 и Омск-7 получают по обычной технологической схеме двухступенчатой депарафинизации остаточных масел. Сырьем для производства воска Омск-1 служит остаточный рафинат туймазинской девонской нефти, а для воска Омск-7 — рафинат II ступени деасфальтизации этой же нефти. Содержание масла в восках достигает 20 вес. %. Более глубокое обезмасливание не способствует улучшению их антиокислительных свойств. В условиях озонного окисления Омск-7 является более эффективным антиоксидантом, чем Омск-1. Обезмасливанием петролатума волгоградских нефтей и последующим холодным фракционированием был получен защитный воск, названный паралайтом. Свойства восков приведены ниже  [c.180]

    Несомненный интерес представляет исследование М. А. Капе-люшникова [4], показавшего, что нефть при определенном критическом давлении можно перевести в газовое ( надкритическое ) состояние даже при комнатной температуре. Особенно благоприятные условия для перевода нефти в надкритическое состояние создаются в системах нефть—этилен, нефть—смесь низких гомологов метана (этан, пропан, бутан). Не переходят в критическое газовое состояние лишь наиболее высокомолекулярные компоненты — асфальтены и частично высокомолекулярные смолы. Снижение критического давления в системе нефть—газы или введение в эту систему некоторого количества метана сопровождается выпадением наиболее высокомолекулярной части нефти. В этих условиях фракционирование нефти идет в обратном, по сравнению с обычной перегонкой, направлении сначала выпадает наиболее тяжелая часть — асфальтены, затем смолы, высокомолекулярные углеводороды п т. д. Так как легкая часть нефтп вызывает резкое повышение значений критического давления, то лучше подвергать холодной перегонке — ретроградной конденсации — нефть, освобожденную от легколетучих компонентов. Эффективность метода ретроградной конденсации иллюстрируется данными, приведенными в табл. 78 [5]. При разделении отбензиненной ромашкинской нефти, содержащей 14,4% смол и 4,1% асфа.чьтенов, при 100° было получено 75% дистиллята, совсем не содержащего асфальтенов, и лишь 3,5% смол. 75% всех асфальтенов, содержащихся в отбензиненной нефти, было сконцентрировано в первых двух фракциях, составляющих 15% от исходного сырья. В настоящее [c.245]

    После измельчения, которое в лабораторных условиях проводят на шаровой мельнице, а в ее отсутствие — в фарфоровой ступке, землю просеивают (фракционируют), отбирая фракцию с требуемым размером частиц адсорбента. Для этого применяют набор вставленных одно в другое сит с отверстиями разных размеров, уменьшающихся от верхнего сита к нижнему. При фракционировании адсорбент засыпают в верхнее сито с более крупными отверстиями, закрывают его крышкой и вставляют во второе с более мелкими отверстиями, которое, в свою очередь, вставлено в третье, и так до нижнего сита с наименьшими отверстиями. Последним в этом наборе является приемник с глухим диом, в котором собирается самый мелкий адсорбент. Перед употреблением адсорбент сушат при 130 °С в течение 1 ч. [c.227]

    Жидкие продукты выделяются при очистке и фракционировании газов пиролиза в нескольких узлах технологической схемы. Вначале при охлаждении газа водой или тяжелой смолой выделяется пиролизная смола. При сжатии газа в компрессорах с последующим охлаждением выделяется так называемый межступенча-тый конденсат — легкая смола пиролиза (или пиролизный бензин, П фоконденсат), который включает жидкие компоненты, выкипающие до 180—200°С. Из ароматических углеводородов здесь сосредоточиваются в основном углеводороды бензольного ряда в первую очередь бензол. В зависимости от состава сырья и условий процесса количество бензольных углеводородов при пиролизе может составлять от 1,5 до 45% по отношению к получаемому этилену, в том числе бензола от 20 до 25%. [c.183]

    В работе [329] был изучен фотолиз (СНз)зССНО и смесей изовалерианового альдегида с этиленом. Продукты фотолиза после низкотемпературного фракционирования анализировались хроматографическим методом. Из отношений выходов продуктов фотолиза при различных температурах были определены константы скоростей различных элементарных стадий фотолиза изовалерианового альдегида, отнесенные к константе скорости рекомбинации третичных изобутильных радикалов. Предполагая, что константа рекомбинации равна 10 для константы диспропорционирования третичных изобутильных радикалов нашли значение Реакция взаимодействия третичных изобутильных радикалов с молекулами изовалерианового альдегида, приводящая к образованию изобутана и триметилкарбонила, имеет в температурном интервале 300—797 К константу скорости, вычисленную по формуле 10 ° ехр Исследование фотолиза (СНз)2СНСН2СНО в области 25—417° С позволило определить константу диспропорционирования первичных изобутильных радикалов, которая равна 10 при условии, что константа рекомбинации этих радикалов принимается равной 10 .  [c.245]

    Для выделения из продуктов каталитического риформинга одного ароматического углеводорода с высокой концентрацией его в сырье (выше 80%) следует выбрать перегонку с третьим компонентом. В качестве третьего компонента могут быть выбраны растворители, используемые при экстракции, например N-метилпирролидон и N-формилморфолин. При одновременном выделении двух или более ароматических углеводородов (например, бензола, толуола и ксилола) перегонка с третьим компонентом нерациональна, так как при этом требуется сложное предварительное фракционирование сырья и для выделения каждого ароматического углеводорода из узкой фракции необходима самостоятельная колонна перегонки. В этом случае наиболее простая технологическая схема получается при использовании экстракции. Отборы ароматических углеводородов при экстракции выше, чем при перегонке с третьим компонентом. Другой путь производства ароматических углеводородов — проведение процесса риформинга в таких условиях, которые позволили бы затем ректификацией выделить ароматический углеводород нужной чистоты (см. гл. 1). Это направление наиболее целесообразно при получении ксилола и, возможно, толуола. Бензол чистотой 99,9% и с высоким отбором в этих условиях получить, по-видимому, невозможно. и его, как правило, выделяют из продуктов каталитического риформинга методом экстракции.  [c.70]

    Оптимальные условия промышленного получения олефинов (пропилена и этилена) путем крекинга пропана изучались Эглоффом и соавторами (46). Опыты проводились в трубе из хромоникелевой стали, вставленной в нагреваемый брусок из алюминиевой бронзы. За температуру крекинга принималась температура алюминиевой бронзы. Поэтому следует полагать, что фактическая средняя температура крекинга несколько ниже показанной у Эглоффа. Наибольший выход олефинов дал крекинг нропана в условиях 700° С, 9,7 сек. при атмосферном давлении. При этом образовалось 22,8% (вес.) этилена и 22,5% (вес.) пропилена. Суммарный выход олефинов равен 45,3% (вес.) от взятого в реакцию пропана. Крекинг пропана при той же температуре в течение 6,7 сек. дал 20,9% (вес.) этилена и 20,7% (вес.) пропилена или всего 41,6% (вес.) олефинов. Количество превращенного пропана в последнем опыте равно 70,4%, а состав продуктов крекинга, на основании данных фракционированной перегонки в приборе Под-бельпяка, оказался следующим  [c.50]

    Во-вторых, с определенными трудностями связано последовательное разрушение комплекса в присутствии большого количества разрушающего агента при постепенном повышении температуры, как это предусмотрено в одном из способов Шерера и Арабяна [297]. Для такого разрушения комплекса потребуется, очевидно, проводить периодический процесс, повышая температуру с небольшой скоростью (постепенный нагрев смеси в аппарате, отстаивание выделяющихся н-парафинов, отделение их от раствора карбамида, повторный нагрев смеси и т. д.), или создать аппарат, в котором можно осуществлять эти операции в двингепип , т. е. непрерывно транспортировать смеси, состоящие из двух фаз — твердой (неразрушенная часть комплекса) и жидкой (выделившиеся к-парафины и раствор карбамида). Транспортировать такую сложную двухфазную смесь весьма затруднительно, тем более что нужно соблюдать известные меры предосторожности, поскольку даже при незначительном повышении температуры в процессе транспортировки дополнительно разрушается комплекс и, следовательно, нарушаются намеченные условия фракционирования. [c.204]

    При отработке метода фракционирования и-парафинов разрушением карбамидного комплекса было установлено, что при частичном разрушении комплекса в лабораторных условиях на каждом этапе имеет место искажение выходов и характеристик фракций н-парафинов, снижение четкости его разделения и т. д. Причиной этого служит, во-первых, наличие в составе неразрушенной части комплекса н-иарафинов, не регенерированных из комплекса на предыдуш,их этапах его разрушения. Эти оставшиеся м-парафины являются увлеченными углеводородами в составе неразрушенной части комплекса. Во-вторых, на каждом этапе разрушения комплекса происходит (в силу обратимости реакции комплексообразования) и образование комплекса. Так, на первом этапе фракционирования регенерируются н-парафины, связанные с карбамидом наименее прочно, т. е. наиболее легкие, об.>1адающие наименьшим молекулярным весом. Однако в результате контакта между регенерированными н-парафинами и водным раствором карбамида образуются новые порции комплекса, которые в дальнейшем дают смесь с комплексом, оставшимся неразрушенным после первого этапа фракционирования. [c.212]

    Искажение выходов и характеристик фракций н-иарафинов из-за иопадания в них некоторого количества н-иарафинов из предшествуюш их фракций вызывает необходимость создания таких условий последовательного разрушения комплекса, которые позволили бы исключить (или свести к минимуму) как иа первом, так и на любом другом этапе фракционирования возможность попадания н-иарафинов, относящихся к одной фракции, в другие, последующие, фракции (независимо от причин, вызывающих такое смешение). Такие условия могут быть созданы, если,, во-иервых, будет осуществлен одновременный контакт всех (или подавляющего большинства) частиц измельченного комплекса с тем количеством воды, которое обеспечивает при данной температуре заданную степень разрушения, а во-вторых, будет обеспечено быстрое и полное отделение неразрушенной части комплекса от жидкой фазы. [c.213]


Смотреть страницы где упоминается термин Фракционирование условия: [c.87]    [c.31]    [c.122]    [c.148]    [c.76]    [c.205]   
Практическое руководство по определению молекулярных весов и молекулярно-весового распределения полимеров (1964) -- [ c.152 ]




ПОИСК







© 2024 chem21.info Реклама на сайте