Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды определение алифатических

    При особых условиях и при определенной длине цепи углеродных атомов комплекс с карбамидом могут образовать циклические углеводороды и алифатические кислород- [c.30]

    На рис. 4 представлена зависимость lg Тх/Уа от мольной доли различных спиртов в определенном алифатическом углеводороде. Из данных рисунка и табл. 3 видно, что значение АО для всех спиртов очень близко, т. е. величина взаимодействия гидроксильной группы различных спиртов в данном растворителе практически одна и та же. [c.429]


    Яри восстановлении нитропроизводных углеводородов образуются алифатические амниы, а в определенных условиях — оксимы. Амины применяются для получения моющих средств, фармацевтических препаратов, искусственного волокна и т. д. Нитрамины завоевывают себе признание в химии и технологии взрывчатых веществ. Конденсацией нитросоединений с альдегидами и кетонами можно получать нитроспирты, азотнокислые эфиры которых могут служить взрывчатыми веществами. Алифатические нитросоединения находят непосредственное применение и как превосходные растворители. [c.326]

    ОПРЕДЕЛЕНИЕ АЛИФАТИЧЕСКИХ СУЛЬФИДОВ В УГЛЕВОДОРОДАХ ПО СВЕТОПОГЛОЩЕНИЮ В УЛЬТРАФИОЛЕТОВОЙ ОБЛАСТИ [c.356]

    Быстрый метод определения алифатических углеводородов в бензоле высокой чистоты (для специальных целей). [c.112]

    Как на дальнейшее развитие лампового метода можно указать на применение его для совместного определения углерода и водорода [40] газообразные продукты неполного сгорания пропускают через трубку для сожжения воду и углекислоту поглощают обычным путем. Метод применим для определения алифатических и ароматических углеводородов воспроизводимость определений при навеске 1 е достигает 0,01%. [c.9]

    Определенная часть жидких и газообразных алифатических углеводородов при нагреве до высоких температур без давления и без катализатора независимо от состава исходного материала превраш ается в смесь жидких при нормальных условиях веществ, практически полностью состоящих из [c.58]

    При переработке мазутов, содержащих значительное количества полициклических углеводородов с большим числом колец и короткими алифатическими цепями в молекулах, легко окисляющихся и ухудшающих вязкостно-температурные свойства масел, рассмотренные выше методы очистки оказываются недостаточно удовлетворительными. Поэтому с увеличением потребления смазочных масел и необходимостью перерабатывать мазуты не только отборных масляных нефтей, но и менее качественных получила распространение селективная очистка, т. е. очистка при помощи селективных (избирательных) растворителей. Этот метод очистки основан на подборе растворителей, обладающих при определенной температуре и соотношении количества растворителя и очищаемого масла разной растворяющей способностью к нежелательным и полезным компонентам масла. [c.137]


    Можно утверждать, что 100%-ные нафтеновые молекулы, т. е. нафтены без алифатических боковых цепей, и 100%-ные ароматические молекулы встречаются в тяжелых фракциях лишь в незначительных количествах. Если молекулярный вес нефтяных фракций высок, то почти все молекулы (за исключением молекул парафиновых углеводородов) построены из различных структурных групп, каждая из которых является характерным представителем определенного класса соединений. Так как в больших молекулах возможны многочисленные комбинации различных классов, то по мере повышения температуры кипения эти классы все более различаются по характеру. [c.364]

    Сопоставление основных тенденций развития гидрогенизационных процессов убеждает прежде всего в том, что растет их специализация, т. е. возникают все более и более селективные процессы, в которых интенсивно протекает какое-либо одно превращение или одна реакция, в то время как другие возможные сопутствующие реакции сводятся к минимуму. Такая селективность достигается определенным соотношением между различными реакциями собственно гидрирования (гидрирование диенов, олефинов, конденсированных ароматических углеводородов, моноциклических углеводородов и другие), реакциями восстановления различных типов (восстановление кислотных, эфирных, гидроксильных и других кислородсодержащих групп, восстановление аминогрупп и другие), реакциями изомеризации и гидроизомеризации, реакциями гидрогенолиза различных типов (гидрогенолиз связей С—О, С—N, С—8, раскрытие алициклических колец, отщепление алифатических заместителей и другие). [c.335]

    Методы измерения температуры и давления уже обсуждались, поэтому рассмотрим теперь вопросы измерения массы используемого газа и объема, который он занимает. Указанные измерения основываются на тех же принципах, что и измерения при низких давлениях, но число их вариантов невелико. Обычно массу измеряют двумя методами прямым взвешиванием или определяют объем газа при низком давлении. Последний метод равноценен определению числа молей при достаточно низком давлении. Его результаты часто выражают в системе относительных единиц, обычно называемых единицами Амага. При этом объем выражается через так называемый нормальный объем, т. е. объем, занимаемый газом при нормальных давлении и температуре (обычно 0° С и 1 атм). Этот объем газа не равен точно объему того же числа молей идеального газа и не совсем одинаков для различных газов. Более подробно единицы Амага обсуждаются ниже. Если плотность жидкости известна очень точно, как, например, для высших углеводородов алифатического ряда, то ее масса может быть определена из точных измерений объема. [c.95]

    Более реакционноспособная, термически нестойкая периферия, содержащая и определенную часть серы, представлена слабее. В молекулах смол и соответствующих структур углеводородов, наоборот, ароматичность и конденсированность нолициклической части молекул выражена слабее, чем у асфальтенов, а реакционноспособная алифатическая периферия — сильнее. Отсюда и более интенсивное протекание у них процессов коксования. [c.250]

    Алифатические (жирные) синтетические кислоты являются заменителем пищевых, преимущественно растительных жиров, используемых при изготовлении мыл, эмалей, лаков, олиф, консистентных смазок, пластификаторов для резины и других важных технических продуктов. В отличие от спиртов и кетонов — первичных продуктов распада гидроперекисей, имеющих такой же углеродный скелет, как и исходные углеводороды, кислоты, образующиеся при окислении, имеют различную длину углеводородной цепи их формирование сопровождается разрывом углеродного скелета молекулы окисляющегося углеводорода. Поэтому получается смесь кислот различного молекулярного веса, начиная с муравьиной. Окислением сырья, состоящего из углеводородов с определенным молекулярным весом, можно получать в основном фракции кислот, представляющих наибольшую ценность, например Сщ— ao Для производства моющих средств и С5—С9 для консистентных смазок. Выход товарных кислот на израсходованные алканы нормального строения составляет 77 —80 вес. %. При благоприятном составе сырья выход кислот Сю— jo равен 55—65, а С5—Сд — [c.286]

    Более широкое применение электрохимических методов для синтеза органических соединений во многих случаях позволит, по-видимому, одновременно решить ряд важных проблем химической промышленности, например проблемы утилизации попутной соляной кислоты, проведение процесов синтеза с минимальным количеством производственных отходов, в том числе сточных води т. д. Об интересе к современным проблемам электросинтеза органических соединений свидетельствуют монографии и многочисленные обзоры, появившиеся в печати в последнее время. В ряде опубликованных материалов обсуждаются общие проблемы электрохимического синтеза [4—19]. Некоторые обзорные работы посвящены более узким вопросам получения отдельных классов соединений, например металлоорганических [20], окисей олефинов [21] и т. д., проведения реакций восстановления или окисления определенных групп соединений, например углеводородов [22], алифатических [23] и ароматических [24] карбонильных соединений, лак-тонов [25] и т. д. [c.7]


    Метод Шора. Обработав опытные данные для 600 бинарных систем, Шор [158] сопоставил составы серий азеотропных смесей, образованных общим компонентом и соединениями одного класса. Оказалось, что для двух серий, образованных одним классом соединений и двумя разными общими компонентами, наблюдается линейная зависимость содержания соединений указанного класса в одной серии азеотропов от содержания тех же соединений в другой серии. На рис. 36 такая зависимость иллюстрируется на примере азеотропных серий, образованных х .ввс-У. карбоновыми кислотами соответственно с а-терпеном и изоамиловым эфиром. Абсцисса каждой экспериментальной точки на этом рисунке соответствует содержанию определенной карбоновой кислоты в азеотропной смеси с а-терпеном, а ордината — содержанию той же кислоты в азеотропной смеси с изоамиловым эфиром. В класс соединений для двух сопоставляемых серий включаются группы родственных соединений. Так, класс аЛкиЛгалогенов включает хлориды, бромиды, иодиды. Класс углеводородов включает алифатические, ароматические и олефиновые со единения. В класс спиртов входят также спир-тоэфиры. [c.120]

    Освобождение высокоароматизированных концентратов от равнокипящих алифатических углеводородов и получение таким образом чистых индивидуальных углеводородов нринципиально осуществимо различными путями. Выделение ароматических углеводородов из ароматизированных жидкостей возможно, например, путем экстракции. Для этого применяют в большинстве случаев жидкую двуокись серы (сернистый ангидрид). Способ был предложен для этой цели в 1907 г. Эделеану и первоначально применялся для очистки керосина [7]. Экстрагируемый исходный материал смешивается с жидким сернистым ангидридом (рис. 49), который растворяет ароматические углеводороды и как тяжелый слой оседает вниз (экстракт). Вследствие растворяющего действия ароматических углеводородов вместе с ними переходит в экстракт и определенная часть неароматических составных частей. Для удаления их экстракт промывают высококипящей парафи-аистой фракцией, извлекающей эти неароматические углеводороды. Затем из экстракта удаляют сернистый ангидрид, который возвращается на уста- [c.106]

    Переработка насыщенных алифатических углеводородов для получения определенных целевых продуктов через продукты хлорирования реакцией двойного обмена при современном уровне знаний достигается лишь для соединений в пределах таких размеров молекул, из которых легко удаетс5[ получить чистые монохлориды. Разность температур кипения исходного углеводорода и соответствующего монохлорида должна быть возможно большой. В тех случаях, когда олефины, образующиеся в качестве неизбежного побочного продукта при дальнейшей переработке хлорида, легко могут быть отделены и использованы для промышленных целей, этот путь вполне пригоден. При этом образование олефиновых углеводородов можно рассматривать как результат хлорирующего дегидрирования. [c.234]

    Позже М. Коновалов [2] и В. Марковников [3] начали, свои классические работы по нитрованию алифатических углеводородов, ставшие общепризнанными и широко известными. Особенно работами Коновалова в запаянных трубках впервые было показано, что парафиновые углеводороды могут нитроваться относительно легко и с хорошими выходами при определенных- условиях — высокие температуры и разбавленная азотная кислота. После этих первых успешных опытов изучение прямого нитрования парафиновых углеводородов не продолжа- [c.265]

    Значительно более обещающими являются методы анализа степени разветвления, основанные на спектроскопических данных по инфракрасному поглощению. После работы Фокса и Мартина [62], приписавших связи СН валентные колебанпя, а также после систематических наблюдений Розе [131 на большом ряде модельных веществ различные исследователи [12, 16, 18, 23] пытались использовать эти данные для количественного определения в углеводородах групп СН3, СНд, СН (алифатических) и СН (аромати ю-ских). Из этих наблюдений могут быть сделаны интересные выводы о стспени разветвления парафинов и степени замещения ароматических угловодородов.  [c.386]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    С повышением пределов выкипания фракции в боковых цепях нафтеновых углеводородов растет содержание СНг- и СНз-групп, что указывает на увеличение в них не Только общего числа атомов углерода, но и степени разветвленности цепей. Для оценки степени разветвленности парафиновых цепей в нафтеновых углеводородах было использовано отлошение числа метильных групп к числу алифатических. метиленовых, хотя при этом не были учтены СН-г,руппы [13]. Учитывая, что боковые цепи высококипящих нафтеновых углеводородов в основном имеют разветвления, связанные с третичным атомом углерода, за степень разветвленности К можно принять содержание СН-групп [14]. Цепями при определении величины К считают всю алифатическую часть молекулы за иоключением СНзнгрупп, присоединенных непосредственно к кольцам. В общем виде степень разветвленности цепей К (% масс.) рассчитывают по формуле  [c.12]

    Рассмотрим теперь некоторые закономерности распределения изопреноядов в нефтях типа А (см. рис. 21). Уже в ранних работах, посвященных определению изопреноидных соединений в каус-тобиолитах, были высказаны предположения о том, что основным, источником образования этих соединений является непредельный алифатический спирт фитол, входящий, как известно, в состав хлорофилла растений. И действительно, диаграмма распределения изопреноидных углеводородов, представленная на рис. 21, достаточно убедительно свидетельствует в пользу такого предложения  [c.63]

    Достигнутые в последние годы успехи в области исследования состава и строения нефтенов, конечно, еще не означают, что химический состав нефти является уже полностью изученным. На самом деле химикам различных стран предстоит еще большая, трудоемкая и кропотливая работа по расшифровке строения различных компонентов нефти, без сомнения, являющейся наиболее сложным природным объектом. Особенно трудной областью по-прежнему остается химия нафтенов, как химия весьма сложного и многокомпонентного класса нефтяных углеводородов. Какие же задачи стоят здесь перед исследователями Предстоит, например, детальное исследование строения трех- и четырехкольчатых группировок. До настоящего времени, кроме структуры адамантана, никаких подробных сведений о строении этих соединений не имеется. Видимо, в ближайшие годы простейшие представители трициклических углеводородов будут выделены из нефти и охарактеризованы в виде индивидуальных соединений. Предстоят также интересные работы по выделению новых реликтовых соединений, суммарная концентрация которых в нефтях, видимо, значительно большая, чем это предполагалось ранее (порядка 10—15% и более). Определенный цикл работ будет, очевидно, посвящен детальной характеристике строения алифатических заместителей в циклах. [c.382]

    Изопреноидные углеводороды. Наиэолее важным открытием в области химии и геохимии нефти за лоследние два десятилетия было обнаружение в нефтях алифатических изопреноидных углеводородов. Первые публикации об этом относятся к 1961 — 1962 гг. Затем изопреноидные углеводороды были обнаружены в различных нефтях, бурых углях и сланцах, в современных осадках и в битумоидах дисперсного органического вещества осадочных пород различного возраста. Число публикаций о содержании изопреноидных углеводородов в различных каустобиолитах растет из года в год. Благодаря особому строению, характерному для насыщенной регулярной цепи полиизолрена, эти соединения получили название биологических меток или биологических маркирующих соединений. Действительно, особенности их строения и высокая концентрация в различных нефтях убедительно свидетельствуют в пользу биогенной природы последних. Методами капиллярной газожидкостной хроматографии и химической масс-спектрометрии обнаружены все 25 теоретически возможных углеводородов изсиреноидного строения, каждый из которых определен количественно. [c.39]

    Согласно принятому нами ранее определению [1], к высокомолекулярным веществам нефти мы относим ту ее часть, для которой характерен молекулярный вес выше 400 и которая содержит остаточную часть после отгонки фракции до 350—400° С. Эта часть нефти в случае легких нефтей составляет 30—35%, тогда как в тяжелых высокосмолистых нефтях содержание ее достигает 60% и более. Компонентный состав ее включает углеводородную и неуглеводородную, или гетероатомную, части. Соотношение этих компонентов в сильной степени зависит от химической природы нефтей и колеблется в довольно широких пределах. В нефтях легких и средних, особенно нафтенового и нафтеново-парафинового основания, резко преобладает углеводородная часть, в тяжелых же, высокосмолистых, нефтях ароматического основания неуглеводородные компоненты составляют половину и больше остаточной части нефти. Углеводородные компоненты составляют наиболее легкую часть, молекулярный вес которой колеблется в пределах 400—800, и лишь небольшая ее часть характеризуется более высоким молекулярным весом. Среди высокомолекулярных углеводородов нефти резко преобладают структуры гибридного, или смешанного, типа, в молекулах которых присутствуют одновременно структурные звенья разного типа ароматические, нафтеновые и алифатические. Из высокомолекулярных углеводородных компонентов негибридного строения в остаточной части присутствуют лишь парафиновые углеводороды. С повышением молекулярного веса углеводородов повышается содержание в них циклических структур, преимущественно ароматических, а также степень копденспрованности последних. [c.20]

    Выделенная из высокомолекулярной части радченковской нефти путем многостадийной хроматографии на активированном крупнопористом силикагеле наиболее нолициклическая конденсированная фракция ароматических углеводородов была детально и всесторонне изучена и охарактеризована следующими показателями молекулярный вес 389, = 1,0354, = 1,6092. Химический состав ее отвечает общей формуле СпНгп—23- Структурно-групповой состав, определенный по Хазельвуду [53], показал, что в среднем на молекулу приходится 4,7 кольца, из них 3—3,5 — ароматических на долю алифатических атомов углерода приходится 44%, а на долю циклических 56%, в том числе 35% ароматических. Эта фракция составила около 1 % на сырую нефть или 3,5% на высокомолекулярную углеводородную часть нефти. [c.294]

    Если пропускать такие газообразные алифатические углеводороды, как этан, этилен, пропан, пропен, а так ке бутаны и бутены, через нагретые до высокой температуры трубки иЗ кварца или легирован ной стали, например стали У2А, то при определенной продолжительности пребывания в зоне пиролиза, в отсутствии катализатора и без применения давления образуются жидкие конденсаты. Это так называемые смол].г пиролиза, которые в зависимости от длительности нагрева и температуры н бб. плнем или меньшем количестве содержат жидкие и твердые составные части. [c.99]

    Этим же путем реагирует и изопрен. Некоторые опыты подтверждают, что наличие ароматических углеводородов в продуктах пиролиза алифатических соединений может быть объяснено реакцией Дильса-Альдера. Так неоднократно было показано, что этилен и бутадиен, взаимодействуя друг с другом, превращаются в циклогексеп [84, 85]. Реакцию Дильса-Альдера можно ускорить применением определенных катализаторов [86], поскольку она в отличие от дегидрирования является парофазной гомогенной реакцией и благодаря этому свойству нашла примепепие в катарол-процессе. [c.113]


Смотреть страницы где упоминается термин Углеводороды определение алифатических: [c.806]    [c.444]    [c.4]    [c.90]    [c.806]    [c.24]    [c.187]    [c.48]    [c.41]    [c.59]    [c.387]    [c.397]    [c.169]    [c.257]    [c.176]    [c.106]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Определение алифатических сульфидов в углеводородах по светопоглощению в ультрафиолетовой области

Определение насыщенных (алифатических) углеводородов

Определение спиртов i—s в смеси алифатических углеводородов

Углеводороды алифатические

Углеводороды тяжелые алифатические хроматографическое определение



© 2024 chem21.info Реклама на сайте