Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен солями

    При высоких давлениях, в особенности когда плотность газа становится сравнима с плотностью жидкости, образование газовых растворов сопровождается изменением объема и тепловым эффектом. Механизм растворения веществ в сжатых газах принципиально не отличается от механизма растворения в жидкости. В сжатых газах растворение веществ достигает значительных величин. Так, при l 10 Па и 100"С азот растворяет до 10 молярных долей бензина (%), а этилен при 2,4-10 Па и 50° С — до 17 молярных долей нафталина (%). Сжатые газовые растворы используются в технике для синтеза некоторых минералов. Например, растворимость кварца при высоких температурах в сжатом водяном паре, насыщенном некоторыми солями, используется для выращивания крупных (массой до нескольких килограммов) кристаллов. [c.126]


    Каталитические системы Циглера — Натта на основе алюми-нийорганических соединений и солей переходных металлов нашли, как известно, широкое применение в мировой практике для синтеза полиолефинов, а также этилен-пропиленовых и этилен-про-пилен-диеновых каучуков. Резины из указанных каучуков характеризуются высокой стойкостью к окислению, сопротивлением тепловому старению при достаточно высоком комплексе физикомеханических свойств. [c.12]

    Некоторые соли, главным образо.м соли кальция, магния и алюминия, по >1(. Сандерану [2], очень пригодны для дегидратации этилового спирта в этилен (табл. 41). [c.451]

    Характерная черта современной химической промышленности — многосвязность ее элементов(подотраслей) со сравнительно небольшим числом отдельных видов сырья, например, с нефтью, природным газом, каменной солью и т. д. н полупродуктами, например, с аммиаком, этиленом, серной кислотой и другими, а также с энергоносителями. При этом химическая промышленность является не только крупным потребителем энергии различных видов (электрической, тепловой), но и крупным производителем различных видов энергии, т. е. ХТС — своеобразный энерготехнологический комплекс (рис. 1.2). [c.8]

    Этилен реагирует с солями насыщенных карбоновых кислот, содержащих, по крайней мере, один атом водорода при -углеродном атоме [30]. Этилирование, катализируемое щелочными металлами и их производными, протекает под давлением этилена при 150—250 °С и может быть представлено реакцией  [c.173]

    Для практической реализации этих наблюдений необходимо было применять соли одновалентной меди в виде растворов. Разработаны были методы, позволяющие таким способом выделять этилен из определенных смесей углеводородных газов. Лучше всего применять те же соли одновалентной меди, которые используют для поглощения окиси углерода. Так, например, 1 л аммиачного раствора формиата и карбоната меди [19] определенного состава поглощает [c.176]

    Большой интерес представляет присоединение к олефинам солей металлов. Так, этилен присоединяет хлорид и бромид закисного железа, хлористую платину и хлористый иридий  [c.67]

    Серная кислота. Этилен не полимеризуется в присутствии серной кислоты, потому что образуются устойчивые этилгидросульфат и этил-сульфат. Однако этилен полимеризовался ири обработке его 2 %-ным раствором сульфата ртути и 5 %-ным раствором сульфата меди в 95 %-ной серной кислоте [11]. В присутствии этих солей ссрнан кислота поглощала этилена в 100 раз больше, чем в их отсутствии. При стоянии в течение некоторого времени раствор расслаивался на два слоя верхний — углеводородный и нижний — пастообразный. Если небольшое количество пасты сразу же смейать с чистой серной кислотой, то смесь приобретает максимальную способность к поглощению этилена. Эта активность катализатора постепенно уменьшалась и совершенно терялась через 24 часа. Углеводородный слой состоял из смеси предельных углеводородов, включая парафины и циклопарафины. Непредельные соединения, напоминающие углеводороды с открытой цепью и циклические терпены, также были выделены при разбавлении водой сернокислотного слоя [3]. [c.190]


    Этилен, соль насыщенной карбоновой кислоты, содержащей I атом Н у а-С-атома Продукт этилирова-ния Li в вазелиновом масле. Na, осажденный на AI2O3, NaH или NaNH повышенное давление, 150 — 200° С [168] [c.20]

    Считается, что С Н является, главным образом, этиленом. Соль вводилась при комнатной температуре в виде струи раствора углекислого натрия. Количество введенных паров воды точно не известно, но вероятно, что смесь была близка к насыщению. Все измерения производились с богатыми смесями. На фиг. 62 приведены вычисленные авторами данной книги кривые теоретических значений температур сухих и насыщенных газовых смесей вышеуказанного состава. Для каждой из экспериментальных точек температур пламени указана средняя линейная скорость газового потока в см-сек при которой производились измерения. Следует отметить, что точки ложатся как ниже, так и выше теоретической кривой и что это зависит от скорости газового потока. Чем ближе состав смеск к стехиометрическому, тем большее значение скорости потока требуется, чтобы поднять температуру данной смеси до или выше значений теоретической кривой. Это может быть объяснено тем, что при больших скоростях горения высота конусов уменьшается, слои сгоревшего газа приближаются к сетке и соответственно увеличиваются потери тепла. Следует отметить, что некоторые точки ложатся значительно выше теоретической кривой, что опять указывает на явление задержки Бозоуждения. Минковскчй с сотрудниками не знали, что [c.363]

    В специальных случаях выделение определенных олефинов из газовых смосой может производиться при помощи селективных растворителей. Так, из 1 аза, богатого этиленом, последний можно выделить промывкой раствором медпоп соли под давлепием. Растворимость олефинов в этаноламиновом растворе одпохлористой меди при 20° представлена в табл. 40. [c.74]

    Хранение циркулирующего раствора МЭА в емкостях без подушки 1шертного газа приводит к тому, что при взаимодействии МЭА с кислородом и СО2, содержащимися в воздухе, образуются нежелательные побочные соединения, наиример углекислые соли этилен-диамина. Внешне процесс карбонизации характеризуется потемнением МЭА. В результате длительного контакта с воздухом он становится почти черным. Примеси углекислого газа усиливают сероводородную коррозию, особенно при повышенных температурах, как это имеет место в рибойлере и теплообменниках раствора МЭА. [c.150]

    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

    Фос( )орная кислота, жидкий катализатор. Действие фосфорной кислоты на этилен при обычном давлении изучалось Мюллером [54]. Поглощение этилена фосфорной и нирофосфорной кислотами при 115—145° идет очень медленно. Так, например, 1200 мм этилена поглощалось в течение 17 дней, при этом образовалось всего лишь 1,8 з моноэтилового эфира фосфорной кислоты и жидких угловодородов. Повторение этой работы [22 а] подтвердило образование моноэтилфосфата путем превращения этого эфира в его бариевую соль. [c.194]

    Катализаторы. Как уже упоминалось выше, кислотные катализаторы можно подразделить на два класса соли галоидоводородных кислот тина Фриделя —Крафтса и кислоты, способные к переносу протона. Из последнего класса для промышленных процессов алкилирования предложены два катализатора — серная кислота и фтористый водород как наиболее подходящие, так как они являются жидкостями и обращение с ними проще. Однако алкилирование этиленом в их присутствии проходит нелегко, вероятно, вследствие устойчивости образующихся нри этом сложных этиловых эфиров. Этилирование изобутана проходит с исключительно высоким выходом в присутствии хлористого алюминия и некоторых других катализаторов типа катализаторов Фриделя—Крафтса. Разработан промышленный процесс производства 2,3-ди1 етплбутана по [c.309]


    Сендерс и Додж [46] рассмотрели термодинамические данные по гидратации этилена и пришли к следующему заключению Ясно, что в настоящее время (1934 г.) невозможно получить константу равновесия, отклоняющуюся от теоретической менее чем в сто раз . Они изучали гидратацию этилена в паровой фазе при 360—380° и давлениях от 35 до 135 ат над окисью алюминия и окисью вольфрама в качестве катализаторов. На основании своих результатов и результатов других исследователей они пришли к выводу, что еще не найден активный катализатор для реакции гидратации. Выдано большое количество патентов по гидратации этилена в присутствии кислых солей и фосфорной кислоты на носителях [39] в паровой фазе при высоких температурах и давлениях. Один из таких процессов, в котором в качестве катализатора используется фосфорная кислота, применяется в промышленности. Этилен может реагировать с разбавленной 10 %-ной серной кислотой при температурах 240—260° и давлениях около 141 кг/см , при этих условиях образуется равновесная смесь этилена, этанола и этилового эфира. Спирт или эфир мон<ет быть возвращен в процесс для получения другого продукта, но технические трудности процесса помешали его промышленному использованию [29]. [c.355]

    Скорость абсорбции увеличивается в присутствии различных солей, причем наиболее эффективными катализаторами являются сернокислая и хлористая соли закиси меди. В опытах при низких температурах катализаторы брались в количестве 1—5%. В присутствии 5% закиси меди этилен быстро абсорбируется 95%-ной серной кислотой при температуре 40°, образуя этилсерную кислоту с выходом 94%. В случае применения ртутного катализатора и соли закиси меди абсорбция происходит даже при более низких температурах. Эффективным катализатором является также сернокислая соль двухвалентной меди [180а]. В общей схеме [1806] удаления этилена из светильного газа путем абсорбции этилена кислотой крепостью 66° Вё в качестве катализатора предложено употреблять смесь 1% ртути с ванадиевой, урановой или молибденовой кислотами. В присутствии пенообразующего вещества каталитическое действие оказывают также коллоидное серебро и серебряные соединения [181]. Применяя катализаторы, можно вести абсорбцию при температуре реакционной смеси не выше 35° и таким образом избежать образования изэтионовой кислоты. Описана полупроизводственная абсорбционная установка [182], работающая с применением медного катализатора. Позднее [183] предложены некоторые другие соединения, ускоряющие процесс абсорбции. Катализаторы увеличивают только скорость абсорбции, но не влияют на ее полноту [184]. [c.35]

    Хлористая медь и другие соединения меди весьма полезны для выделения и очистки диенов с сопряженными двойными связями. По Френсису в 1951 г. в США был выдан 21 патент на процесс поглощения олефинов модными солями [5]. Твердая безводная полухлористая медь образует твердый комплекс с этиленом [231, а также с пропиленом и изобутиленом, однако эти комплексы оказываются стойкими только нри высоком парциальном давлении этих олефинов. Водный раствор полухлористой меди и хлористого аммония образует комплексы с циклопентеном и циклогексеном, которые разлагаются приблизительно при 90 с выделением олефинов [18]. Было предложено применять водные растворы медных солей, содержащие соли дныетиланплина, для поглощения этилона из газов с 10% этилена для нолучения концентрированного этилена рекомен/ овалось нагревание [12]. [c.388]

    Алкилирование пропиленом можно осущ,ествить при значительно более мяпшх условиях, чем алкилирование этиленом. Изучено боЛьшое число разнообразных катализаторов, по крайней мере, в лабораторных условиях, а именно ЗЬС1з, ВЕд, НР, жидкая фосфорная кислота, А1С1з и другие соли галоидоводородных кислот. [c.497]

    Активацию катионита проводят следующим образом. К смеси высушенного сульфокатионита дауэкс 50w Х 4 и хлористого этилена добавляют при перемешивании раствор хлорсульфоновой кислоты в хлористом этилене. Смесь охлаждают, поддерживая температуру около 15 °С. После того как реакция в основном закончится, охлаждение прекращают и температуру повышают до 26 °С. Катионит отфильтровывают, промывают хлористым этиленом и суспендируют в 37%-НОЙ соляной кислоте при 20 °С. К этой смеси добавляют небольшими порциями в течение 2 ч гранулированное олово, после чего температуру поднимают до 80 °С для растворения олова. Катионит опять отфильтровывают, промывают 10 о-ной соляной кислотой до полного удаления солей олова, а затем водой — до полного удаления соляной кислоты. Катионит обезвоживают, отгоняя азеотропную смесь воды с бензолом последний удаляется из катионита при высушивании в вакууме. На активированном таким образом ионите проводили синтез дифенилолпропана в статических условиях (80 °С, 6 ч). Анализ показал повышение степени конверсии фенола по сравнению с опытами, в которых использовали неактивированный катионит дауэкс 50 w X 4. [c.153]

    Полибромсоединения значительно отличаются друг от друга своим отношением к солям сернистой кислоты. Бромистый этилен и 1,2,3-трибромнропан дают соли соответствующих сульфокислот, из 2,3-дибромбутана получается смесь изомерных оксисульфокислот, тогда как соединения, содержащие галоид у третичного углеродного атома, образуют ненасыщенные кислоты. Поведение других ди- и трибромзамещенных соединений представляет большой интерес. [c.195]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Серная кислота. Этот вопрос более полно будет рассмотрен в главе об очистке. Приведем здесь только общие замечания. Серная кислота с этиленовыми углеводородами дает реакции трех родов 1) Образование серных эфиров. Такая реакция вызывается некоторыми катализаторами, например солями серебра и ртути, окисью ванадия и т. д. эти серные эфиры при гидролизе дают спирты. Этилен дает этиловый спирт. С высшими углеводородами можно получить при действии HaSOi также вторичные и третичные спирты. 2) Концентрированная серная кислота вызывает реакции полимеризации этиленовых углеводородов, причем склонность к полимеризации возрастает вместе с молекулярным весом. 3) Наконец при употреблении во время очистки нeпpeдed ьныx фракций нефти весьма крепкой серно й кислоты происходит выделение SOj, что указывает на окисление нефти и восстановление серной кислоты. [c.31]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    При выборе растворителя исходят из природы азеотропа, подлежащего расслаиванию. Растворитель, не должен, в свою очередь, давать азеотропы с разделяющим агентом или отогнанными углеводородами. Поэтому его температура кипения должна быть по крайней мере на 50° выше температуры кипения этих веществ. Если в качестве разделяющих агентов применяются амины, ацетон, метилэтилкетон, метилпропилкетон, диэтилкетон, диэтиловый эфир, диоксан, пиперидин и др., то растворителями могут являться этилен- и пропиленгликоль, глицерин, метилглицерин, моно-, ди- и триэтаноламин, пропанол-амин и др. В некоторых случаях для расслаивания азеотропов успешно могут применяться соли. [c.281]

    Японской фирмой Teijin разработан одностадийный процесс получения этилен гликоля пропусканием этилена и кислорода через 0,6 н. раствор НС1, содержащий Т1(0Н)з и соли Fe " или Си . Параметры процесса температура—160 °С, давление — 7 МПа. Селективность процесса — около 89%. [c.194]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]

    Этан-1,2-дисульфокислота приготовлена окислением этиленмер-каптана [473], этилентиоцианата [454, 474] и некоторых циклических соединений [475], содержащих атомы серы, связанные с соседними атомами углерода. Она образуется с небольшим выходом при сульфировании нитроэтана [477], нитрила и амида пропионовой. кислоты [476] и при электролизе сульфоацетата бария [478]. Действие насыщенного раствора щелочной соли сернистой кислоты на бромистый этилен [Збв, 454, 479] нри температуре кипения смеси ведет к получению этан-1,2-дисульфокислоты с выходом 95%. В небольших количествах аммониевая соль кислоты образуется также при обработке 1,1,2-трибромэтана кипящим раствором сернистокислого аммония [440]. [c.185]

    Можно указать еще на несколько соединений, конечным продуктом окисления которых являю гся сульфокислоты ИЛИ их соли. Это — фениловый ортоэфир тритиомуравьиной кислоты (СаНдЗ)зСН [998], фенилацетонилсульфон [999], 6-окси-а-метил-этплфенилсульфон [1000], этилен-бмс-(фенилсульфон) [1001] п другие аналогичные дисульфоны. Из фенилового эфира бензол-тиосульфокислоты [1002] получается 2 молекулы бензолсульфокислоты. [c.154]

    Имеются работы (7), посвященные применению в качестве катализатора для реакции алки.лирования двойных солей хлористого алюминия п щелочных солеи галоидоводородных кислот. Наиболее активным катализатором оказалась двойная литиевоалюминиевая соль галоидоводородных кислот. Катализатор получался путем сплавления под давлением молекулярных количеств хлористого алюминия и щелочной соли галоидоводородной кислоты и смешения расплавленной двойной соли с равным по весу количеством пемзы. В качестве исходных веществ применялись смесь пзобутана с этиленом, про-пеном и нзобутепом. Опыты проводились при температуре 204° С н [c.246]

    Введение в структуру небольших количеств Al " ", замещающих некоторую часть ионов кремния, приводит к тому, что золь становится отрицательно заряженным вне зависимости от pH. Характеристики гелеобразования изменяются таким образом, что золь при этом сохраняет устойчивость в интервале pH 3,5-8. Его можно заставить перейти в гель, вводя большие количества соли, спиртов, этилен диамина, этиллакта-та или испаряя воду. [c.357]

    Если растворы солей одновалентной медн проявляют особую растворяющую способность только по отношению к этилену, то 50%-ный водный раствор азотнокислого серебра погжицает в больших количествах все олефнпы, из которых легче всего растпоряется в нем бутен-1. [c.177]

    Высшие олефины растворяются в органических растворителях лучше, чем этилен, однако последний более растворим в растворах солей одновалентной меди. Применение таких растворов подвергалось многими исследователями тщательному изучению в качестве средства избирательного поглощения одного этилена. Для этой цели было предложено применять аммиачный раствор формиата меди [14], этаноламиновый раствор полухло-ристой меди [15] и пиридиновый раствор ацетата меди [16]. В Германии во время второй мировой войны для концентрирования этилена, находящегося в газах высокотемпературного дегидрирования этана, применяли этанол-аминовый раствор нитрата одновалентной меди [17] сейчас этот способ не используется. [c.115]

    И ПОД давлением 20—50 ата к продуктам реакции добавляли затем воду, чтобы выделить кислоту в свободном виде [11]. В дальнейшем было установлено, что окись углерода может присоединяться к олефинам в присутствии воды, спиртов, аминов и других соединений, образуя соответственно кислоты, стожные эфиры и амиды. Источником окиси углерода служат карбонилы металлов, выделяющие ее в присутствии кислот мож1ю также проводить каталитическую реакцию с газообразной окисью углерода, используя соль металла, способную в условиях процесса образовывать карбонил [12]. Больше всего внимания уделялось синтезу кислот в присутствии карбонила никеля процесс проводили при 200—300° и 150 ат. Этим способом можно превратить этилен в пропионовую кислоту или ее ангидрид. [c.197]

    Олефины в присутствии серной кислоты могут либо гидратироваться в соответствующие спирты, либо полимеризоваться, что зависит от их молекулярного веса, строения, концентрации серной кислоты и температуры опыта. Этилен при температуре до 100 под действием 99—100% Н2504, особенно в присутствии активаторов (солей серебра), гидратируется. Повышение давления, нагревание выше 100° и добавление к серной кислоте солей меди пли ртути способствуют полимеризации этилена в масла. Аналогично ведут себя пропилен, н-бутилены, н-амилены и н-гексилены. Так, пентен-1 и пентен-2 70—75% НаЗО лишь гидратируются, но не полимеризуются, н-гептилен также превращается лишь вгептанол. но высшие олефины нормального строения уже не гидратируются, а превращаются в димеры. [c.594]


Смотреть страницы где упоминается термин Этилен солями: [c.303]    [c.192]    [c.315]    [c.521]    [c.379]    [c.86]    [c.98]    [c.207]    [c.148]    [c.69]    [c.450]    [c.258]    [c.55]    [c.122]    [c.390]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.629 ]




ПОИСК







© 2025 chem21.info Реклама на сайте