Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эфиры высокомолекулярные, получение

    Одним из первых промышленных процессов получения высших жирных спиртов был процесс омыления кашалотового жира. В составе кашалотового жира помимо глицеридов находится значительное количество восков, представляющих собой сложные эфиры высокомолекулярных жирных спиртов и кислот. В головном жире кашалота содержится до 50% спиртов, в туловищном — до 25%. Головной и туловищный жир различаются не только по содержанию, но и по составу высших спиртов в головном жире преобладают насыщенные спирты в туловищном жире насыщенные спирты составляют не более одной четвертой части. [c.135]


    Спермацет — это твердая восковая фракция, получаемая из спермацетового масла кашалотов и китовой ворвани. Он легко эмульгируется, образует устойчивые эмульсии и поэтому используется при получении кремов. Содержит 47—54% спиртов и 50% жирных кислот. Составные части — в основном цетилпальмитат, це-тиловый спирт и эфиры высокомолекулярных жирных кислот. [c.163]

    Воски представляют собой смеси сложных эфиров высокомолекулярных, чаще одноатомных алифатических спиртов и жирных кислот. В основном это твердые пластические массы с высокой температурой плавления, трудно растворимы во многих растворителях. Растворение наблюдается при повышении температуры. При высоких температурах получения масла воски, переходя в него, при снижении температуры кристаллизуются и благодаря близкой с триглицеридами плотности долгое время находятся во взвешенном состоянии, придавая маслу мутность. Это ухудшает товарный вид готовой продукции. [c.105]

    При получении сложных эфиров высокомолекулярные цепи могут быть образованы только нри участии некоторых определенных групп кислот и спиртов. При взаимодействии одноосновной кислоты с одноатомным спиртом может образоваться лишь низкомолекулярный сложный эфир, например этилацетат и все эфиры этого типа. [c.360]

    Сополимеры окиси пропилена и аллилглицидилового эфира, полученные с применением каталитических систем триэтил- или триизобутилалюминий — вода — ацетилацетон, характеризуются широким и бимодальным фракционным составом молекулярных масс низкомолекулярная фракция (до 10%)) имеет [ti] = 0,5— 1,0 дл/г, а для высокомолекулярной фракции [т]] находится в пределах от 7 до 15 дл/г [28], Соотношение низко- и высокомолекулярной фракции и значения их [т]] зависят от состава катализатора и условий полимеризации. [c.576]

    Изомеризация окиси пропилена в аллиловый спирт. Это первая стадия процесса получения глицерина. Дальнейшая переработка аллилового спирта включает либо стадию гидрохлорирования и гидролиза монохлоргидрина глицерина, либо эпоксидирование спирта в глицидол с последующей гидратацией его без выделения из реакционной массы. Аллиловый спирт может представить и самостоятельный технический интерес, поскольку его эфиры являются ценными мономерами для получения высокомолекулярных соединений. [c.96]

    Амины получаются также аминолизом алкилхлоридов. При взаимодействии алкилхлоридов с сульфатами образуются водорастворимые сульфонаты. На основе алкилхлорида получают соединения Гриньяра, из которых при взаимодействии с оксидом углерода (IV) образуются карбоновые кислоты. При взаимодействии с безводным карбонатом натрия алкилхлориды превращаются в сложные эфиры, с сульфгидратами щелочей—в тиоспирты. В реакции Фриделя— Крафтса алкилхлориды взаимодействуют с аренами. Они дехлорируются с образованием алкенов. Алкилхлориды используют для введения в молекулы высокомолекулярных алкильных групп при производстве инсектицидов и ядохимикатов, для повышения растворимости полученных соединений в смеси углеводородов (нефтепродуктов), а также во многих других производствах. Термическим хлорированием технического пентана получают амилхлориды, которые гидролизуют затем щелочью в амиловые спирты, используемые непосредственно или в виде их амилацетатов в качестве растворителей и важного вспомогательного материала в лакокрасочной промышленности [18]. [c.325]


    При промышленной этерификации высокомолекулярных алифатических или нафтеновых спиртов серной кислотой [12] целесообразно вводить инертный растворитель, например четыреххлористый углерод или насыщенны углеводород. В этом случае реакционная смесь состоит из двух слоев, в одном из которых содержится избыток серной кислоты, а в другом—сложный эфир и растворитель. Прибавление спирта, нанример н-бутилового, к реакционной смеси, полученной прп этерификации цетилового или олеилового спиртов, способствует отделению кислого эфира от избытка серной кислоты. При последующем прибавлении воды образуются два слоя, причем практически вся серная кислота уходит в водный слой [13]. С целью удаления кислоты рекомендуется [14] к реакционной смеси прибавлять глицерин или его [c.8]

    Из других природных эмульгаторов хорошо изучены сапонины и белки — альбумин, казеин и др. Они стабилизируют эмульсии М/В. Стабилизирующее действие белков объясняется их адсорбцией на границе раздела фаз с образованием прочных защитных слоев. В качестве стабилизаторов эмульсий В/М применяют высокомолекулярные соединения, растворимые в масляной фазе, например каучук. В пищевой и фармацевтической промышленности для получения эмульсий В/М применяют стеарат и пальмитат сахарозы, а также полиоксиэтилированные сложные эфиры. [c.184]

    ВЫРАВНИВАЮЩИЕ ВЕЩЕСТВА — вещества, применяемые в текстильной промышленности для получения равномерной окраски волокнистых материалов. Некоторые соединения обладают сродством к волокну, а другие к красителю, поэтому, учитывая химическую природу волокна и красителя, в каждом конкретном случае применяют такие вещества сульфопроизводные гомологов нафталина, алифатических углеводородов, гнд-росульфатные эфиры высокомолекулярных спиртов пли продукты окснэтнли-рования и катионоактивные вещества. В. в. замедляют скорость крашения и тем самым способствуют более равномерному окрашиванию волокна. [c.61]

    Пиранозные циклы остатков /)-галактуроновт)й кислоты соединены а-1,4 гликозидными связями в длинные цепи, которые являются основой, всех пектиновых веществ. К ним относятся соли пектовой кислоты — пектаты. У эфиров ее, полученных метилированием части карбоксильных групп (пектинов), их солей (пектинатов), а также у нерастворимых высокомолекулярных протопектинов, молекулы пектина сшиты между собой и с другими полиозами, в част- ности с целлюлозой, а также с белковыми молекулами. [c.187]

    Для синтеза полиамидов используют алифатические и ароматические диамины, первые из них являются сильными нуклеофильными агентами и поэтому они легко реагируют как с кислотами, так и со всеми их производными. Легко (иногда даже при комнатной температуре) алифатические амины реагируют с эфирами карбоновых кислот. Более слабые нуклеофильные агенты - ароматические амины - без катализатора взаимодействуют лишь с хлорангидридами кислот. Синтез полиамидов осуществляют обычно в расплаве (в массе) или в растворе. Равновесный характер процесса полиа.мидирования карбоновых кислот и их эфиров для получения высокомолекулярных полимеров требует достаточно полного удаления И5 реакционной среды низкомолекулярных побочных продуктов реакции. Поэтому завершающий этап процесса проводят под вакуумом. Для обозначения химического состава полиамидов применяют числовую и цифровую системы, например, наименование полиамид 6,6 расшифровывают так первая цифра до запятой указывает число атомов углерода в диамине (взятом для синтеза) - гексаметилендиамин, а вторая - в дикарбоновой кислоте, считая углерод карбоксильных групп,- адипиновой кислоте. Полиамид 6,Т означает, что он получен из гексаметилендиамина и терефталевой кислоты. Названия сополимеров складываются из названия отдельных полимеров, составляющих полиамид, например, сополиамид 6,8/6,4 (55 45) означает, что сополимер на 55% состоит из полиамида 6,8 и [c.90]

    Ченг и Халаса [201J изучили действие добавок краун-эфиров на анионную полимеризацию бутадиена и анионную сополимеризацию бутадиена и стирола в гексане. В качестве инициатора они использовали M-BuNa, полученный в реакции и-ВиС1 с порошком натрия. В системе, в которую был добавлен дициклогексил-18-краун-6 (0,2 м-экв. по отношению к Na), был получен высокомолекулярный полибутадиен, содержащий примерно 80% винильных связей. При температуре реакции 30 — 50°С степень превращения составляла 95%. В отсутствие краун-эфира был получен лишь низ комолекулярный полимер с небольшим выходом. Стирольные блоки в бутади-ен-стирольном сополимере отсутствовали. [c.253]

    Мыло, полученное из омыленного кашалотового саломаса, применяется для получеЮ1Я эмульсионных кремов, а также после дополнительной обработки (под названием композиция № 3) используется в качестве сырья как заменитель стеарина в рецептурах жировых кремов. Однако в последние годы убой кашалотов практически прекращен, поэтому была создана композиция искусственного спермацета, названная киталаном. Она содержит эфиры высокомолекулярных спиртов и жирных кислот и может заменить натуральный спермацет, а входящие в ее состав эфиры можно использовать в качестве структурообразующих компонентов. [c.135]


    Пат. США 3 645 959 Union arbide, 5.1.1970 29.2.1972. Неводная дисперсионная полимеризация сложных виниловых эфиров для получения высокомолекулярного полимера в присутствии до 1% диена. [c.321]

    Научные исследования посвящены поверхностно-активным и моющим веществам, химии жиров. Синтезировал (1925) первые вы-сокосульфатироваиные масла н жиры и наладил их многотониажное производство. Создал способ и разработал технологию получения нейтральных моющих средств на базе сернокислых эфиров высокомолекулярных первичных спиртов. Участвовал в организации промыщ-ленного производства первичных высокомолекулярных спиртов, получаемых восстановлением масел и жиров металлическим натрием под высоким давлением или восстановлением жирных кислот водородом на медных катализаторах. Разработал (1925—1935) количественные методы оценки моющей способности поверхностно-активных веществ. [c.57]

    Из данных этих таблиц видно, что в условиях проведенных опытов смесь этиловых эфиров высокомолекулярных кислот получается с выходом от 79 до 839ь. Перегоняемая при 4 мм остаточного давления часть эфиров составляет около 60% но отношению ко всей смеси. Резкое сокращение кислотного числа и соответственное увеличение эфирного числа показывают, что реакция протекает достаточно хорошо. Спиртовая среда более благоприятствует как протеканию реакции и обработке целевого продукта, так и улучшению качества полученных этиловых эфиров. Отношение спирта к кислотам 1 1 полностью обеспечивает нормальное протекание реакции. По мере разбавления реакционной среды водой результаты реакции ухудшаются. В водной среде реакция, протекает хуже, и получеиные продукты имеют неудовлетворительные физико-химические показатели. Сказанное полностью соответствует даннььм таблицы 65 для смеси кислот оксипродукта, полученного с марганцем. [c.195]

    Реакционноспособные производные высокомолекулярных меркаптанов [200] получают обработкой меркаптанов альдегидами и галоидоводородами, эфироподобными соединениями из альдегидов и галоидоводородов, а-галоидалкиловыми эфирами низших карбоновых кислот или простым а, а -дихлордиметиловым эфиром. Для получения продуктов, не растворимых в органических растворителях, Берк [201 ] рекомендует нагревать полимерные ненасыщенные эфиры многоатомных спиртов (глицерина, гликоля или целлюлозы) и ненасыщенных карбоновых кислот с мономерными ациклическими политиолами в присутствии воздуха. [c.247]

    Нахождение в природе. Способы получения. Сложные эфиры широко представлены в природе, но обычно в небольших количествах они участвуют в разнообразных процессах, протекающих в живом организме, и являются ароматобразующими компонентами ряда растений. В значительных количествах в природе представлены только сложные эфиры высокомолекулярных спиртов и кислот — воски (стр. 205). [c.145]

    В литературе описано лишь получение циклогексилфор-миата и циклогексилацетата действием циклогексанола с низкомолекулярными кислотами, т. е. прямой этерифика-цией [142]. Весьма скудны данные о высших представителях циклогексиловых эфиров высокомолекулярных синтетических кислот. [c.128]

    Научные работники Департамента земледелия США исследовали возможность синтетического получения этого вещества. В природных условиях испытано примерно 800 соединений, многие из которых представляли собой эфиры высокомолекулярных жирных кислот, подобных натуральному гиптолу. Ни одно из соединений не было эффективным, однако в результате этих ра- [c.68]

    ВЫРАВНИВАЮЩИЕ ВЕЩЕСТВА (в текстильной промышленности) — веш,ества, применяемые для получения равномерных окрасок волокнистых материалов. Действие В. в. различно в зависимости от строения. Нек-рые пч них обладают сродством к волокну, другие — к красителю. К первым относятся анионоактивные в-ва, нанример сульфопроизвод-ныо гомологов нафталина (некаль), алифатич. углеподородов, кислые сернокислые эфиры высокомолекулярных алифатич. спиртов и др. ко вторым — неионогенные соединения, напр, продукты окснэтилирования и катионоактивные в-ва. Необходимо отмстить, однако, что такое разделение В в. несколько условно, т. к. в каждом конкретном случае надо учитывать химич. природу волокна и красителя. [c.342]

    Взаимодействие продуктов хлорирования высокомолекулярных парафиновых углеводородов с фенолом для получения алкилфеиолов, переводимых оксиэтилированием в полигликолевые простые эфиры алкилфеиолов. Эти соединения растворИ Мы в воде и благодаря присутствию в них дл инн0це ючечных алкильных остатков обладают весьма пенными поверхностно-активными и моющими свойствами. [c.245]

    Наиболее важными в промышленном отношении путями переработки высокомолекулярных парафиновых сульфохлоридов до сих пор являются омыление щелочами с образованием растворимых в воде солей сульфокислот, обладающих прекрасными смачивающими, моющими и эмульгирующими свойствами далее получение эфиров при взаимодействии фенолов с алифатическими спиртами с образованием лрильных или алкильных эфиров сульфокислот, являющихся очень хо- [c.407]

    Высокомолекулярный полимер окиси тетрафторэтилена является кристаллическим веществом с Тил == 36 °С. Попытки получения высокомолекулярных сополимеров окисей тетрафторэтилена и гексафторпропилена пока не увенчались успехом. На ионных катализаторах типа фторида цезия образуются только жидкие олигомеры, а при попытке осуществления сополимеризации радиационным методом при низких температурах образуется гомополимер окиси тетрафторэтилена. Перфторированный эластомер с прекрасными свойствами и высокой термической стабильностью синтезирован из а,со-дииодперфтордиэтилового эфира при облучении его УФ-светом в присутствии ртути [40]  [c.512]

    Несмотря на то что превращение этилового спирта в диэти-ловый эфир действием концентрированной серной кислоты изучалось уже в 1540 г. [1], получение промежуточной этилсерпой кислоты [2] относится к значительно более поздним годам [3]. До того момента, когда галоидные алкилы и диалкил сульфаты" стали легко доступными соединениями, соли алкилсерных кислот обычно применялись для алкилирования. Для этой цели они используются и в настоящее время в том случае, если реакция легко протекает в водном растворе, например при получении меркаптанов и сульфидов. Значение кислых эфиров как промежуточных продуктов при превращении олефинов в спирты, простые и сложные эфиры и применение щелочных солей различных высокомолекулярных. алкилсерных кислот в цачестве смачивающих веществ и детергентов в последние годы сильно повысили интерес к этому классу соединений. [c.7]

    Этерификация спиртов серной кислотой. О первоначальном получении этилсерпой кислоты уже упомянуто выше [3]. Изучение действия серной кислоты на высокомолекулярные спирты также было начато много лет назад. Дюма и Пелиго [4] приготовили цетилсерную кислоту. Позже аналогичным путем в сложные эфиры превращены цериловый спирт (1-гексакозанол) [5], н-октиловый спирт [6] и спирты из шерстяного жира [7]. [c.7]

    Для членов гомологического ряда, следующих за амиленами и гексиленами, возможность получения алкилсерных кислот даже при благоприятных условиях уменьшается с увеличением молекулярного веса [68, 716, 73]. Согласно данным Брукса и Хемфри 716], гексадецилен и высшие углеводороды совсем не образуют эфиров. Вопреки этим указаниям, в патентной итературе описан ряд примеров получения высокомолекулярных алкилсерных кислот из олефинов, и это дает основание предпо-1агать, что полимеризация зависит в большей степени от строе- ия, чем от молекулярного веса олефинов.  [c.17]

    Согласно патенту [448], метионовая кислота в присутствии дегидратирующего агента конденсируется с гексадециленом в высокомолекулярную сульфокислоту, которая может быть применена в текстильной промышленности. В основном такие же заявки взяты на применение соединения, полученного из метионовой кислоты II бутилового эфира рицинолевой кислоты [449]. [c.176]

    Описано такн<е сульфирование [452] п-этоксифенилмочевины 2H50 6H4NHG0NH2. Сульфированием фенетидида, синтезированного из высокомолекулярной кислоты жирного ряда, получен детергент [460 б]. При обработке ацетаминофенилового эфира лчлсусной кислоты серной кислотой ацетильная группа, связанная с кислородным атомом, отщепляется и сульфирование происходит в орто-положении к гидроксилу. [c.71]

    Современные масла должны обеспечивать работоспособность механизмов в широком интервале температур (от минус 40—60 до плюс 200—250 °С). Существенное возрастание вязкости нефтяных масел при охлаждении и ее уменьшение при повышенных температурах затрудняют нормальную работу машин и механизмов. Чтобы предотвратить резкое изменение вязкости с температурой (увеличения индекса вязкости) и повысить прокачиваемость масел при низких температурах, в них вводят вязкостные присадки. Без их использования невозможно также получение северных, арктических и всесезонных масел. В качестве вязкостных присадок применяют, как правило, высокомолекулярные органические вещества—полиизобутилены мол. массы 5—20 тыс. (КП-5, КП-10, КП-20), полиметакрилаты — продукты полимеризации эфира метакриловой кислоты мол. массы 10—18 тыс. (ПМА В-1 и В-2) и виниполы мол. массы 9—12 тыс. [c.308]

    Поэтому при получении алкилмагниевых солей необходимо тщательно избегать влаги магний, галоидный алкил и эфир должны быть хорошо высушены. Следы воды оказывают вредное влияние и в друго.м отношении они каталитически ускоряют побочную реакцию, часто наблюдающуюся при получении гриньяровских растворов и заключающуюся в образовании высокомолекулярных углеводородов  [c.190]

    Интересное практическое применение находят эфиры и о-,1 и в и и и л о в о г о с п [ р т а п т и г а н о в о й к и с л о-т ы. Эфиры титановой кислоты легко вступают в реакцию поре-этерификации, особенно с более высокомолекулярным спиртом. Это свойство эфиров титановой кислоты используют для получения поливипилоиого эфира титановой кислоты. В качестве исход- [c.300]

    Еще более высокомолекулярные линейные полимеры получают [1ереэтерификацией метиловых или этиловых эфиров двухосновных кислот гликолями, так как выделяющийся при этом спирт (метиловый или этиловый) легче удаляется из сферы реакции, чем вода. В связи с. этим для получения линейных высокомолекулярных полиэфиров предпочитают использовать третий метод поликонденсации—переэтерификацию. В процессе поликонденса-цин бифункциональных веществ количество функциональных групп в образующейся полимерной цепи на всех ступенях реакции остается постоянным (две группы). Такую реакцию очень легко прекратить экранированием хотя бы одной функциональной группы. [c.418]

    Примером высокомолекулярного соединения, полученного полимеризацией, может служить органическое стекло— плексиглас, представляющий собой полимер метилового эфира метакриловой кислоты — цолиметилметакри-лат [c.154]

    При нагревании сложных эфиров карбоновых кислот с натрием в кипящем эфире или бензоле происходит бимолекулярное восстановление, в результате которого получается а-гидро-ксикетон (называемый ацилоином) [598]. Реакция, носящая название ацилоиновой конденсации, протекает успешно, если К — алкильная группа. Этим путем были синтезированы аци-лоины с длинными цепями, например R = l7Hз5, но для высокомолекулярных сложных эфиров в качестве растворителя применяют толуол или ксилол. С большим успехом ацилоиновая конденсация использовалась для синтеза циклических ацилои-нов из сложных диэфиров в кипящем ксилоле [599]. В случае шести- и семичленных циклов выходы составляли 50—60 %, для восьми- и девятичленных — 30—40 % [600], а для циклов, содержащих от 10 до- 20 атомов, —60—95 %. Этим способом получали циклы и большего размера. Это один из лучших методов получения десятичленных циклов и циклов большего размера. Реакция использовалась также для синтеза четырехчленных циклов [601], хотя, как правило, хороших результатов [c.332]

    В качестве примера приведем схему синтеза метилового эфира метакриловой кислоты — важного сырья для получения высокомолекулярных материалов (органического стекла и др.)  [c.176]

    Терефталевую кислоту используют для получения полимера — лавсана, который по своей химической природе является высокомолекулярным сложным эфиром этиленгликоля и терефталевой кислоты  [c.308]

    Продукт конденсации терефталевой кислоты с эти-ленгликолем представляет собой высокомолекулярный эфир, называемый полиэтилснтерсфталатом. Полиэти-лентерефталат служит для получения синтетического волокна лавсан (стр. 418). [c.297]


Смотреть страницы где упоминается термин Эфиры высокомолекулярные, получение: [c.42]    [c.342]    [c.136]    [c.286]    [c.441]    [c.137]    [c.18]    [c.109]    [c.445]    [c.83]    [c.166]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.878 ]




ПОИСК







© 2025 chem21.info Реклама на сайте