Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические перманганатом

    Окисление перманганатом калия. Наиболее часто применяемым окислителем органических соединений является перманганат калия, окислительная способность которого зависит от среды. Для окисления применяют водные растворы перманганата калия различной концентрации в нейтральной, кислой или щелочной средах. [c.131]


    Применение окислителей. Существует большой выбор соединений, применяемых в качестве окислителей перманганат калия, хромовый ангидрид и хромовая смесь, азотная кислота, двуокись свинца и двуокись селена, тетраацетат свинца, перекись водорода, хлорное железо и многие другие. Направление и интенсивность действия окислителя на органические соединения зависят от характера окисляемого вещества, природы окислителя, температуры, pH среды и т. д. Так, например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде — анилиновый черный, перманганатом калия в нейтральной или щелочной среде — азобензол и нитробензол. Окисление проводится в большинстве случаев в водной или уксуснокислой среде. При определении коэффициентов в уравнениях окислительно-восстановительных реакций удобно пользоваться расчетной схемой, основанной на формальном представлении о степени окисления атомов, входящих в состав соединения. [c.129]

    Окисление химическими реагентами [5.3, 5.35, 5.55, 5.57, 5.64, 5.70]. Окисление неорганических и органических соединений широко используется в промышленной практике при переработке и обезвреживании отходов. Для очистки сточных вод применяются следующие окислители хлор и его соединения, перманганат натрия, бихромат калия, кислород воздуха, озон, перекись водорода и др. Выбор окислителя определяется экономическими показателями и зависит от количества и состава сточных вод, наличия окислителей и требуемой степени очистки. Применение перманганата и бихромата калия, нитрита и нитрата натрия нецелесообразно— усложняется технологическая схема вследствие необходимости удалять избыток окислителей и продуктов их восстановления. [c.493]

    Диоксид марганца широко используют в качестве окислителя (деполяризатора) в химических источниках тока, в том числе и батарейках карманных фонарей. Перманганат калия применяют как окислитель во многих органических синтезах, в аналитической химии (перманганатометрия), в медицине. Соединения марганца входят в состав многих катализаторов, в том числе ускорителей высыхания масляной краски (на самом деле масло, входящее в состав краски, не высыхает, а окисляется кислородом воздуха, образуя при этом полимер). [c.551]


    Органическое вещество Л — бесцветная, с характерным запахом жидкость. В зависимости от условий продуктами его окисления могут быть либо ангидрид минеральной кислоты, либо органическая кислота. Продуктами разложения вещества Л прн определенных условиях (каких ) могут быть вещества Б я В. Первое из них — бесцветная жидкость. Ее мол<но получить прн горении вещества Л. Второе — бесцветный газ, обесцвечивающий бромную воду и перманганат калия. Вещество Л легко вступает в реакцию с металлом. Одним из продуктов этой реакции является водород. Что собой представляет вещество Л Напишите соответствующие уравнения реакций. [c.55]

    Иногда приходится прибегать к химическим методам очистки посуды. Если посуду невозможно отмыть водой и органическими растворителями, то ее моют хромовой смесью, подогретым 5%-ным раствором перманганата калия, смесью соляной кислоты и пероксида водорода (смесь Комаровского), концентрированной серной кислотой или концентрированными (до 40 %) растворами щелочей. [c.23]

    Продуктами горения газообразного органического вещества А являются вещества Б и В. При растворении первого во втором образуется минеральная кислота. Вещество В при определенных условиях может взаимодействовать с веществом А. Продукт этой реакции — вещество Г — не взаимодействует с едким натром, но взаимодействует с металлическим натрием. Одним из продуктов в последней реакции будет газ без цвета и запаха, способный вступать в реакцию с веществом А с образованием газообразного углеводорода, не обесцвечивающего бромную воду. Определите, что собой представляет вещество Л, если дополнительно известно, что оно обесцвечивает бромную воду и перманганат калия, а в молекуле его содержится два атома углерода. Напишите соответствующие уравнения реакций. [c.54]

    Для выяснения структуры ксилолов смесь их с температурой кипения 136—145° окислялась по Ульману [8], 3%-ным раствором перманганата калия (в излишке от теории) в слабощелочной среде. Непрореагировавший перманганат калия раскислялся метиловым спиртом. Калиевые соли органических кислот отфильтровывались от осадка, который многократно промывался горячей водой. Фильтрат упаривался ка водяной бане, повторно фильтровался и добавлялся 10%-иый раствор соляной кислоты до слабокислой реакции и перегонялся. [c.26]

    В производстве жирных кислот марганцевые катализаторы (высшие окислы марганца, полученные из перманганата калия, стеараты, нафтенаты, ацетаты марганца, МпО ) используют очень широко реже применяют кобальтовые катализаторы и, ограниченно (в лабораториях), органические перекиси. [c.152]

    Окисляемостью называется свойство воды, обусловленное присутствием в ней органических веществ, легкоокисляющих-ся соединений железа и сероводорода, способных окисляться различными окислителями. Так как состав этих примесей неопределенен, окисляемость воды выражается в количестве перманганата калия или эквивалентном ему количестве кислорода, затраченного на окисление 1 литра воды, то есть мг/л. [c.73]

    При действии на твердое вещество А веществом Б образуются два новых вещества, одно из которых бесцветное газообразное органическое вещество В. Оно обесцвечивает бромную воду и перманганат калня. Горение вещества В приводит к образованию двух продуктов Б и Г, второй из них является ангидридом минеральной кислоты. При взаимодействии вещества В с веществом Б в присутствии катализатора образуется бесцветная легколетучая жидкость с резким запахом, из которой при определенных условиях можно получить органическую кислоту. Что собой представляет вещество В Какое практическое применение оно находит Отобразите с помощью уравнений реакцн описанные в условии задачи процессы. [c.54]

    В присутствии катализатора газообразное, ие имеющее окраски органическое вещество А превращается в вещество Б — бесцветную жидкость с характерным запахом, не обесцвечивающую бромную воду и перманганат калия. При определенных условиях вещество Б взаимо- [c.54]

    Многие виды диэлектриков, особенно пластмассы, в большей или меньшей степени гидрофобны, т. е. не смачиваются водой. Поэтому гидрофилизация поверхности большинства диэлектриков является основной задачей, решаемой на стадии первичной обработки поверхности. Наиболее эффективными способами придания поверхности диэлектрика гидрофильных свойств считаются травление в органических растворителях и обработка в растворе окислителей. Органический растворитель разрыхляет поверхностный слой диэлектрика, вызывая его набухание, что ослабляет связи между полимерными цепями в приповерхностном слое. Окислительная обработка, проводимая после стадии набухания, резко повышает сорбционную способность поверхности диэлектрика. Это происходит главным образом за счет увеличения хемосорбционной поверхностной активности, которая обусловлена, с одной стороны, увеличением гидрофильности поверхности ( прививка активных групп), с другой стороны, разрывом связей типа С=С и С=-0 в результате воздействия на молекулы мономеров сильного окислителя. Так, обработка стеклотекстолита в растворе, содержащем перманганат калия и фосфорную кислоту, приводит к повышению адсорбции палладия на его поверхности в четыре раза, а обработка в растворе, содержащем хромовый ангидрид и серную кислоту, увеличивает сорбционную способность поверхности стеклотекстолита более чем в 10 раз. [c.97]


    Рассчитанную навеску КМпО берут на технохимических весах и в склянке из оранжевого стекла приготовляют раствор. На склянку с раствором наклеивают этикетку, на которой указывают название раствора, дату приготовления и фамилию. Свежеприготовленный раствор должен оставаться в склянке не менее недели. За это время перманганат окислит все случайные органические примеси, содержащиеся в воде, а образовавшийся в результате частичного восстановления перманганата диоксид марганца осядет на дно склянки. Такой хорошо отстоявшийся раствор практически не меняет нормальности в течение многих месяцев. [c.137]

    Электролитические методы получения металлов (алюминия, магния) из солевых расплавов, получение газообразного хлора и раствора щелочи электролизом растворов поваренной соли, производство персульфата, перхлората и перманганата, окисление и восстановление органических веществ (получение йодоформа, электрохлорирование бензола, электровосстановление нитробензола) и многие другие технические применения электролиза приобретают все большее значение. [c.606]

    Скорости параллельных реакций могут настолько различаться, что одна из них практически не оказывает влияния на протекание процесса и тем самым выпадает из наблюдения. Даже растворитель может играть определенную роль как участник реакции. Его влияние заметно, например, при реакциях окисления перманганатом в щелочной среде (наряду с основной реакцией окисления метильной группы органического соединения вода окисляется до кислорода вследствие каталитического действия гидроксид-иона). [c.177]

    При исследованиях методом меченых атомов пользуются возможностью проследить путь атомов в ходе реакции, пометив реагирующее соединение, т. е. заменив один из его атомов стабильным или радиоактивным изотопом. Примером использования этого метода снова может служить реакция окисления альдегида хромовой кислотой [уравнение (154)]. Было установлено, что, если пометить хромовую кислоту изотопом 0, то оказывается, что в продукте реакции — органической кислоте — содержание 0 примерно такое же, как и в исходной хромовой кислоте. Это является прямым доказательством того, что кислород от окислителя непосредственно переходит к окисляемому веществу. Другой пример прямого перехода кислорода был приведен в гл. 7 (в самом начале изучения химической кинетики) при рассмотрении реакции окисления сульфита перманганатом. В этой связи интересно отметить, что в большинстве реакций окисления анионами оксокислот наблюдается прямой перенос кислорода, сопровождающийся одновременным переносом двух электронов. Например  [c.201]

    Совершенно недопустимо растирать н смешивать различные органические вещества с хлоратами, перманганатами И пероксидами металлов, а также другими окислителями. Кроме того, нельзя забывать о том, что пары хлорной кислоты при соприкосновении с органическими веществами, а также различными маслами сильно взрываются, а сами перхлораты тяжелых металлов также могут взрываться, иногда без видимой для этого причины. Крайне взрывоопасными являются также азиды тяжелых металлов и серебра, ацетилениды серебра и меди. [c.13]

    Анализ органических соединений. Окисление органических соединений перманганатом калия происходит с небольшой скоростью, что сдерживает практическое применение этого метода для анализа органических веществ. Тем не менее некоторые органические вещества можно с успехом определять этим методом, используя восстановление МпОГ в щелочной среде по схеме (13.6). Органические соединения при этом обычно окисляются до карбоната. По окончании реакции восстановления перманганата в щелочной среде раствор подкисляют и титруют МпОГ раствором железа (И) или другого подходящего восстановителя. Так определяют, например, метанол, который в щелочной среде окисляется перманганатом калия по схеме [c.276]

    Так как при окислении парафина кислород распределяется по всем метиленовым группам примерно равномерно, нри окислении получаются кислоты разного молекулярного веса, из которых нерегопкой отделяют кислоты, пригодные для мыловарения. Окисление проводят при возможно низких температурах порядка 105—120° [69]. Образующиеся жирные кислоты, особенно высокомолекулярные, окисляются далее, при этом образуются оксикислоты, кетокислоты и двухосновные жирные кислоты, не растворимые в бензине. Чтобы свести к минимуму образование этих нежелательных побочных продуктов, окисление ограничивают 30—50%-ным превращением всей окисляемой углеводородной смеси. В качестве катализатора применяют в большинстве случаев перманганат калия в количестве 0,3% вес. от всего парафина. Перманганат калия вводят нри перемешивании в нагретый до 150° парафин в виде концентрированного водного раствора, вода испаряется, а перманганат восстанавливается органическим веществом до двуокиси марганца, которая распределяется в реакционной смеси в исключительно тонко распыленном состоянии. Окисление ведут без применения давления. Важно, чтобы применяемый для окисления воздух поступал в парафин в возможно тонко распыленном состоянии. [c.162]

    Перманганат калия вводят в виде концентрированного водносо раствора в нагретый до 150° парафин. Вода испаряется, и перманганат, находящийся в жидкости в результате хорошего перемешивания в виде очень тонкой взвеси, частично восстанавливается органическим веществом в чрезвычайно дисперсный МпОг. Таким образом удается снизить температуру до ПО—120° и тем не менее сохранить технически приемлемую скорость лроцесса. [c.450]

    Перманганат всегда содержит примеси продуктов восстановления, например МпОг. Кроме того, он легко разлагается под влиянием восстановителей — аммиака, органических веществ, попадающих в воду с пылью, и т, п. Вследствие этого концентрация раствора КМПО4 в первое время после приготовления не-СК0Л1К0 уменьшается. [c.379]

    Для того чтобы раствор КМПО4 был достаточно устойчивым и титр его не изменялся, осадок МпОг, присутствовавший в нем в качестве примеси, а также образовавшийся в результате окисления перманганатом органических веществ и аммиака, которые содержатся в воде, необходимо удалить, так как он каталитически ускоряет разложение КМПО4. Нужно также помнить, что перманганат окисляет резину, корковые пробки, бумагу и другие вещества, поэтому необходимо избегать соприкосновения раствора с ними. Так, нельзя фильтровать раствор КМПО4 через бумажные ф)ильтры, а необходимо пользоваться стеклянными фильтрующими тиглями или сливать раствор с осадка МпОг сифоном. [c.380]

    Косвенным показателем содержания в воде органических веществ является ее окнсляемость . Окисляе-ыость воды Ов характеризует содержание в ней органических веществ и выражается массой кислорода, израсходованного на окисление органических примесси в воде объемом 1 л при кипячении ее с перманганатом калия, [c.117]

    Образовавшиеся кислоты реагируют со щелочью калия и образуют соли. После окончания реакции окисления непрореа-гнронавшнй перманганат калия обесцвечивался древесным спиртом. Образовавшиеся в результате реакции соли калия органических кислот фильтрацией отделяли от двуокиси марганца, который несколько раз промывался горячей водой. Фильтрат, с целью увеличения концентрации выпаривался на водяной бане. Из солей калия органических кислот, действием на них минеральной кислоты, были получены соответствующие органические кислоты. Так как во фракции, взятой для окисления, ожидалось присутствие этилбензола и трех изомеров ксилола, в результате окисления которых должны были получать 4 кислоты разного строения, поэтому мы долж- [c.68]

    Пятая фракция (136—144°) представляла изомерную смесь ксилолов, для определения структуры которых была окислена в слабош,елочном растворе перманганата калия, а образовавшаяся смесь органических кислот была обработана по методу Тауш—Добрянского [10]. Этим иутемиа двухосное 1(ых органических кислот было выделено избыточное количество изофталевой кислоты, а также орто- и терефталевые К ислоты. [c.73]

    Для установления строения ароматических углеводородов, входящих во фракцию 149—154°, эту фракцию в количестве 1,67 г окисляли перманганатом калия по Ульману [18]. Смссь органических кислот, полученных в результате окисления фракции, была разделена методом Тауш-Добрян-ского [19]. 13 продуктах окисления было установлено наличие бензойной, изо- и терефталевой кислот. [c.89]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Для удаления взвешенных и гумусовых веществ применяются методы отстаивания в отстойниках и осветлителях любого типа, а также фильтрование в напорных и открытых песчаных фильтрах с предварительной коагуляцией при высоком содержании гумусовых. Для уничтожения органических веществ, планктона и бактериального загрязнения необходимо использовать хлорирование и озонирование, для поддержания pH — подкисление, иодщелачи-вание и фосфатирование для поддержания допустимого содержания фтора — фторирование при недостатке и сернокислотную обработку при избытке для обезжелезивания — аэрацию, коагуляцию, подщелачивание, обработку перманганатом калия и катио-нирование для умягчения поверхностных вод — известковосодовое умягчение для умягчения подземных вод —ионный обмен для обессоливания — ионный обмен, электролиз, дистилляцию и гиперфильтрование. [c.162]

    Окислительные агенты и техника безопасности в процессах окисления. Если в лабораторной технике и при тонком органическом синтезе нередко применяют такие окислительные агенты, как перманганаты (в щелочной, нейтральной или кислой среде), би-хроматы, хромовый ангидрид, пероксиды некоторых металлов (марганца, свинца, натрия), то в промышленности основного органического и нефтехимического синтеза стараются пользоваться более дешевыми окислителями и лишь в отдельных случаях при-меняк1т агенты, способные к реакциям, не выполнимым при помощи других окислителей. [c.353]

    В отличие от рассмотренных выше элементов определение общего содержания ртути методом ААС основано на измерении поглощения света ее парами, которые вьщеляются потоком воздуха из водного раствора после восстановления ионов до атомного состояния, при длине волны 253,7 нм в газовой кювете при комнатной температуре ( метод холодн()го пара ). В качестве восстановителей применяют хлорид олова, станнит натрия, аскорбиновую кислоту и др. [3,8]. Предел обнаружения состав.гтя-ет 0,2 мкг/л, диапазон измеряемых концентраций 0,2 - 10 мкг/л [И] Для устранения мешающего влияния органических веществ, поглощаюшцх свет при данной длине волны, к пробе добавляют кислый раствор перманганата или бихромата калия. [c.249]

    Окисляемость воды обусловлена содержанием в воде органических примесей и определяется количеством миллиграммов перманганата калия,, израсходованного при кипячении 1 л воды с избытком К. 1и04 в течение 10 мин. Реакция воды — степень ее кислотности или щелочности — характеризуется концентрацией водородных ионов и определяется при помощи индикаторов, Реакция природных вод близка к нейтральной, pH колеблется в пределах 6,8—7,3, Реакция оборотных вод зависит от характера производства. При рН<6,5 вода кислая, при рН> 7,5 вода щелочная. [c.25]

    Окисление парафинов. Для окисления жидких и твердых парафиновых углеводородов с числом атомов углерода 10 и более наряду с перманганатом калия в качестве катализаторов могут применяться марганцевые соли растворимых в углеводородах органических кислот (такие, как нафтенаты или стеараты марганца) или просто смеси солей неопределенного состава, получающиеся нагреванием карбоната марганца с кислыми оксидатами окисления парафинов. Нафгге-наты и стеараты марганца получают аналогичным образом из карбонатов марганца и соответствующих кислот. [c.420]

    Известный интерес предстявляет фенантренхинон прежде всего как ядохимикат, заменяющий токсичные и дорогие ртутно-органические протравители зерна [161] на его основе можно приготовить некоторые красители. В небольших масштабах фенантренхинон получают при окислении фенантрена перманганатом калия, бихроматом калия, оксидом хрома (У1) в серной или уксусной кислоте. Для крупного производства перечисленные методы не пригодны из-за большого расхода реактивов (3—7 т на 1 т фенан-тренхинона) и образования значительных объемов токсичных отходов. [c.107]

    Регетз1) 1Ция отработанной серной кислоты с помощью окислителей. Однш. из способов ОЧИСТКИ ОСК от органических примесей, который заслуживает внимания, является метод окисления. В результате воздействия сильного окислителя можно добиться почти полного разрушения органических примесей до СО2 и HgO и очистить серную кислоту, пра1стически не загрязняя ее вводимыми компонентами. В качестве окислителей используют озон, пероксид водорода, гипохло- шт кальция, пиросульфат, перманганат или бихромат калия, диоксид марганца с получением кислоты высокой степени очистки. [c.42]

    Перманганат калия, или марганцевокислый калий (КМПО4), сильный окислитель. Он широко применяется в реакциях органического синтеза, в производстве жирных и ароматических кислот, для отбеливания тканей, протравы дерева, как дезинфицирующее средство в медицине и в быту, в аналитической практике, в фотографии и т. п. [c.203]

    Перманганатный метод дает менее точные результаты, так как перманганат калия окисляет не все органические вещества и не всегда полностью. Однако для сравнительной оценки загрязненности сточных вод этим методом пользоваться можно. В кислой среде восстановление КМПО4 происходит по реакции [c.118]

    Наиболее сильным окислителем в кислой среде является марганцево-кислый калий. Тем не менее опыт показывает, что нельзя ограничиться применением только одного этого рабочего раствора. Высокий окислительный потенциал системы Мп07/Мп "" (в кислой среде) является иногда недостатком, так как способствует образованию активных промежуточных продуктов в результате возникают сопряженные реакции окисления. Поэтому в ряде случаев вместо марганцевокислого калия удобнее пользоваться двухромовокислым калием (с дифениламином или фенилантраниловой кислотой в качестве индикатора) или ванадиевокислым аммонием. В других случаях реакция между определяемым веществом и ионом перманганата идет не стехиометрически. Так, в реакции со многими органическими веществами перманганат может, при длительном взаимодействии, окислить их полностью, например до СО и Н О. Однако реакция идет довольно медленно, а образование промежуточных стадий не имеет резкого ступенчатого характера. Поэтому при определении некоторых органических соединений вместо марганцевокислого калия применяют бромноваго-кислый калий, йод или другие окислители. Эти окислители имеют более низкий потенциал и окисление не идет так далеко, как при действии перманганата. Однако бром илн йод взаимодействуют с молекулами мног их органических веществ довольно быстро и в точных стехиометрических отношениях. Таким образом, ряд обстоятельств обусловливает необходимость применения различных окислителей в зависимости от конкретных условий. [c.365]

    Растворы, полученные растворением очень чистого перманганата калия, устойчивы в течение цлительного времени. Но примеси органических веществ в воце, пыль, свет влияют на устойчивость растворов. Особенно неустойчив раствор в присутствии слецов марганца(П), так как протекает реакция [c.140]

    В среде безводной уксусной кислоты при использовании в качестве титрантов брома, хромовой кислоты, перманганата калия или трихлорида титана проводят титрование мышьяка, сурьмы, ртути, селена, железа, титана, таллия, бромидов, иодидов, иода и пероксида водорода, а также органических соединений, таких, как резорцин, гидрохинон, бренцкатехин, тетра-хл оргидрохинон, п-хинон, тетрахлорхинон, л-аминофенол или дифениламин. Точку эквивалентности определяют потенциометрическим методом. [c.348]


Смотреть страницы где упоминается термин Органические перманганатом: [c.665]    [c.84]    [c.382]    [c.243]    [c.60]    [c.61]    [c.186]    [c.377]    [c.147]    [c.19]    [c.273]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Перманганаты



© 2025 chem21.info Реклама на сайте