Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород, образование при распаде перекисей

    Выступая в реакциях окислителем, перекись водорода распадается с выделением атомного кислорода. При восстановлении же перекисью водорода ее распад идет с образованием атомного водорода и молекул кислорода. [c.73]

    Этот процесс сам по себе может привести к распаду молекулы жирной кислоты (очередная реакция со свободным радикалом, отделение водорода, образование перекиси жирной кислоты), но он еще и ускоряется за счет того, что перекисный радикал липида (перекись жирной кислоты), реагируя с другой молекулой жирной кислоты, образует ее перекись К — ООН и новый свободный липидный радикал (свободный радикал жирной кислоты). Цепная реакция продолжается до полного переокисления жирной кислоты. В течение этого процесса в среде постоянно присутствуют свободные радикалы, которые могут вступать в реакцию с ненасыщенными жирными кислотами. [c.83]


    И тут две частицы восстанавливают третью до муравьиного альдегида, СН О, сами же окисляются в надугольную кислоту, которая по образовании распадается на углекислоту и перекись водорода  [c.243]

    Инициатором реакции полимеризации может служить также перекись водорода. Распад ее сопровождается образованием гидроксильных радикалов. [c.102]

    Органические перекисные соединения в основном применяются лри полимеризации в массе или в органических растворителях, в то время как неорганические перекисные соединения преимущественно используются для инициирования полимеризации в водных растворах, в эмульсиях или в суспензиях. Перекись водорода, как правило, используют при окислительно-восстановительном инициировании (см. опыт 3-22). Персульфаты калия и аммония часто употребляют без восстановителей, поскольку они распадаются уже при температурах около 30°С с образованием свободных радикалов, инициирующих полимеризацию  [c.120]

    Возможным объяснением такого поведения может быть необратимое связывание молекул стабилизатора, которые прочно удерживаются в фиксированных точках поверхности частицы и не могут по ней перемещаться, так что рост частицы приводит к равномерному ослаблению стабилизирующего барьера. В случае же, если стабилизатор только (пусть даже прочно) адсорбирован на поверхности, он может перемещаться так, что при достаточно большом увеличении поверхности на ней могут появиться совершенно незащищенные участки. Даже в разбавленной водной полимеризационной системе, рассмотренной выше [56], часть стабилизирующего эффекта может возникать благодаря фиксированным ионизированным группам (в частности, концевым сульфатным и карбоксильным группам), введенным в полимер при распаде инициатора и последующем окислении (редокси-инициаторы персульфат/бисульфат или перекись водорода с ионом двухвалентного железа). Возможно, что в более типичных условиях дисперсионной полимеризации в среде алифатических углеводородов, агломерация может происходить после образования первичных частиц. Однако данные электронной микроскопии указывают на постоянство числа их, начиная с очень ранних стадий, и поэтому если агломерация и наступает, то она должна происходить почти немедленно после стадии первичного образования частиц или же параллельно с ней. [c.162]

    Показано, что первичным процессом при фотохимическом разложении перекисей является разрыв связи —О—О— с образованием свободных радикалов, которые затем могут распадаться дальше или реагировать, образуя различные продукты. Например, перекись ди-/лре/и-бутила образует, по-видимому, в начальной стадии два радикала (СНд)зСО [215, 216]. Эти радикалы могут распадаться с образованием ацетона и метильного радикала или отрывать атом водорода от перекиси с образованием трет-бутилового спирта и другого свободного радикала. В жидкой фазе [215] в качестве основного продукта образуется окись изобутилена. В газовой фазе [216] наряду с ацетоном и трет-бутиловым спиртом получаются метан и этан. [c.270]


    Выше мы рассматривали инициирование полимеризации при помощи распада одного, обычно неустойчивого соединения. Для образования полимеров при более низких температурах, вероятно, требуется энергия активации ниже или около 30 ккал, которая необходима для получения радикалов путем разложения перекисей и подобных веществ. Термин окислительно-восстанови-тельные применяется к системам, в которых восстановитель облегчает распад окислителя. Эти системы весьма эффективно осуществляют полимеризацию, действуя обычно в водной среде, так как восстановителем часто является ион металла. Наиболее обычный пример — система ион Ге" — перекись водорода многие органические перекиси и гидроперекиси также будут реагировать с ионом двухвалентного железа. [c.207]

    Интересные результаты получены при исследовании окисления хинона [124] и ряда других карбонилсодержащих соединений [125] кислородом в присутствии трет.бутилата калия. В этих работах обнаружено, что многие кетоны, альдегиды и эфиры, содержащие в а-положении водород, в присутствии трет.бутилата калия в растворе трет.бутилового спирта ири комнатной или ири несколько более высокой температуре легко окисляются кислородом. По ходу реакции сначала образуется органическая перекись, которая затем распадается с образованием соответствующих карбоксильных кислот и карбонильных соединений. [c.37]

    Перекись водорода может образоваться в активной форме, и поэтому, если только энергия образования не отнимается холодными стенками, она распадается, вероятнее всего па два гидроксила. Постулируется возможность образования более значительной доли стабилизированных радикалов НОа за счет столкновений с другими молекулами, если происходит дальнейшее увеличение давления. Тогда будет происходить рост доли НО2 вследствие большого числа тройных соударений, приводящих к образованию стабилизированного радикала НО по реакции [c.44]

    Реагируя с молекулой углеводорода, кислород может вклиниться в цепь углеродных атомов (I), образуя перекись диалкила, или между атомами углерода и водорода (II), образуя гидроперекись. В результате дальнейшего окисления образуются кислоты,, альдегиды, вода, углекислота и др. Детонационное сгорание проходит в две стадии. Первая стадия — предпламенное (холоднопламенное) окисление, во время которого в рабочей смеси образуется значительная часть перекисей. Образование перекисей углеводородов начинается в такте впуска при соприкосновении смеси с нагретыми клапанами и другими деталями и продолжается в такте сжатия и воспламенения. Вторая стадия — горячий взрыв (видимое горение) с малой задержкой воспламенения. После воспламенения рабочей смеси перекиси образуются более интенсивно. Образующиеся в процессе предпламенного окисления перекиси накапливаются в несгоревшей части рабочей смеси и по достижении критической концентрации распадаются со взрывом и выделением большого количества тепла, активизируя этим всю рабочую смесь. [c.21]

    Электровосстановление кислорода протекает обычно без разрыва связей в исходной молекуле и дает в качестве конечного продукта перекись водорода. Однако можно осуществить такие условия, при которых электрохимическое восстановление кислорода будет проходить по иному пути через распад его молекулы на атомы с последующим образованием воды  [c.408]

    В условиях, способствующих цепному распаду перекисных соединений, перекись водорода не образуется, причем оксигидроперекись разлагается иным путем, но с образованием того же кетона, например  [c.495]

    Полимеризация под влиянием химических инициаторов, являющаяся одним из наиболее распространенных методов полимеризации, состоит в возбуждении веществами, способными при нагревании разлагаться с образованием свободных радикалов. К таким веществам относятся неорганические и органические перекиси (перекись водорода, перекись бензоила), гидроперекиси, диазосоединения и др. Широко применяемый инициатор — перекись бензоила — легко распадается при нагревании на два свободных радикала  [c.41]

    На основании имеющихся термодинамических и кинетических данных установлена первичность образования органической гидроперекиси с последующим распадом ее на перекись водорода и ацетон. [c.27]

    Установлена первичность образования органической гидроперекиси с последующим распадом ее на перекись водорода и ацетон. [c.71]

    Первая (1), анаэробная, стадия характеризуется образованием альдегида, аммиака и восстановленного фермента. Последний в аэробной фазе окисляется молекулярным кислородом. Образовавшаяся перекись водорода далее распадается на воду и кислород. Моноаминоксидаза (МАО), ФАД-содержащий фермент, преимущественно локализуется в митохондриях, играет исключительно важную роль в организме, регулируя скорость биосинтеза и распада биогенных аминов. Некоторые ингибиторы моно-аминоксидазы (иираниазид, гармин, иаргилин) используются ири лечении гипертонической болезни, депрессивных состояний, шизофрении и др. [c.446]


    В развившемся окислении свободные радикалы образуются из перекиси водорода и оксициклогексилгидроперекиси. Перекись водорода образует свободные радикалы по реакции первого порядка относительно Н2О2 с константой скорости к — 8,9-10 ехр (— 23 ЪОО/RT) сек" [59]. Распад перекиси по связи О—О представляет собой, по-видимому, сложную реакцию перекиси со спиртом, протекаюш ую по аналогии с гидроперекисями [67] через образование комплекса [c.160]

    Несомненно, что органическая перекись, в случае ее образования даже и в незначительных количествах, должна проявлять разветвляющее действие в реакции окисления углеводородов. Это следует из целого ряда хорошо известных фактов инициирующего действия органических перекисей в реакциях полимеризации [34], термического распада [35], да и самого углеводородного окисления [36]. Такая функция органических перекисей получает свое естественное объяснение в относительно легкой способности этих веществ распадаться по связи 0—0 с образованием свободных радикалов. В таком случае тот твердо установленный факт, что нри газофазном окислении углеводородов (при температурах от 250— 300° и до температур, отвечающих нулевому значению температурного коэффициента скорости) разветвляющим агентом является высший альдегид, а не органическая перекись (см. стр. 253), может привести к заключению, что в ходе этой реакции практически полностью отсутствует возможность образования таких перекисей. Подобное заключение получает подтверждение в данных Нокса и Норриша [37] (см. стр. 262— 263), настаивающих на том, что единственная найденная ими при окисле НИИ пропана органическая перекись представляет собой диоксиметил-перекись, которая образуется ые в зоне реакции, а уже после отбора смеси в растворе при взаимодействии формальдегида с перекисью водорода. Такое утверждение о полном отсутствии органических нерекисей в реакционной зоне вступает, однако, в противоречие со сложившимся за последние 20 лет представлением о наличии в ходе газофазного окисления углеводородов конкуренции двух возможных реакций перекисного радикала КОа  [c.332]

    Связь, изображенная пунктиром (л-связь), менее прочна, чем простая рвязь (о-связь). Вследствие этого она легче разрывается, образуя неустойчивые группы (радикалы) со свободными валентностями в виде неспаренных электронов. Первоначальные радикалы могут образоваться под действием тепла, света, ионизирующих излучений. Однако наибольшая скорость образования радикалов достигается введением специальных веществ, называемых инициаторами. Ими являются вещества, способные сами распадаться на свободные радикалы. Наиболее распространены перекись бензоила и перекись водорода. [c.35]

    С одной стороны, молекула HjOj может распадаться с разрывом кислородной связи и образованием новых связей кислорода с атомами других элементов. В результате уменьшается о. ч. кислорода до —2. При таком превращении перекись водорода ведет себя как окислитель. [c.184]

    В рамках данного проекта проводятся исследования перспективного метода синтеза циклогексаноноксима - исходного продукта в производстве е-капролактама окислительным аммонолизом циклогексанона. Реакция окислительного амманолиза осуществляется при взаимодействии циклогексанона с аммиаком и перекисью водорода при 10-20°С. В качестве катализатора нами использовались растворимые в водной фазе соединения вольфрама. Стабилизация распада перекиси водорода осуществлялась с помощью трилона-Б Было установлено, что при молярном соотношении циклогексанон перекись водорода аммиак = 14 5 выход циклогексаноноксима составляет 93-95% на загруженный циклогексанон при практически полной его конверсии. С целью выяснения механизма реакции окислительного аммонолиза циклогексанона была изучена кинетика процесса и показано, что он протекает через промежуточное образование гидропероксициклогексиламина Для получения циклогексанона и перекиси водорода предложено использовать жидкофазное окисление цикJюгeк aнoлa В зтой связи подробно изучена реакция окисления циклогексанола - температура, продолжительность реакции, концентрация катализатора, выделение смеси циклогексанона и перекиси водорода, которая непосредственно была использована для получения циклогексаноноксима. Изучена кинетика реакции окислительного аммонолиза циклогексанона и предложен механизм реакции [c.53]

    Полимеризация под влиянием химических инициаторов — оди из наиболее распространенных методов полимеризации, состоит во.збуждении молекул мономера Беществами, способными при на греванки разлагаться с образованием свободных радикалов. К та КИМ веществам относятся неорганические и органические перекис (перекись водорода, перекись бензоила), гидроперекиси, диазосс единения и др. Широко применяемый инициатор — перекись бен зоила — легко распадается при нагревании на два свободных ра д икал а.  [c.40]

    Реакция окисления — восстановления проходит в среде, содержащей мономер, с образованием инициирующих полимеризацию свободных радикалов. Можно подобрать пары окислитель — восстановитель, растворимые в воде [например, перекись водорода—сульфат железа (II) или в органических растворителях (напримёр, перекись бензоила — диметиланилин). В соответствии с этим радикальную полимеризацию можно инициировать как в водных, так и в органических средах. Например, распад перекиси водорода в присутствии солей железа (II) может быть представлен следующими уравнениями  [c.43]

    Только немногие а-оксигидроперекиси, благодаря их способности легко вступать в дальнейшие реакции, могут быть иолучены аутоокислением. То, что эти и аналогичные соединения являются промежуточными продуктами окисления, отмечалось во многих случаях. Ротенберг и Тюркауф считали, что аутоокисление этанола над платиновым катализатором проходит через стадию образования СНзСН(ОН)—О—ОН. Далее было установлено, что окисление некоторых алифатических спиртов в водных растворах при 10—30° С, облучении ультрафиолетовым светом и в присутствии окиси цинка приводит к образованию перекиси, с последующим распадом ее иа альдегиды и перекись водорода. Высшие спирты дают более устойчивые перекиси, хотя онн и не были выделены 2, [c.188]

    При температурах выше 200° ш-полимер становится полностью растворимым. Этот процесс связан главным образом с наличием остаточной перекиси, применявшейся для инициирования полимеризации. Перекись распадается с образованием радикалов, которые отрывают атомы водорода от цепи аналогично реакции внутримолекулярной передачи, а образующийся полимерный радикал диспропорционирует. Такие реакции являются обычными в химии полимеров, в частности они были исследованы на бензольных растворах полиметилметакрилата, поли-этил- -хлоракрилата [35] и полистирола (см. ниже раздел Полимеризация—деполимеризация как обратимый процесс ). В связи с этим интересно отметить, что сополимеры винилиден-хлорида в растворе тетрагидрофурана, не распадающиеся термически по сво-бодно-радикальному механизму, быстро деструктируют иод действием радикалов, образующихся из присутствующих в растворителе примесей перекис-ного типа [36]. [c.58]

    Однако оказалось, что в реакции окисления циклогексанола кинетически равновесная концентрация циклогексанопа зависит от состава исходной смеси и она тем выше, чем выше содержание кетона в начале реакции. Об этом можно судить по кинетике накопления кислот скорость образования кислот тем выше, чем больше введено кетона Такое своеобразное кинетическое поведение кетона в этой реакции связано с двумя различными путями его расходования. Кетоп расходуется по реакции со свободными перекисными радикалами (цепным путем) и по реакции с перекисью водорода (неценным путем). Скорость реакции кетона с перекисью водорода зависит от концентрации перекиси водорода, которая тем выше, чем больше отношение снирт/кетон, и от наличия продуктов окисления циклогек-санона, ускоряющих распад перекиси водорода. Поэтому чем больше содержание кетона и исходной смеси, тем меньшую роль играет реакция его расходования с перекисью водорода и тем выше кинетически равновесная концентрация кетона в реакции окисления. Следовательно, для целенаправленного окисления циклогексанола только в циклогексанон необходимо удалять (разрушать) перекись водорода. [c.203]

    Во многих случаях полимеризащия начинается с образования в реакционной системе (тем или иным способом) свободных радикалов. Чтобы ускорить полимеризацию, к непредельным соединениям обычно добавляют небольшие количества некоторых веществ (так называемых инициаторов полимеризации), способных при умеренной температуре распадаться с образованием свободных радикалов. Широко применяют для этой цели перекись водорода и различные органические перекиси и гидроперекиси, например перекись бензоила (СбН5СОО)2- Это вещество при нагревании распадается на свободные радикалы  [c.417]

    Перекисно-ураниловый актинометр практически не изменяется при использовании, так как нужно заменять только перекись водорода, израсходованную вследствие фотохимического распада. После длительной работы раствор доводят до исходного объема отгонкой воды. Восстановления в не происходит. Если, согласно Гейдту [24], восстанавливается в то последний снова превращается в реагируя с Н О , и общий баланс процесса не нарушается. Химизм фотолиза перекиси водорода, сенсибилизированного солями уранила, еще не получил детального разъяснения. Промежуточное образование радикалов ОН доказывается гидроксилированием бензола (ср. Штейн и Вейс [25]), при этом выделение кислорода ингибируется в большей или меньшей степени. Главные продукты реакции — фенол и дифенил, в меньпшх количествах образуются пирокатехин, высшие фенолы и смо пл. [c.381]

    Автокаталитический характер окисления изонронилового спирта связан с накоплением продуктов, ускоряющих образование свободных радикалов, прежде всего перекиси водорода. Механизм образования радикалов из перекиси водорода в окисляющемся изопропиловом спирте был изучен [61] по кинетике окисления изопропилового спирта. Если перекись водорода распадается на радикалы по реакции первого порядка <5 константой Аз и практически не расходуется по другим направлениям что и наблюдается на опыте), [c.157]

    Поскольку перекись водорода в присутствии циклогексанона находится в равновесии с оксициклогексилгидроперекисью, то по мере накопления кетона равновесие все больше смещается в сторону образования оксициклогексилгидроперекиси. Оксигидроперекись быстро распадается на свободные радикалы [60]. Константа скорости ее распада к = 2,2--10 ехр (— 16 200/ДГ) сек-Ч [c.160]

    Ответ на этот вопрос заключается в существовании обратной реакции между продуктами распада под действием облучения, приводящей к образованию воды. Продукты прямой реакции, водород и перекись водорода, способны, поскольку они остаются растворенньши в воде, реагировать со свободными радикалами Н и ОН, образующимися при дальнейшем разложении молекул воды. Они ведут себя, как любое другое растворенное вещество, способное окисляться или восстанавливаться. В результате продукты прямой реакции разрушаются с образованием воды. Наиболее вероятными можно считать следующие реакции  [c.81]

    В радиационной химии значительное число работ носвящено изучению реакций, протекающих под действием ионизирующих излучений на воду и водные растворы. При изучении радиационно-химических процессов в таких системах центральное место занимает вопрос об эффективности реакций образования и распада продуктов радиолиза. Основными молекулярными продуктами радиолиза воды и водных растворов,как известно, являются водород и перекись водорода [1,2]. Естествошю,что исследование реакций образования этих продуктов и, в частности, перекиси водорода, представляет особый интерес, поскольку перекись водорода может оказывать влияние на ход радиационно-химических процессов. [c.49]

    Полимеризация эфиров метакриловой кислоты, как и свободной кислоты (см. опыт 263), протекает по гемолитическому механизму через образование свободных радикалов. Поставщиком радикалов для построения полимерной цепи является перекись (см. пояснения к опытам 18, 44, 181). Так, перекись бензоила легко распадается на свободные радикалы eHs OO-. Такой радикал присоединяется к одному из атомов углерода двойной связи, а неспаренный электрон появляется у второго из этих атомов. Образовавшийся новый свободный радикал наращивает цепь далее обычно с очень большой скоростью, пока не наступит ее обрыв в результате присоединения другой растущей цепи ( рекомбинация ) либо по другим причинам. Ингибитор, в данном случае гидрохинон, связывает свободные радикалы и обрывает рост цепи. Чем больше перекиси бензоила добавлено в мономер, тем быстрее протекает полимеризация при заданной температуре. Перекись водорода малорастворима в мономере, и полимеризация протекает с ней гораздо медленнее. [c.298]

    Ряд методов получения олигомеров с функциональными концевыми группами основан на том, что в акте инициирования при радикальной полимеризации непредельных соединений остаток инициатора входит в состав полимерной цепи, определяя природу одной из концевых групп (характер другой концевой группы зависит от механизма обрыва цепи). Для введения в олигомер реакционноспособных групп используют инициаторы, содержащие функциональные группы, не участвующие в акте инициирования. Для получения олигомеров с реакционноспособными группами на обоих концах цепи нужно применять такие мономеры, для которых обрыв цепи осуществляется путем рекомбинации макрорадикалов и скорости реакций передачи цепи через мономер и растворитель незначительны. Инициатор должен содержать реакционноспособные группы, расположенные так, чтобы при его распаде в образованных радикалах имелось по одной функциональной группе. В качестве таких инициаторов были использованы перекись водорода, у, 7 -азо-бис-(7-цианвалериа-новая) кислота перекись циклогексанона бис-(4-карбок- [c.256]

    Из других восстановителей применяется перекись водорода. Этот восстановитель интересен тем, что Н2О2, распадаясь на воду и кислород, совершенно не загрязняет золь продуктами своего распада. Норденсен детально исследовал этот метод и обнаружил и н этом случае образование зародышей и нарастание на них частиц, благодаря образованию при восстановлении пересыщенного раствора золота. Реакция идет по уравнению  [c.295]

    Химические методы инициирования радикальной теломеризации осуществляются с помощью инициаторов, т.е. веществ, способных отрывать подвижный водород от телогена и начать серию реакций, которые ведут к образованию теломера /114/ Эти вещества должны быть достаточно активны, чтобы легко распадаться на свободные радикалы при реакционных условиях. В качестве инициаторов обычно используют различные перекиси как-то гидроперекись кумола, гидроперекись тетралина, перекись водорода, перекись дитретично-го бутила, гидроперекись третичного бутила, перекись бензоила, бис-2-фенил-пропил-перекись-2, перекись натрия, перекись ацетила, перацетат третичного бутила, персульфат калия, -азо-диизобутиронитрил и другие подобные соединения. Предпочтительны перекиси, не содержащие других атомов, кроме углерода, водорода и кислорода, например, гидроперекись кумола. [c.44]


Смотреть страницы где упоминается термин Водород, образование при распаде перекисей: [c.314]    [c.268]    [c.197]    [c.48]    [c.40]    [c.256]    [c.20]    [c.141]   
Промежуточные продукты и промежуточные реакции автоокисления углеводородов (1949) -- [ c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода ион перекисью водорода

Водорода перекись



© 2025 chem21.info Реклама на сайте