Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители получение их окислением углеводородов

    Полиметилбензолы, за исключением дурола, необходимо окислять в жидкой фазе. Причем без применения полярного растворителя можно окислить с высоким выходом только одну метильную группу. Для получения поликарбоновых кислот окисление следует вести 30—50%-ной азотной кислотой (окисление углеводорода или монокарбоновой кислоты) либо кислородом воздуха в среде полярного растворителя (например, при использовании универсального МС-процесса). Последнее направление является основным в синтезе поликарбоновых кислот бензольного ряда. Окислением в газовой фазе можно получать только пиромеллитовый ангидрид из дурола, остальные полиметилбензолы окисляются с очень низкой селективностью, переходя в продукты полного сгорания. [c.88]


    О механизме распада промежуточных продуктов, образующихся в процессе окисления, можно судить по кинетике расходования исследуемого вещества в растворителе в атмосфере азота, т. е. в условиях, когда образование этого вещества из исходного углеводорода невозможно [66]. Следует иметь в виду, что полученные таким образом кинетические кривые распада промежуточного продукта не могут полностью отождествляться с кинетическими кривыми распада этого продукта в условиях окисления, так как при этом не учитывается ни влияиие кислорода на процесс распада, ни то, что состав растворителя, в котором изучается распад промежуточного продукта, может оказывать весьма существенное влияние на кинетику процесса. Для наибольшего приближения к условиям окисления распад промежуточных соединений весьма часто изучают в среде окисленного углеводорода. С этой целью процесс окисления углеводорода прерывают через некоторое время после начала реакции, кислород тщательно выдувают из системы и в атмосфере чистого азота определяют изменение концентрации исследуемого вещества, образовавшегося при окислении углеводорода до момента удаления кислорода. [c.48]

    В последнее время разработаны дещевые и удобные методы получения алифатических ненасыщенных альдегидов (акролеина, метакролеина, кротонового альдегида и др.) окислением углеводородов нефти [96, 124]. Они стали наиболее доступными продуктами для синтеза непредельных кислот. В литературе (главным образом патентной) предлагаются три основных метода жидкофазного окисления алифатических ненасыщенных альдегидов при низких температурах (20—60°) в присутствии солей переходных металлов [125— 128], гетерогенного серебряного катализатора [129—131] и ванадиевой кислоты [132, 133] в различных растворителях (углеводородах, органических кислотах, эфирах, кетонах и т. д.). [c.123]

    Смесь кислот, полученных при парофазном окислении углеводородов в малеиновый ангидрид, можно анализировать методом распределительной хроматографии. В качестве носителя используется кремневая кислота, пропитанная серной кислотой. Подвижным растворителем служит хлороформ, а полярной фазой — бутиловый спирт [126]. По результатам титрования элюируемых проб строят хроматограмму и рассчитывают состав кислот в смеси. [c.70]


    Технические оксикислоты и собственно оксикислоты, полученные окислением твердых и жидких углеводородов нефти, не способны к высыханию (пленкообразованию) и не растворяются во многих органических растворителях или растворяются с трудом. [c.211]

    Кроме того, имеется положительный опыт применения- процесса гидроочистки до и вместо селективной очистки. Энергетические масла, например, из восточных нефтей Советского Союза, получаемые очисткой селективными растворителями, не обладают требуемой стабильностью против окисления. Применение гидрирования, наоборот, приводит к получению в этом случае высокостабильного масла. Масла, очищенные селективными растворителями, обладают более однородным составом и содержат меньше сернистых соединений, смол и полициклических ароматических углеводородов, чем неочищенные продукты тех же пределов выкипания. Это обстоятельство приводит к необходимости проводить гидрирование рафинатов в более мягких условиях. [c.367]

    Важное значение имела разработка технологии окисления парафина и петролатума для производства присадок к маслам для новой техники, консервационных смазок для защиты от коррозии оборонной техники и продуктов специального назначения. За работы в области технологии окисления твердых углеводородов и практическое применение продуктов окисления Н. И. Черножуков вместе с соавторами в 1947 г. удостоен Государственной премии. В соавторстве им разработана рецептура и технологии производства антикоррозийных присадок, консервационных смазок, масел для гидросистем и других объектов. Н. И. Черножуков считал необходимым использование гидрогенизационных процессов для подготовки масляного сырья к переработке с целью получения высококачественных масел из нефтей любых месторождений. Последние работы Николая Ивановича по технологии нефти были посвящены изучению растворимости углеводородов высококипящих фракций в различных растворителях и исследованию возможности интенсификации процессов деасфальтизации гудронов, депарафинизации рафинатов и обезмасливания твердых углеводородов сернистых нефтей, а также примене- [c.12]

    Синтез полимеров состоит из двух этапов получения мономеров и превращения их в полимеры. Основным источником мономеров является нефтехимический синтез, задача которого состоит в получении различных химических продуктов из нефти и газов (природных и попутных) синтетических моющих средств, растворителей, присадок, топлив, смазочны.х масел, аммиака, водорода и многих других. В промышленности нефтехимического синтеза используют в больших масштабах предельные, непредельные, ароматические и, в меньшей степени, нафтеновые углеводороды. При переработке нефтехимического сырья применяются процессы дегидрирования, изомеризации и циклизации, алкилирования, полимеризации и конденсации, а также галогенирования, нитрования, сульфирования, окисления и т. д. [c.384]

    Актуальность темы. Одним из распространенных способов получения органических соединений различного строения является их окислительная трансформация под действием неорганических и органических окислителей. Это объясняет постоянный, неослабевающий интерес исследователей, работающих в области органической химии, к изучению механизмов окислительных превращений, поиску новых, высокоэффективных окислителей. С этой точки зрения значительный интерес представляет диоксид хлора, широко применяемый в промышленности в качестве отбеливателя, а также в водоочистке. Область применения определила направление исследований реакций СЮ2. Это, прежде всего, реакции с основными загрязнителями питьевой воды - фенолами, углеводородами и т.д. - в водных растворах при рН=3 - 9 и крайне низких концентрациях окисляемых веществ (Ю" - моль-л ). Сведения о реакциях СЮ2 в органических растворителях практически отсутствуют, что ограничивает его применения как потенциального реагента. Поэтому исследование реакций окисления органических соединений диоксидом хлора в органических растворителях является интересной и актуальной задачей. [c.3]

    Приведенные литературные сведения о влиянии растворителей на процесс окисления, полученные, как правило, при неглубокой конверсии углеводородов, позволяют сделать ряд выводов. [c.35]

    Поэтому единственным по-настоящему перспективным способом получения монокарбоновых кислот из ароматических углеводородов оказывается каталитическое окисление в жидкой фазе. Из двух вариантов — окисление в среде окисляемого углеводорода и окисление в среде полярного растворителя— для приготовления монокарбоновых кислот предпочтителен первый вариант. Окислением в полярном растворителе (уксусной кислоте [И, 12], нитробензоле [13], масляной кислоте [14—17] и других) преимущественно получают ди- и поликарбоновые кислоты из соответствующих алкилароматических углеводородов. [c.148]


    Известно применение инертных растворителей для окисления углеводородов с целью стабилизации образующихся гидроперок-сидов 5]. И.ми могут быть ароматические углеводороды, нитрилы и др. Поэтому с целью повышения устойчивости ГП МЦП окисление метилциклопентана проводили в бензоле, массовая доля которого в реакционной смеси изменялась от 50 до 80%. Изучено влияние массовой доли бензола в исходной смеси (см. табл. 1) и температуры реакции при выбранной массовой доле растворителя (табл. 2). Действительно, в бензоле окисление идет более селективно по гпдропероксиду, чем без растворителя. В результате про-веденных исс, 1едований для получения ГП МЦП рекомендуется окисление метилциклопентана в бензоле (массовая доля последнего 68 о) при температуре 120 °С. [c.57]

    Эти углеводороды могут быть использованы в следующих направлениях фракции, перегоняющиеся до 180°, в качестве растворителей различных марок (нетролейный эфир, экстракционный бензин, бензин калоша , уайт-спирит и др.), фракция 180—230° в качестве высокосортного осветительного керосина, фракция 230—320° в качестве сырья для окисления в высокомолекулярные спирты с последующим получением сульфоэфиров, соли которых могут быть успешно использованы для получения тонких моющих средств. Фракция 320—450° является сырьем для получения окислением кислот жирного ряда. Фракции, кипящие выше 450° (синтетические церезины), могут быть использованы для пропитки картона, бумаги, дерева, как водонепроницаемые или изолирующие покрытия, а такнге как диэлектрики. [c.574]

    Кобальт-бромидный катализатор представляет собой смесь солей ко льта и брома, в присутствии которых проводится окисление углеводородов кислородом. Растворителем служит уксусная кислота или смесь карбоновых кислот. Катализатор используется в технологии получения арилкарбоновых кислот путем окисления метилароматических углеводородов (толуола, и-ксилола, полиметилбензолов). Катализатор был открыт еще в 50-х годах, механизм катализа изучали многие исследователи (Д. Равенс, И. Камня, И.В. Захаров, Д.Г. Дигуров, Ю.В. Геле-тий и др.). Экспериментально проработанная схема действия катализатора была предложена И.В. Захаровым. [c.520]

    Значение жидкофазного окисления трудно переоценить. В настоящее время оно приводит к получению на основе распространенного нефтяного или синтетического (по Фишеру) па-рафинного сырья ценных кислородсодержащих продуктов. Последние применяются в производстве синтетических олиф и лаков, пластификаторов для каучуков и пластмасс, эмульгаторов для горнообогатительной, металлургической, машиностроительной и других отраслей промышленности, органических растворителей, синтетических душистьгх и лекарственных веществ, а главное — в производстве высококачественных жидких и консистентных смазочных материалов для всех видов транспорта и промышленности. При этом продукты окисления углеводородов используются в самом широком диапазоне по степени окисле- [c.325]

    Полученный экспериментальный материал позволяет сделать следующие выводы. Подобран растворитель и разработана методика анализа трех фракций оксидата, полученного в процессе окисления углеводородов С5—С ,. Показана целесообразность прт1енеиия в газо-жидкостной хроматографии цветных химических реакций для идентификации кислородсодержащих соединений. [c.174]

    В качестве углеводородных загустителей ПИНС могут быть использованы самые разнообразные восковые составы и сплавы— для пищевой промышленности (№ 36, СКФ-15), для флег-матизаторов (СФ-3 и др.), а также воски, используемые в шинной, резинотехнической и других отраслях промышленности ОМСК-1, ОМСК-7, ЦСМ-1, паразон 5Н, ЗВ-1 и др. Технология получения и химический состав твердых углеводородов защитных восков приведены в работах [98]. Показана перспективность получения твердых углеводородов и защитных композиций на их основе из остаточных продуктов переработки западно-сибирских нефтей. Из смесей масла, петролатума, церезина, парафина с добавкой полиизобутилена и окисленного церезина (присадка МНИ-7) вырабатывают защитные смазки ВТВ-1 и ВТВ-2, используемые для защиты от коррозии электроаппаратуры и электрооборудования автомобилей семейства Жигули . Церезин или воск Совцернн с полимерными добавками служат основой для защитных восковых составов изоляционного типа, наносимых из растворителей ПСС-5, ПСС-6, ПЭВ-74. [c.145]

    Необходимо отметить, что принятые в настоящее время названия кислот, получаемых окислением углеводородов, не отвечают их строению и различию межд ними. Поэтому мы считаем целесообразным смесь кнс- ют, полученных при окислении углеводородов в статических условиях, называть эфирокислотами, часть их, растворимую в неполяр ых растворителях,--эфирокарбоновыми кислотами, а нераствор мую часть—эфиро-оксикислотами. [c.162]

    Содержание главы 1061. Очистка ири помощи окисления 1061. Получение спиртов 1063. Получение растворителей и моторного топлива 1065. Получение эмульгаторов 1068. Получение искусственной олифы н сикативов 1069. Получение смазочных веществ 1070. Получение восковки смол 1071. Получение пластических масс и сходных с ними веществ 1073. Получение отдельн1.1х веществ сожжением под поверхностью 1074. Сульфирование и хлорирование окисленных углеводородов 1075. Разнообразные продукты 1076. Бактериальное окисление нефти 1078. [c.642]

    Растворители и моторное топливо удобнее рассматривать одновременно, так как oh i получаются путем окисления, при котором из высококипящих углеводородов образуются низкокипящие. Получение моторных топлив связано с образованием ненасыщенных углеводородов, спиртов и в некоторой мере эфиров, альдегидов, кетонов и сложных эфиров. Все эти продукты могут образовываться непосредственно при окислении углеводородов или путем взаимодействия продуктов окислеиия (например эфиры могут образоваться путем конденсации альдегидов самих с собою или путем конденсации спиртов с кислотами) такие вешсства повышают антидетонационные качества моторного топлива. Свойства поучаемого растворителя зависят от присутствия спиртов, эфиров, альдегидов к кетонов [c.1065]

    Жидкофазное окисление органических соединений молекулярным кислородом широко распространено в природе и имеет большое значение для различных отраслей народного хозяйства. Этот процесс составляет основу многих новых технологических способов получения важных химических продуктов. В настоящее время такие ценные кислородсодержащие соединения, как синтетические жирные кислоты и спирты (для замены пищевых жиров), уксусная, адипииовая и терефталевая кислоты и их эфиры (для производства искусственного и синтетического волокна), фенол и ацетон (главные виды сырья для пластических масс), карбонильные и эфирные соединения (как растворители и опецдобавки), получают в промышленности окислением углеводородов кислородом воздуха в жидкой фазе, т. е. наиболее прямым и дешевым путем. [c.3]

    Жпдкофазное окисление углеводородов молекулярлым кислородом имеет широкое распространение как способ получения многих кислородсодержащих соединений. Применение солевых катализаторов в комбинации с растворителями и добавками позволяет окислить алкилароматические углеводороды с большими степенями превращения и с получением весьма ценных продуктов [1]. Проводились исследования также по жидкофазно.му окислению диэтилбензолов [2—6]. Однако этот процесс исследован недостаточно. Имеются работы только по дву-хстадийному окислению [7, 8]. [c.29]

    Выдающимся достижением является создание в СССР в 1932—1935 гг, впервые в мире промышленного производства синтетического каучука по методу С. В. Лебедева. Замечательные работы советских ученых—А. Е. Фаворского (в области производных ацетиленовых углеводоров), Н. Д. Зелинского (по гидрированию и циклизации углеводородов). Н. Н. Семенова (изучение цепных реакций окисления углеводородов), П. Г. Сергеева (по алкилированию бензола, получению гидроперекисей алкилбензо-лов и их переработке) и др, позволили создать научную основу для организации производства разнообразных синтетических веществ. В Научном институте органических полупродуктов и красителей (НИОПиК). наряду с методами синтеза ряда красителей, были разработаны методы производства различных соединений ароматического ряда, В Государственном институте прикладной химии (ГИПХ) созданы методы производства различных хлорорганических растворителей и полупродуктов, требуемых для производства каучуков и пластических масс. На опытно-промышленной установке разработаны методы использования газов крекинга и пиролиза нефти в производстве крупно-тоннажных продуктов органического синтеза. Ряд других научно-исследовательских институтов и опытных заводов разработали и продолжают разрабатывать многочисленные новые методы синтеза важных органических веществ. [c.297]

    ЭТО прямой путь получения мономеров для промышленности искусственного волокна, пластических масс, искусственного каучука это простой способ получения моющих средств, высококачественных селективных растворителей и многих других ценных химических продуктов, В соответствии с решением XXI съезда партии в значительной мере возрастет объем и номенклатура химических продуктов, которые будут получать путем окисления углеводородов. Химики, в частности, работающие в области изучения процессов окисления, должны внести существенный вклад в разработку наиболее эффективных принципов осуществления соответствующих технологических процессов. Для этого прежде всего необходимо объединение усилий химиков-учеиых и инженеров, работающих в различных научно-исследовательских учреждениях, в заводских лабораториях и на заводах в разных городах СССР. Назрела настоятельная необходимость в той или иной форме обобщить многолетний опыт большого коллектива химиков, занятых разработкой проблемы окисления углеводородов. [c.4]

    Такого рода исследованию были подвергнуты спирты, полученные окислением н. гексадекана, для чего они были дегидратированы над алю-мосиликатным катализатором в среде ксилола при температуре около 140°. Образовавшиеся при этом непредельные соединения были освобождены от растворителя путем отгонки последнего в вакууме, очищены от следов ксилола адсорбцией на силикагеле и перегнаны при 1 мм рт. ст. Выделенный углеводород имел йодное число 109,3. (С еНзг-Выч. 113,0). [c.164]

    Фенол, обладая большими дисперсионными свойствами, растворяет больше парафино-нафтеновых и моноциклических аромати-чеЬких углеводородов, переводя их в. экстракт Наряду с этим экстракты фенольной очистки отличаются и большим содержанием смолистых веществ, что приводит к получению рафината с более высоким индексом вязкости при меньшем его выходе. В связи с этим при выборе растворителя большое значение имеют качество сырья и получаемого продукта. Так, при переработке масляных фракций с большим содержанием парафино-нафтеновых углеводородов целесообразно при селективной очистке использовать фенол, а в случае высокоароматизированного сырья — фурфурол. В то же время рафинаты фурфурольной очистки содержат больше сернистых соединений, особенно сульфидов, которые являются естественными антиокислителями [43, 44]. Поэтому при производстве масел, к которым предъявляются специальные требования в отношении стабильности против окисления, например энергетических масел из сернистых нефтей, более эффективна фурфурольная очистка. [c.94]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Рассмотренный материал по микробиологическому окислению нефтей нуждался в дополнительных доказательствах того, что нефти типа Б были когда-то нефтями типа А , т. е. они содержали н.алканы и утратили свое химическое лицо вследствие процессов биодеградации. Такие данные были получены при исследовании продуктов пиролиза асфальтенов [31—33]. Было найдено, что асфальтены — остатки не превратившегося в нефть керогена — содержат информацию о всех типах структур, характерных для данной нефти и образовавшихся при ее генезисе. Это оказалось ценным, особенно после того, как было доказано, что углеводородная часть асфальтенов не подвержена микробиологическому окислению [32, 33]. При нагреве (300° С) в течение нескольких часов асфальтены образуют углеводороды ( 20%), газ и нерастворимый в обычных растворителях пиро-битум. Образующиеся углеводороды можно исследовать обычными способами (ГЖХ и масс-спектрометрия). Анализируя углеводороды, полученные из асфальтенов нефтей типа Б, можно определить первоначальный химический состав этой нефти, в том числе такие важные геохимические показатели, как распределение нормальных алканов и изопреноидов, соотношение пристан/фитан, и относительное распределение стеранов и гопанов [33, 34]. [c.247]

    Столь быстрый рост производств индивидуальных углеводородов оказался возможным потому, что современные методы производства различных видов качественного моторного топлива и смазочных масел мало отличаются от имеющих уже известную промышленную историю методов получения синтетического каучука, спиртов и других растворителей. Кроме того, для получения и тех и других видов продукции (т. е. продукции как топливного, так и нетопливного назначения) используется однотипная аппаратура (зачастую это аппаратура высоких давлений), потребляется одно и то же исходное сырье (нефть или уголь) и часто применяются одни и те же или родственные методы синтеза — полимеризация, алкилирование, гидрирование, а в производстве полупродуктов нередко также окисление или галондирование. Таким образом, основной органический синтез, включающий изготовление 1) авиабензина, 2) полупродуктов производства взрывчатых веществ, 3) каучука и пластических масс,— по существу является единым комплектом смежных производств. Начальным периодом развития )той отрасли химической промышленности следует считать годы нс рвой мировой войны — 1914—1918 гг. [c.455]

    Потребность в бензойной кислоте резко возросла после организации на ее основе производства фенола, капролактама и, в меньших масштабах, терефталевой кислоты. В связи с этим было создано крупное промышленное производство бензойной кислоты из толуола жидкофазным окислением кислородом воздуха. Применявшиеся ранее способы получения бензойной кислоты — гидролизом трихлортолуола, декарбоксилированием фталевой кислоты, окислением толуола азотной кислотой, перманганатом калия, хромовой смесью — непригодны для крупного промышленного производства и представляют лишь исторический интерес. Жидкофазное окисление толуола осуществляется в среде углеводорода либо в среде полярного растворителя [40, с. 209—212]., [c.69]

    Этот метод был испытан в Германии процесс проводили следующим образом [17]. Полученные при окислении аммиака газы, содержащие двуокись азота, пропускали в течение 8—12 час. в перемешиваемую смесь парафина и нитрозилсерной кислоты, нагретую до 125°. Продукты реакции омыляли водным раствором щелочи. Неизмененный парафин экстрагировали растворителем и возвращали обратно в процесс. Из синтетического парафина (т. пл. 90—95°), состоящего из С4ц-углеводородов (см. стр. 57 исл.), были получены кислоты со средней длиной цепи в 20 атомов углерода. Если непрореагировавший парафин возвращать в процесс, то выход кислот равняется 80% веса исходного сырья (72% теоретического выхода, если принять, что из 1 моля парафина образуется 2 моля кислоты). [c.76]

    Рассматривались [121] некоторые проблемы промышленного внедрения жидкофазного окисления нефтяных газов, в том числе бутана. В патентной литературе [185—188] также приводятся примеры жидкофазного окисления циклических и насыщенных углеводородов нормального строения для получения смесей кислородных органических соединений. На заводе Селаниз корпорёйшн в Пампа, Техас, работает промышленная установка жидкофазного окисления, на которой осуществлено окисление бутана [124] в растворителе путем барботажа воздуха через реакционную смесь в присутствии катализатора. Жидкофазное окисление бутана представляет сложную последовательность реакций, приводящих к образованию кислот, альдегидов, кетонов, спиртов и газообразных продуктов разложения в качестве основного продукта реакции образуется уксусная кислота. Следует учитывать, что дальнейшее окисление и конденсация продуктов реакции приводят к образованию многочисленных других соединений. [c.212]

    В результате окисления непредельных углеводородов образуются окиси олефинов - сырье для получения полимеров. К таким полимерам можно отнести и полиалкиленкарбонаты - согюлимеры окисей олефинов и СО2, способные сгорать без зольного остатка до СО2 и воды. При пиролизе из них с количественным выходом образуются циклические алкиленкарбонаты -перснективные реагенты для органического синтеза и растворители. [c.3]

    Конкретное применение установленных закономерностей может быть показано на следующих примерах. При получении, дорожных битумов на базе отходов масляного производства ставропольской и смеси грозненских нефтей экстракт очистки парными растворителями концентрата мазута смеси грозненских нефтей, (табл. 3) в смеси с экстрактом фурфурольной очистки автолового дистиллята ставропольской нефти был подвергнут окислению с целью увеличения А/С и уменьшения доли ароматики в масле. Полученные битумы характеризовались высокой дуктильностью и низкими значениями температуры размягчения и пенетрации при 0°С. Это говорит о недостаточном изменении природы сырья в результате окисления, т. е. об ограниченных возможностях процесса окисления. Не дало положительных результатов и переокисление экстракта, полученного при очистке парными растворителями, с последующим разбавлением экстрактом очистки автолового дистиллята битумы обладали теми же недостатками. Стандартные качеств битумов были получены лишь после существенного изменения природы масляной части битума — за счет ввода дополнительного масляного компонента со значительным содержанием парафинонафтеновых углеводородов (табл. 3 и 4). [c.55]

    Повидимому ди- и тринитропроизводные толуола образуются гораздо легче, чем соответственные производные бензояа получить тринитробензол из бензола нитрованием очень затруднительно. Значигельно более удобный способ его получения состоит в окислении тринитротолуола с последующим декарбо-ксилированием образующейся тринитробензойной кислоты (см. стр. 57 и 275). Динитробензол образуется при действии горячей дымящей азотной кислоты на бензол, тогда как динитроксилолы гладко получаются из о-ксилола при действии избытка дымящей азотной кислоты при 25° в. Динитромезитилен получается при прибавлении углеводорода по каплям к незначительному избытку дымящей азотной кислоты при охлаждении ледяной водой 2 . Получение же мононитромезитилена довольно затруднительно и удается лучше всего при применении в качестве растворителя ледяной уксусной кислоты. [c.64]

    Получение значительных количеств сульфонов и их дисульфокислот— недостаток сульфирования с помощью 50з. Хотя сульфирование в этом случае менее обратимо и обеспечивается вы- сокая степень превращения, приходится считаться с опасностью окисления органических веществ под действием ЗОз, сильным нагревом реакционной массы и другими явлениями, осложняющими технологический процесс. Тем не менее способ несомненно интересен, так как в близкой перспективе производство 50з значительно увеличится, а цена ее соответственно уменьшится. Поэтому уделялось и уделяется значительное внимание разным средам, в которых возможно проводить сульфирование этим агентом. Такими средами могут быть различные органические растворители, жидкая двуокись серы [24—26] наконец, имеются работы по сульфированию комплексами трехокиси серы [27, 28]. Эти комплексы пригодны для получения со значительными выходами сульфокислот многих легко окисляющихся и нестабильных веществ. Для сульфирования ароматических углеводородов этот [c.132]

    Жидкофазное окисление толуола используется в промышленности для производства бензойной кислоты [18, с. 210]. Окисленш толуола ведут при 150—230 °С и давлении 7—35 кгс/см (опти мальное давление 21 кгс/см ) в растворе бензойной кислоты, со держащем менее 5% толуола. Катализатором являются кобаль товые или марганцевые соли органических кислот, промотирован ные соединениями брома. Выход кислоты в этом процессе близор к теоретическому. Завод, работающий в Англии по этой техноло ГИИ, мощностью 26,5 тыс. т/год был построен в 1964 г. Исполь зование полярного и зачастую агрессивного растворителя услож няет подбор материалов для изготовления аппаратуры и удоро жает последнюю. Значительны затраты и на регенерацию раство рителя и катализатора, расход которого больше, чем при окис лении без растворителя [19]. Поэтому, если жидкофазное окисле ние в среде полярных растворителей и является одним из наибо лее надежных и распространенных способов синтеза терефталево кислоты, то окисление в среде углеводорода, по-видимому, лучши способ получения монокарбоновых кислот. Исключение состав ляет получение нафтойных кислот. При окислении соответствуй щих метилнафталинов в расплаве выход кислот незначителен велико смолообразование. Единственным надежным способом окг зывается окисление в среде уксусной кислоты в присутствии ац тата кобальта, промотируемое бромидами [20, 21]. [c.149]

    Отгоняемые из нефтешлама в реакторе окисления легкие углеводороды с температурой конца кипения 250 °С после конденсации используются в качестве растворителя при обезвоживании нефти. Углеводородный конденсат используется как топливо в теплопарогенераторе. Выход целевых продуктов из шлама проектного состава вяжущего битумного материала — 30 масс. %, углеводородного конденсата (черного соляра) — 12 масс. %. При окислении шлама НГДУ Первомайнефть был получен битумный вяжущий материал, близкий по показателям, за исклю- [c.322]


Смотреть страницы где упоминается термин Растворители получение их окислением углеводородов: [c.175]    [c.988]    [c.138]    [c.185]    [c.190]    [c.185]    [c.241]    [c.272]    [c.222]    [c.440]    [c.417]    [c.31]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1065 ]




ПОИСК





Смотрите так же термины и статьи:

окисление получение



© 2025 chem21.info Реклама на сайте