Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез исходные материалы

    Регулировать пористую структуру можно также при синтезе катализаторов методом склеивания исходного материала, [c.85]

    Газы, образующиеся в результате наиболее распространенных в настоящее время каталитических риформинг-процессов, мало интересны с точки зрения их пригодности в качестве исходного материала для промышленности органического синтеза, так как они почти не содержат олефинов. В табл. Зв приведены результаты крекинга методом платформинга (при 450° и 50 ат) в присутствии водорода и платинового катализатора. [c.30]


    При действии НС1 тетрагидрофуран легко образует 1,4-дихлор-бутан—исходный материал для полного синтеза найлона по схеме  [c.749]

    Из фенола получают пикриновую кислоту. Кроме того, фенол играет значительную роль в качестве дезинфицирующего средства (карболовая кислота). Наконец, его применяют как исходный материал при синтезе некоторых лекарственных веществ, в частности салициловой кислоты (стр. 659), ее эфиров (например, салола, стр. 660) и т. п. [c.542]

    Кроме того, дифениламин применяется в качестве стабилизатора нитроцеллюлозы и в качестве исходного материала для синтеза некоторых красителей. [c.570]

    Считая, что настоящая попытка обобщения материала о синтезе исходных веществ для получения высокомолекулярных соединений несвободна от недостатков, автор все замечания примет с благодарностью. [c.3]

    Изучено влияние различных условий синтеза углеродного материала на его фазовый состав. Синтез углеродного материала проводили из смеси метан-воздух, либо из смеси H2- O-N2 ( та же смесь метан-воздух, пропущенная через платиновый катализатор) или из паров метанола. Кроме состава исходной газовой смеси менялся материал катодов. [c.93]

    Этан СгИб—исходный материал в синтезе этилена. [c.247]

    В последние годы получено много новых данных о резорбции анилина через неповрежденную кожу. Как известно, это вещество и в настоящее время широко применяется в органическом синтезе в качестве исходного материала в производстве красителей и искусственных смол, в текстильной и фармацевтической промышленности и др. [c.46]

    Синтез пористых тел требует знания их текстуры и во многом определяется морфологией. В корпускулярных телах большая уд. пов-еть обеспечивается получением возможно меньших первичных частиц, что достигается оптимальным соотношением скоростей зародышеобразования и роста частиц (см. Зарождение новой фазы, Кристаллизация). Объем пор определяется плотностью упаковки частиц. Напр., в гелях плотность упаковки зависит от соотношения прочности скелета гидрогеля и разрушающих его поверхностных сил при образовании в процессе сушки менисков межмицеллярной жидкости. Сушка прочных состарившихся гелей сохраняет их рыхлую структуру и дает системы с большим объемом пор при сушке свежеобразованных гелей рыхлая структура разрушается и происходит переупаковка частиц под влиянием мощных капиллярных сил, в результате образуются тела с малым объемом пор. Размер пор регулируется размером частиц и плотностью их упаковки. В губчатых и кек-рых корпускулярных структурах образование пор достигается удалением одного или нескольких компонентов твердого тела при растворении (пористые стекла, скелетные катализаторы), дегидратацией гидроксидов или терморазложением солей (пористые оксиды разл. природы), частичным окислением (активные угли) и др. процессами. Текстура продукта определяется концентрацией и дисперсностью компонентов в исходном материа- [c.70]


    Период полураспада радиоизотопа при выборе удельной активности исходного продукта принимают во внимание только в том случае, если время приготовления или применения сравнимо с периодом полураспада, что привело бы к значительному уменьшению удельной активности продукта. Это обычно требуется для всех радиоизотопов, применяемых для синтеза меченых соединений, за исключением С1 , и Н . Увеличивать удельную активность исходного продукта необходимо также в случае изотопного разбавления в ходе синтеза меченого соединения, т. е. в подавляющем большинстве биосинтезов и обменных реакций. При биосинтезе подобное увеличение активности исходного материала ограничивается чувствительностью биологического материала к излучению. При выборе уровня удельной активности исходного материала приходится решать две противоположные задачи. Для удобства применения требуется возможно более высокая удельная активность, в то время как простота, экономичность и безопасность синтеза возрастают при работе с большими количествами веществ с низкой удельной активностью. [c.660]

    Название привитой функциональной группы не обязательно описывает действительную химию поверхности модифицированной фазы для ЖХ, например аналитические и препаративные С18-насадки могут очень сильно отличаться по селективности в зависимости от методов предварительной обработки исходного материала, синтеза, обработки после прививки, приведения колонки в равновесие и ее истории. [c.77]

    Сумма ожижепного газа и газового бензина составляет жидкую часть природного газа. Газовый бензин имеет большое значение для химической переработки парафинов, так как из него получают технический пентан — примерно эквимолекулярную смесь к-пентана и изопентана, из которых к-пентап необходим для получения амилового спирта, изопентан — в синтезе изопрена. В последнее время все большую роль играет также выделение этана из природного газа, так как этан представляет собой важный исходный материал для получения этилена и ацетилена. Этан не относится к сжижаемым при нормальных условиях составным частям газа и для его Ч выделения необходимы специальные методы.  [c.13]

    Для технических целей наиболее нодходяш,им исходным материалом может служить гидрированный при высоком давлении когазин II синтеза Фишера-Тропша с кобальтовым катализатором. Гидрирование проводится примерно при 320° и 200 ат давления водорода над сульфидным никель-вольфрамовым катализатором. При этом получают с 99%-ным выходом смесь бесцветных вполне насыщенных углеводородов, очень мало разветвленных, так называемые меназины. При сульфохлорировании получается смесь всех теоретически возможных моносульфохлорпдов. Если в качестве исходного материала применяется смесь парафиновых углеводородов с прямой цепью и четным числом углеродных атомов в цени, то образуется равное количество всех возможных вторичных сульфохлоридов, так как сульфохлорирование любой из метиленовых групп одинаково вероятно. Первичных сульфохлоридов получается очень мало, во-первых, потому, что реакционная способность водородных атомов метильных групп меньше, чем водородных атомов метиленовых групп, а во-вторых, потому, что с увеличением длины молекулы парафиновых углеводородов число метиленовых групп значительно увеличивается. [c.138]

    Уже рассмотренные выше в различных главах этой кйиги процессы окисления метана ие ставили своей целью получение кислородсодержащих продуктов (ацетилен но Захсе, получение синтез-газа, сажи и т. п.). Этаи также не применяется в промышленности как исходный материал для окисления ири получении кислородсодержащих соединений. Вместе с тем все возрастает значение автотермического получения этилена, при котором часть этана сжигается, чтобы получить энергию, необходимую для процесса. [c.150]

    В непрерывном процессе для омыления обычно применяют 5%-пый раствор натриевой щелочи (рпс. 101). Гидролиз проводится при 150—160° и 14—15 ат, продолжительность процесса около 10—15 мин. Значение pH равно 10—12. Из верха сосуда, в котором производится омыление, продукты реакции поступают в дистилляцион-ную колонну, где аллиловый спирт, диаллиловый эфир и вода, поступающая в колонну в виде водяного пара, образуют азеотропную смесь (сырой аллиловый снирт), а раствор хлористого натрия с небольшим количеством аллр1лового спирта отходит из низа колонны. Кипящая при 89° азеотропная смесь может непосредственно применяться как исходный материал для синтеза глицерина. [c.174]

    Так как исходный материал для синтеза Фишера — Тропша, т. е. смесь окиси углерода с водородом (синтез-газ), принципиально может быть получен из любого углеродсодержащего сырья и таким образом не лимитируется сырьевыми ресурсами, этот синтез открывает в настоящее время возможность промышленного получения неограниченных количеств высококачественного синтетического парафинового сырья любого молекулярного веса для органического синтеза алифатических соединений. [c.17]


    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Получение исходного материала (полупродукта). Для синтетических волокон это синтез полимеров — получение смолы. При всем разнообразии исходных полимерных материалов к ним предъявляются следующие общие требования, обеспечивающие возможность формования волокна и достаточную прочность его а) линейное строение молекул,позволяющее растворять или плавить-исходный материал для формования волокна и ориентировать молекулы в волокне б) ограниченная молекулярная масса (обычно от 15000 до 100 000), так как при малой величине молекулы не достигается прочность волокна, а при слишком большой возникают трудности при формовании волокна из-за малой подвижности молекул в) полимер должен бЕлть чистым, так как примеси, как правило, сильно понижают прочность волокна. [c.208]

    Начало четвертого периода нефтепереработки хронологически совпадает с серединой нашего столетия. Его можно было бы характеризовать как период полной химизации всей технологии переработки нефти, за исключением процесса первичной ее перегонки. Эта всеобщая, тотальная химизация нефтепереработки и увеличение удельного веса каталитических процессов направлены на решение широкого комплекса технических, технологических и технико-экономических вопросов повышение степени использования сырья, увеличение ассортимента товарных нефтепродуктов, повышение их качества, повышение выходов наиболее ценных нефтепродуктов, в том числе моторных топлив, смазочных масел, исходных и промежуточных продуктов для химической промышленности. Широкое внедрение получают водородные каталитические процессы гидрирование, гидрокрекинг, гидродесульфирование и др. Для повышения технических свойств масел налаживается производство так называемых присадок, т. е. добавок, улучшающих эксплуатационные свойства нефтяных масел, а также производство синтетических масел. Крупнозаводское оформление получают процессы производства и разделения ароматических углеводородов, а также выделения из нефтепродуктов неразветвлен-ных парафинов и их тонкая химическая очистка с целью подготовки высококачественного исходного материала для промышленности микробиологического синтеза. [c.10]

    На второй ступени происходит диеновый синтез, при этом освобождается много тепла, так что суммарно процесс почти термоиеитрален. Поэтому исходный материал в трубчатом нагревателе быстро доводят до температуры реакции, в результате чего наступает крекииг. После этого продукты реакции переводят в реакционную камеру (которую нельзя нагревать прямым обогревом), где и происходит дальнейшая реакция. Оба аппарата заполнены медными стру/кками. Медь является, ио-видимому, катализатором дегидрирования гидроароматических углеводородов. [c.116]

    Циклогексанои и методы его получения уже неоднократно упоминались. Этот очень устойчивый кетон кипит прн 156,5°. Он часто используется в качестве исходного материала для синтезов. В спиртовом растворе на солнечном свету он претерпевает разрыв кольца с образованием капроновой кислоты и Д -гексенового альдегида (Чамичан). Оксим циклогексанона под влиянием серной кислоты перегруппировывается в лактам е-амииокапроновой кислоты  [c.825]

    Биогенез изопреноидов, с одной стороны, и соединений, построенных по ацетатному правилу Колли — Берча, с другой, может быть в настоящее время рассмотрен и понят с единой точки зрения. Вначале при участии коэнзима А происходит конденсация двух молекул уксусной кислоты ио принципу голова к хвосту с образованием промежуточного продукта 2, из которого в результате дальнейших аналогичных конденсаций ио пути II получается полиацетильная цепь (ацетилацетон, диацетилацетон и т. д.) последняя, в свою очередь, представляет собой, исходный материал для всех тех природных веш,еств, синтез которых протекает по ацетатному правилу . [c.1136]

    АЦЕТОНИТРИЛ (нитрил уксусной кислоты, цианистый метил) Hз N—бесцветная жидкость с характерным запахом (эфирным), т. кип. 81,6 С, смешивается с водой и другими органическими растворителями. А. применяют как растворитель многих неорганических и органических веществ как исходный материал для синтеза важных промышленных продуктов, для разделения смеси жирных кислот, удаления смол, фенолов и красителей из углеводородов нефти и др. А, токсичен, предельно допустимая концентрация в воздухе около 0,002%. [c.36]

    Карбид кальция в больших количествах расходуется на получение ацетилена, который применяется для резки и сварки металлов и в качестве исходного материала для промышленного органического синтеза. Карбид кальция в больших количествах применяется также для производства цианамида кальция a Nj— хорошего азотного удобрения. Транспортирование, хранение и использование карбида кальция необходимо осуществлять с соблюдением установленных правил техники безопасности ввиду огнеопасности и взрывоопасности ацетилена. [c.64]

    Огромный материал, накопленный в последние годы в этой области и обобш,енный в монографиях и учебниках, посвящен главным образом химии и технологии процессов полимеризации и недостаточно отражает вопросы синтеза исходных мономеров, которые определяют состояние и экономику отрасли в целом. [c.6]

    Синтез твердых веществ методом химической сборки возможен при условии, что на поверхности исходных веществ имеются функциональные группы, постоянно возобновляющиеся в ходе синтеза. При получении титаноксидных слоев на поверхности углеродных веществ такими группами являются гидроксигруппы. Создание химически гомогенной по гидроксигруппам углеродной поверхности достигается обработкой исходного материала хлором (см. работу 3.5), а затем гидролизом образовавшихся хлор-групп парами воды (см. работу 3.6). Синтез титаноксид- [c.100]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    Поиск технически возможного синтеза начался с конца 80-х годов. К. Гейман в 1890 г. показал, что фенилглицин при сплавлении со щелочью дает индоксил, легко окисляющийся кислородом воздуха до индиго. Вскоре он нашел, что краситель получается с лучшим выходом, если сплавить со щелочью фепилглицин-о-карбоно-вую кислоту. Трудности были связаны с приготовлением антрани-ловой кислоты, применяющейся здесь в качестве исходного материала. И лишь после успешного перевода фталевой кислоты в антраниловую (фталевая кислота легко получалась окислением нафталина серной кислотой в присутствии сульфата ртути) стал ясен промышленный путь к синтетическому индиго от нафталина к фталевой кислоте, а затем через антраниловую к фепилгли-цип-о-карбоновой и, наконец, к индиго  [c.246]

    Наиболее благоприятный случай для синтеза V представлен кривой а. Исходная система X может реагировать в двух направлениях с образованием целевого продукта У и побочного продукта 2. Барьер первой реакции существенно ниже, чем второй, Поэтому скорость реакции образования целевого продукта значительно превьииает скорость побочной реакции, в результате чего весь исходный материал X расходуется на образование У, а побочная реакция просто не успевает пройти. Хотя по условиям задачи 2 является более стабильным продуктом, в рассматриваемом случае его образование не происходит из-за достаточно высокого барьера для превращения У -> 2. Стабильность У есть стабильность кинетическая, и возможность его образования из X в данном случае определяется низкой скоростью превращения У в термодинамически более выгодный продукт 2. Иными словами, У по-прежнему сохраняет тенденцию свалиться в яму , но система заперта потенциальными барьерами, которые и обеспечтаают возможность сс сохранения. Именно наличие сравнительно высоких потенциальных барьеров обусловливает возможность существования огромного числа органических соединений, подавляющее большинство которых термодинамически нестабильны, а также и возможность проведения синтеза против термодинамики , как в рассмотренном на рис. 2.1 примере получения продукта Р из исходного соединения А. [c.70]

    В первом синтезе -.цистина (Фишер, 1908) в качестве исходного материала был использован -серин. Дю Виньо разработал метод синтеза цистина на основе фталимидомалонового эфира (1939)  [c.665]

    Иногда бывает желательно получить галогенангидриды не из свободной карбоновой кислоты, а из ее сели или зфира. Можно также исходить из эфира и перейти к галогенангидриду через соль [36]. Подходящим для этого реагентом служит смесь хлористого тионила и диметилформамида (пример а). Другие реагенты (хлористый тионил, пятихлористый ( сфор, хлорокись фосфора и а,а-ди-хлорметиловый эфир) и катализаторы подобны используемым в случае, когда исходным материалом служит карбоновая кислота. Этот метод широко используется при синтезе хлорангидридов фторированных кислот, главным образом потому, что исходный материал, соль, — легко доступное и нелетучее вещество [37, 38]. Его также применяют для получения галогенангидридов, содержащих сложноэфирную группу, например хлористого этоксалила, который синтезируют из диэтилового эфира [39] или из калиевой соли полу-зфира [401. Интересно отметить, что Р-пропиолактон, циклический сложный эфир, дает 87%-ный выход хлорангидрида р-хлорпропио-ковой кислоты при действии хлористого тионила, тогда 15ак хлв- [c.352]

    В обзорных работах [II рассмотрены общие вопросы по синтезу" нитрилов. Как классические реакции обмена алкилгалогенида с цианистым натрием, так и реакции обмена между арилгалогенидами и цианидом одновалентной меди были значительно усовершенствованы путем применения апротонных растворителей (разд. А.1). Эти методы, наряду с дегидратацией амидов (разд. В.1) и оксимов-(разд. В.4), до сих пор остаются наиболее общими и надежными, путями получения нитрилов. Относительно новым методом, особенно полезным для получения низкокипящих нитрилов (разд. В.5), является реакция обмена между нитрилом и карбоновой кислотой. Реакции присоединения, вероятно, следует прежде всего рассматривать как метод получения цианидных групп, связанных с третичным атомом углерода (разд. Г). Большая часть других методов не имеет такого общего характера. Однако они могут быть подходящими и даже незаменимыми при получении какого-либо конкретного нитрила из единственно доступного исходного соединения. Например, а гипотетическом случае, при необходимости получить адаман-тилцианид, имея в качестве исходного материала только адамантан, можно было бы провести галогенирование с последующим обменом с цианидом, либо прямое цианилирование нли карбоксилирование с последующим амидированием и дегидратацией (разд. В.1). [c.431]

    Рассмотренный выше механизм включает процессы четырех типов образование стабильного диаллильного бирадикала в стадии 1 перераспределение электронов в стадии 2 (аналогичное разложению 1,4-бирадикала) внутренний диеновый синтез в стадии 4 миграцию двойных связей в стадии 3 установление равновесия [5]. Миграция двойной связи, типа требуемой для установления равновесия между всеми возможными сопряженными диенами, имеющими циклогексановый скелет, двузамещенный в положении 1,3, как было показано экспериментально, происходит при температурах, более низких, чем применявшиеся при изомеризации 5,5-диметил-1,3-цик-логексадиена (XX). Поэтому логично предположить, что при изомеризации (XX) легко протекают стадия 3 и установление равновесия [5]. Следует отметить, что источником исходного материала может являться внутренний диеновый синтез триена, образующегося в стадии 2, и этот синтез вполне возможен в ходе реакции. [c.82]

    Бензоил акриловые кислоты были использоваиы в качестве исходного материала для синтеза производных атрахинона [177], Реакция между ароматическими соединениями и алеиновым ангидридом приводит, в общем, к более низким выходам и к полу- [c.212]

    Метан СН4 используется для получения ацетилена, синильной кислоты, хлороформа, четыреххлористого углерода, сажи (технический углерод), формальдегида Этан СзНб — исходный материал в синтезе этилена Пропан СзНв применяют в синтезе этилена (пиролиз) и пропилена, нитрометана, сажи Это компонент бытового топлива [c.247]

    Определение аминокислот всегда представляло исключительно важную задачу биохимии ввиду того, что эти соединения играют роль кирпичиков при построении пептидов и белков. Широко применяемый, основанный на ионной хроматографии и теперь уже ставший классическим метод Мура и Штейна [1] не позволяет провести различие между энантиомерами. Между тем в хиральном аминокислотном анализе ощущается явная потребность так, например, в пептидном синтезе решающее значение может иметь оптическая чистота исходного материала, а результаты стереохимического анализа могут искажаться из-за рацемизации. Другой областью применения дгырдльного аминокислотного анализа является определение строения многих микробиологических продуктов, таких как полипептидные антибиотики, в состав которых входят о-аминокислоты, не обнаруженные у млекопитающих [2]. [c.173]

    Как указывалось в разд. 7.1.1.2, многие природные полисахариды представляют интерес как исходные материалы для синтеза хиральных сорбентов. Лучще всего изучена целлюлоза. Однако при получении ее хроматографических производных очень важно сохранить микрокристалличность целлюлозы. Вследствие этого микрокристаллические производные получают обычно гетерогенными реакциями, т. е. в условиях, исключающих растворение исходного материала. [c.245]

    Недавно разработан общий метод синтеза и пoJ yчeны экспериментально опытные партии композитов на основе модификации перфтор-полимеров, которые обладают уникальным ко.мплексом ценных свойств. Суть метода заключается в покрытии поверхности исходного материала тонкими слоями (2 -Юнм) фторполимеров и их последующей химической модификации Введение новых элементов в такой универсальный базовый фторполи.мерсодержащий композит дает возможность синтезировать практически любые сорбенты, используе-.мые в биотехнологии и медицине. [c.173]

    Следует указать, что во время беременности в женском организме функционирует еще один эндокринный орган, продуцирующий эстрогены и прогестерон,— плацента. Установлено, что одна плацента не может синтезировать стероидные гормоны и функционально полноценным эндокринным органом, скорее всего, является комплекс плаценты и плода — фетоплацентарный комплекс (от лат. foetus —плод). Особенность синтеза эстрогенов заключается также в том, что исходный материал—холестерин — поставляется организмом матери в плаценте осуществляются последовательные превращения холестерина в прегненолон и прогестерон. Дальнейший синтез осуществляется только в тканях плода. [c.281]


Смотреть страницы где упоминается термин Синтез исходные материалы: [c.32]    [c.63]    [c.181]    [c.215]    [c.392]    [c.13]    [c.58]    [c.39]    [c.844]    [c.395]   
Современная общая химия Том 3 (1975) -- [ c.3 , c.257 , c.258 ]

Современная общая химия (1975) -- [ c.3 , c.257 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Исходные материалы для синтеза других полимеров

Исходные материалы для синтеза каучуков специального назначения

Исходные материалы и методы синтеза мономеров

О влиянии природы и состояния исходных материалов на результаты гидротермального синтеза цеолитов

Особенности свойств н строения макромолекул ацетата целлюлозы и их зависимость от исходного целлюлозного материала и от условий синтеза продукта



© 2025 chem21.info Реклама на сайте