Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Борная кислота отделение от других кислот

    Интерес представляет метод разделения неметаллов и металлов. В качестве примера описан простой и удобный метод отделения борной кислоты от соли никеля поглощением последнего на катионите. В то же время применение этого метода связано с серьезными затруднениями, особенно в присутствии металлов высшей валентности. Так, например, отделение трехвалентного железа от фосфорной кислоты возможно лишь ограниченно. Для поглощения фосфорной кислоты на анионите необходимо перевести молекулы фосфорной кислоты в анионы для этого следует повысить pH раствора. Однако при этом будет осаждаться железо, захватывая ион фосфата. Если же применять сильнокислую среду, когда гидроокись и фосфат железа полностью растворимы, то будет подавлена диссоциация фосфорной кислоты. Это уменьшает ее поглощение на анионите. Затруднение усиливается также в связи с конкуренцией со стороны других анионов, введение которых неизбежно при подкислении. [c.54]


    В условиях данного эксперимента спирты отгонялись от непрореагировавших углеводородов в виде эфиров борной кислоты. Вполне возможно, что в промышленных условиях более целесообразным окажется применение иного способа отделения спиртов от углеводородов, например, экстракция селективными растворителями или адсорбция силикагелем. При изучении возможности использования спиртов оксосинтеза для производства натрийалкилсульфатов было установлено, что полученные спирты обеспечивают устойчивую глубину сульфирования в размере 90% и выше, а их сульфоэфиры характеризуются высокой моющей способностью. Низкая стоимость бензинов контактного коксования по сравнению с другими сырьевыми ресурсами обеспечивает весьма благоприятные технико-экономические показатели данного варианта производства высших жирных спиртов. Однако до сих пор ни советскими, ни зарубежными специалистами окончательно не выяснен вопрос о сравнительном качестве натрийалкилсульфатов, полученных на основе нормальных и изомерных спиртов. [c.194]

    Применение мембран из ионитов. Чтобы отделить, например, борную кислоту от многих катионов, исследуемый раствор наливают в сосуд, отделенный мембраной из анионита от другого сосуда. Далее проводят электролиз, причем в сосуд с испытуемым раствором погружают катод, во второй сосуд—анод. Катионы в испытуемом растворе не поглощаются анионитом и поэтому не могут проникнуть через анионитовую мембрану. Между тем анионы борной кислоты поглощаются анионитовой мембраной, [c.74]

    Метод отгонки применяется и в ряде других случаев, когда образуются более сложные соединения, наиример метиловый эфир борной кислоты и т. д. Таким образом, методы, основанные на получении газообразных соединений, имеют большое значение, особенно для отделения и определения неметаллов и близких к ним элементов. [c.113]

    Описан хроматографический метод отделения сульфатов от других ионов в колонке (рис. 62), заполненной оксидом алюминия [36]. Метод позволяет выделить до 0,5 ррт сульфатов из растворов, содержащих значительные концентрации хлоридов, нитратов, перхлоратов и большинства ионов металлов. Сульфат элюируют из колонки разбавленным раствором аммиака, пропущенным предварительно через катионообменную колонку, и затем титруют его раствором соли бария. Описываемый метод не позволяет отделить сульфаты от фторидов и фосфатов. Мешающее действие фторида устраняют добавлением борной кислоты к анализируемому раствору [40[. Удаление фосфата описано выше. [c.527]


    Щавелевая кислота. Основным химическим методом определения щавелевой кислоты является метод, основанный на осаждении ее хлористым кальцием, с последующим отделением осадка оксалата кальция, растворением его в серной кислоте и титровании перманганатом [2, 4, 6, 7, И]. При этом для устранения влияния других органических кислот, в том числе винной, добавляют борную кислоту. Большие количества белка в продукте удаляют солями цинка [11]. [c.222]

    Весьма перспективны, хотя еще мало изучены, методы отделения бора поглощением борной кислоты на анионите (с последующим вымыванием). Более изучены методы, основанные на поглощении мешающих металлов на катионитах. Критическая проверка ряда методов [3] дала удовлетворительные результаты при поглощении борной кислоты из щелочных растворов на анионите. Однако этот метод неудобен в присутствии большого количества других солей кроме того, при малых количествах борной кислоты становятся заметными потери вследствие неполного вымывания ее из анионита. В ряде лабораторий получены хорошие результаты при отделении бора электродиализом с использованием анионитной мембраны. Этот способ был предложен для определения бора в кремнии. В определенных условиях через анионитную мембрану проходит только борная кислота [6, 7]. [c.53]

    Различные типы ионообменных смол используются для удержания таких катионов, как N +, Со +, NH+, Zn2+, А1 +, Ре +, Fe2+, u + и др. Описаны способы отделения NHI, Zn2+, Fe +, AP+ и других катионов на ионообменных смолах амберлит IR-120 и дауэкс-50 [101, 102, 120]. Рекомендуется при использовании амберлита пропускать раствор, содержащий борную кислоту, через две последовательно соединенные друг с другом колонки [c.27]

    Отделение больших количеств земельных кислот от титана легче достигается фторидно-танниновым методом [33], по которому смесь окислов переводят во фториды, последние растворяют в соляной кислоте и земельные кислоты осаждают добавлением таннина и борной кислоты. Метод применим также для отделения циркония и других элементов. (Доп. ред.)  [c.248]

    Сходную циклическую формулу имеет и нерастворимый фенолят свинца, получаемый из пирокатехина, который служит для отделения этого вещества от других многоатомных фенолов. Пирокатехин увеличивает электропроводность водного раствора борной кислоты вследствие образования комплексной кислоты. [c.481]

    Борат-ионы легко отделяются от других ионов на сильноосновных анионообменниках (pH раствора < 5). Борная кислота, как слабая кислота, непрочно связывается функциональными группами и количественно вымывается из обменной колонки водой (например, разделение Н3ВО3 — Н3РО4). При отделении борат-ионов часто рекомендуют сначала удалять катионы металлов, обменивая их с ионами Н на сильнокислотном катионообменнике. Отсутствие катионов, особенно тяжелых металлов, значительно облегчает отделение борат-ионов раствором гидроксида натрия (разделение ВО — 810з [104]). Слабоосновные анионообменники в ОН-форме также пригодны для отделения борат-ионов (например, разделение смеси ионов борат — фосфат — сульфат [105]). [c.212]

    Фракция исходных парафиновых углеводородов и возвратные углеводороды из емкости 19 в соотношении 1 1,2 поступают в подогреватель 1, где доводятся до 165° С и подаются в окислительную колонну 3, в которой подогреваются до 170° С теплоносителем. При 170° С в колонну из смесителя 2 загружается суспензия борной кислоты, носле чего начинается окисление при непрерывной подаче в нижнюю часть колонны воздуха. Окисление продолжается 2—3 часа по достижении гидроксильного числа ок-сидата 70—80. Отработанный газ по выходе из окислительной колонны проходит систему очистки 4—10). Газ после очистки смешивается с необходимым количеством воздуха и возвращается в окислительную колонну. Масляный конденсат из аппаратов 5 и б направляется в емкость 11. Окси дат из окислительной колонны подается в емкость 12, из которой направляется в промежуточную емкость 13 и на центрифугу 14 для отделения борной кислоты. Борная кислота собирается в сборнике 15, растворяется в воде и направляется на регенерацию через 16 (суперцентрифуга). Оксидат проходит емкость 17, подогреватель 18 и поступает в дистилля-ционную колонну 19, где от борных эфиров отгоняются парафиновые углеводороды, не вступившие в реакцию, которые поступают в сборник 20. Углеводороды после промывки 10%-ным раствором КаОН в аппарате 21 насосом 22 через промежуточную емкость 23 направляются на промывку водой в колонну 24, а затем в емкость 25, из которой часть их возвращается на окисление, а другая часть подвергается дистилляции. Борнокислые эфиры из куба 26 через емкость 27 поступают через подогреватель 28 в реактор 29, где при 98°С происходит их гидролиз водой. Сырые спирты отмываются в колоннах 29а от борной кислоты. Сырые спирты собираются в емкости 30, промываются 45%-ным раствором КаОН при 110°С в реакторах 31 для удаления примеси жирных кислот, а затем из емкосш 33 поступают на дистилляцию в ректификационные колонны 32 и собираются в емкостях готовой продукции 33. Водный раствор борной кислоты собирается в емкость 34, затем поступает в выпарной аппарат 35 и далее — в кристаллизатор 36, после чего кристаллы отделяются на центрифуге 37. Аппараты 38—40 играют роль промежуточных емкостей. 41 — подогреватель, 42 — транспортер борной кислоты ж 43 — бункер. [c.295]


    Разделение америция и кюрия осуществили благодаря использованию того факта, что америций в отличие от кюрия может быть окислен до состояния, в котором он имеет растворимый фторид. Окисление Ат до АтО проводили персульфатом аммония с ионом серебра в качестве катализатора в разбавленной азотной кислоте при температуре 90° С (см. гл. VIII, раздел 6.6). При осаждении из этого раствора фторида лантана кюрий захватывался осадком, тогда как америций оставался в маточном растворе. После этого фторид лантана можно растворить в смеси азотной и борной кислот и повторить окислительно-восстановительный цикл столько раз, сколько требуется для достижения желаемой степени разделения америция и кюрия. Окисление америция можно провести описанным способом или анодным окислением в разбавленных азотной или хлорной кислотах при 0° С на платиновом аноде в условиях, когда активный раствор находится в изолированном анодном отделении. Такое окисление было ранее осуществлено Стефеноу и Пеннеменом [12]. Другой метод разделения америция и кюрия, основанный на окислении америция, использовался Томпсоном, Морганом, Джеймсом и Перлменом [13], Яковлевым и Горбенко-Германовым [14]. Америций окислялся до пятивалентного состояния в 50%-ном карбонатном растворе озоном, гипохлоритом или персульфатом. Америций осаждался в виде нерастворимого двойного карбоната, а кюрий оставался в маточном карбонатном растворе. [c.423]

    При переработке трапных вод реакторного отделения (СВО-3), а также при переработке грязного конденсата образуется чистый конденсат, который после проверки качества направляется в баки чистого конденсата. Чистый конденсат используется для заполнения деаэраторов борного регулирования, приготовления растворов борной кислоты и других реагентов, а также применяется для отмывки загрузки фильтров установок СВО-1, СВО-2. При проведении водообменов первого контура продувочная вода первого контура направляется в баки грязного конденсата, а для восполнения объема теплоносителя в первом контуре из деаэраторов борного регулирования чистый конденсат подается в тракт подпитки контура. [c.264]

    Раствор борной кислоты, отходящий из реактора 2, промывных колонн 5 и других аппаратов, собирается в баке 6 и насосом 7 подается в напорный бачок 8, затем в суперцентрнфугу 9 для отделения от него примесей жирных спиртов. Очищенный раствор борной кислоты из приемного бака 10 насосом 11 подается в выпарные аппараты 3, из которых концентрированный раствор поступает в кристаллизатор 20 и затем в центрифугу 21. [c.45]

    Некоторые осадки, даже при отсутствии посторонних примесей, образуются в виде соединений переменного состава. Кроме упомянутых выше ферроцианидов, можно назвать также фосфаты многих двухвалентных металлов, образующие осадки переменного состава—от МеНРО до МСз(РО 2, соли борной кислоты и ряд других. Такие осадки могут быть использованы только для отделения соответствующих металлов, но не для их количественного определения. [c.32]

    Осаждение циркония купфероном с последующим прокаливанием осадка до окиси дает точные результаты. Этот метод удобен тем, что в результате прокаливания получается остаток определенного состава, который можно взвешивать, и, кроме того, при атом происходит полное отделение циркония от алюминия, хрома, урана (VI), борной кислоты и малых количеств фосфата. Однако определению циркония купфероновым методом препятствуют многие элементы, например титан, торий, церий (и, возможно, другие редкоземельные металлы), большинство элементов сероводородной группы, железо, ванадий, ниобий, тантал, вольфрам, кремнекислота и уран (IV). [c.643]

    Разработан способ получения борной кислоты из этого датолитового удобрения. Для этого его репульпируют 15 мин при 20—30° в оборотном щелоке, насыщенном борной кислотой. Затем пульпу подвергают флотации. При этом борная кислота поступает в пенный продукт, а гипс и другие примеси остаются в хвостах. После фугования и сушки пенного продукта получается 90—92%-ная борная кислота, а перекристаллизацией неотфугованного пенного продукта можно получить стандартную техническую борную кислоту. После отделения хвостов раствор возвращается в цикл. Хвосты могут быть перефлотированы для получения гипсового концентрата, пригодного для переработки в строительный гипс [c.347]

    Основным способом отделения ВО3 от других соединений является отгонка его в виде метилового эфира борной кислоты В(ОСНз)з, который получается при действии метилового спирта или кремнийорганических соединений на Н3ВО3 (см. 13). [c.536]

    Бор. Основной метод определения бора — титриметриче-ский — связан с предварительным отделением кремния и других компонентов и потому длителен. Нами было установлено [7], что в присутствии кремния кривая титрования маннито-борной кислоты совпадает с кривой ее титрования без кремния до значений pH 7.2, и если титрование проводить при меньших значениях pH (6.9), то влияние кремния не сказывается. Влияние других компонентов может быть устранено добавлением комплексона П1 или, еще лучше, комплексоната магния. [c.296]

    В Наиболее простых случаях для разложения борсодержащих материалов достаточно обработать их водой или разбавленными кислотами. При необходимости длительного кипячения с кислотами применяют обратный холодильник, чтобы избежать потерь борной кислоты. Выбор кислоты для растворения зависит от намеченного метода отделения мешающих компонентов. Для отгонки бора в виде борнометилового эфира следует применять при разложении только серную или фосфорную кислоту. В большинстве случаев недопустимо присутствие азотной кислоты, часто мешает и хлористоводородная кислота поэтому при растворении металлов для определения бора применяют обычно серную кислоту, а в качестве окислителя вводят перекись водорода или перманганат калия и т. п. Только в том случае, если в дальнейшем намечается определять бор с применением куркумина или других реагентов в нейтральном или слабощелочном водном растворе, рекомендуют использовать для разложения материала хлористоводородную кислоту. [c.49]

    Разложение материалов, содержащих фтор. Во многих случаях эти материалы можно разлагать щелочным плавлением или кислотным разложением, в последнем случае, разумеется, избегая нагревания. Для дальнейшего анализа обычно используют реакцию НВр4 с основными красителями. Однако в некоторых случаях, например в присутствии тантала или большого количества сульфатов, фосфатов и других, этот метод неудобен, и материал разлагают кислотами, добавляя значительное количество хлорида алюминия. Хлорид алюминия связывает фтор, и это облегчает переведение в раствор основного материала возможные потери бора в виде ВРз устраняются. Однако присутствие фтора и больших количеств алюминия затрудняет применение обычных методов отделения и определения бора. Поэтому в рассматриваемом случае рекомендуют извлекать борную кислоту из сильнокислого раствора диэтиловым эфиром или кетонами. Извлечение неполное необходимо введение поправочного коэффициента. [c.50]

    В литературе описан пирогидролитический метод отделения бора для его определения в цирконии, циркалое и других материалах [65, 66]. Метод состоит в разложении анализируемого материала, помещенного в платиновой или никелевой лодочке в середину никелевой трубки, парами воды при высокой температуре. Разложение пробы и отгонка борной кислоты с водяным паром продолжаются 1,5 ч при 1100°. При 1300° достаточно пропускать пар в течение 30 мин. Иногда применяют способы отгонки бора в виде борнометилового эфира (например, в случае разделения бора и кремния при определении бора в кремнии). [c.24]

    Одним из самых первых методов, предложенных для определения бора в силикатных породах и минералах, было титрование свободной борной кислоты стандартным раствором щелочи в присутствии многоатомного спирта, маннита, используемое обычно и теперь. Комплекс борная кислота — маннит реагирует как сильная одноосновная кислота. В сочетании с ионообменным отделением этот метод можно легко и просто применить к анализу турмалина и других силикатных минералов, таких, как аксинит, датолит, данбурит или дюмортьерит, содержащих бор в качестве основного компонента. Описанный здесь метод основан на работе Креймера [11]. [c.147]

    Бор обнаруживает большое сродство к кислороду, образуя. окислы бора, борную кислоту и бораты, которые вследствие образования оксо-мостиков (В—О—В) могут иметь циклическую или линейную полиядерную структуру. Эфиры бора с низшими спиртами летучи, и их используют для отделения бора от других элементов. Тетрафенилборат-ион находит применение для гравиметрического определения ионов щелочных металлов. Бор образует устойчивые тетраэдрические комплексы с органическими окси-анионами. В качестве примеров можно привести бис-комплексы его с салицилат-ионом и пирокатехином. Комплексообразование с содержащими кислород лигандами, как указывалось в гл. 11, имеет большое значение при титровании и фотометрическом определении борной кислоты и борат-иона. Применение реагента азометина Н, предложенного для фотометрического определения бора, основано как на прочном связывании бора с кислородом, так и на донорных свойствах атомов азота [7]. Образующееся желтое внутрикомплексное соединение имеет строение СЬХХУП. [c.314]

    Применение различных внутрикомплексообразователей для ионообменного разделения америция и кюрия описано Глассом [5К Классическим элюентом является цитрат. Гласс установил, что при комнатной температуре на смоле дауэкс-50 америций и кюрий очень хорошо разделяются 0,1 М тартратом аммония при pH, равном 4 (коэффициент разделения 1,3). Другим элюентом, способным быстро разделить америций и кюрий, является 0,4 М лактат при pH, равном 4,6. Этот реагент используется при температуре 87° С, что значительно ускоряет разделение (в 2—3 раза по сравнению с комнатной температурой). Альфа-оксиизобутират аммония, введенный в практику как элюент Чоппином, Харви и Томпсоном [6], обнаруживает определенные преимущества по сравнению с лактатом или с цитратом. Хотя применение изобутирата значительно облегчает разделение америция и кюрия, оно не годится для эффективного группового разделения актинидов и лантанидов и не заменяет вымывания соляной кислотой. Однако изобутират является эффективным средством для отделения америция от кюрия. В Беркли Томпсон, Харви, Чоппин и их сотрудники [71 отделили кюрий от облученного плутония методом анионного обмена Облученный плутоний при этом растворяли в соляной кислоте и осаждали актинидные и лантанидные элементы в виде нерастворимых фторидов. Затем осадок фторидов растворяли в смеси азотной и борной кислот. Далее аммиаком осаждали гидроокиси и растворяли осадок в смеси соляной кислоты и хлорида лития. Такая обработка приводила к удалению борной кислоты. Затем раствор соляной кислоты и хлорида лития заливали в колонку с анионитом дауэкс-1. Вымывание производили, пропуская через колонку 8,5 М раствор хлорида лития при температуре 87° С. В первую очередь вымывались редкоземельные элементы, за ними—фракция, содержащая кюрий, америций и калифорний плутоний же прочно удер- [c.421]

    Сырьем для производства борной кислоты в СССР служат, как известно, индерские бораты, содержащие кроме основного вещества, борного ангидрида, значительные количества окисей магния и кальция, а также глину, гипс, известняк и некоторые другие примеси. В соответствии с принятой на наших борнокислотных заводах технологией размолотую руду загружают в реактор, где обрабатывают серной кислотой и оборотными растворами разбавления, образующимися от промывки борной кислоты и шлама. Горячую суспензию из реактора ( реакторную пульпу ) передавливают на фильтрпресс, где происходит отделение фильтрата от шлама. Отжатый на фильтр-прессе шлам содержит значительное количество борной кислоты и для ее отмывки репульпируется горячей водой. Полученная в результате репульпации шлама пульпа называется шламовой . Эту пульпу подвергают вторичной фильтрации на ленточных вакуум-фильтрах. Шлам на полотне ленточного фильтра дополнительно промывают водой. Маточные растворы и промывные воды направляют в головной реактор. Фильтрация шламовой, а в особенности реакторной пульп является операцией малопроизводительной и самой трудоемкой из всего процесса производства борной кислоты. При этой операции много рабочих занято тяжелым физическим трудом в атмосфере повышенной влажности и температуры. Кроме того, при фильтрации расходуется очень много фильтровальных тканей, что сильно удорожает продукцию. [c.140]

    Снятие тритильной группы в глицеридах можно проводить кислотным гидролизом, однако при этом наблюдается ацильная миграция и образуется равновесная смесь изомеров. При синтезе насыщенных глицеридов детритилирование удобнее проводить каталитическим гидрированием в присутствии платинового или палладиевого катализаторов. Предложен метод детритилирования при хроматографии на кремневой кислоте или силикагеле, однако он не имеет препаративного значения в связи со специфическими требованиями, предъявляемыми к адсорбенту, трудностью отделения от образующегося трифенилкарбинола и наблюдаемой частичной изомеризацией глицеридов. Детритилирование с помощью борной кислоты сопровождается меньшей ацильной миграцией, чем в случае применения других методов [74]. [c.241]

    Выполнение определения. Анализируемый образец (например, 0,1 жл сыворотки крови или какой-нибудь другой раствор) помещают в пробирку для центрифугирования общей длиной 69—71 мм, с конической частью длиной приблизительно 23 мм и плоским дном диаметром около 2 мм. Объем раствора,. введенного в пробирку, должен быть точно известен. Толщина стенок пробирки равна 1,2—1,5 мм. В верхней части пробирка должна иметь бортик, предназначенный для поддержания ее в процессе центрифугирования в специальной гильзе. Перед применением пробйрку следует тщательно вымыть хромовой смесью, несколько раз сполоснуть дестиллированной водой и высушить в сушильном шкафу. К анализируемому раствору, помещенному в пробирку, добавляют 0,1 мл насыщенного раствора оксалата аммония и 0,1 ли дестиллированной воды, после чего растворы перемешивают, осторожно встряхивая пробирку. Пробирку закрывают пробкой и оставляют на 3 часа, после чего открывают и центрифугируют в течение приблизительно 15 мин. со скоростью 2 000 об/мин. Жидкость отделяют от осадка с помощью пипетки с тонким кончиком, снабженной резиновой грушей. Отделение раствора следует проводить очень осторожно, чтобы не захватить небольшого количества осадка. Осадок промывают один раз 0,3 мл 0,5-процентного раствора оксалата аммония, осторожно встряхивая пробирку с целью перемешивания. Раствор снова центрифугируют, как это описано выше, и пипеткой удаляют промывную жидкость. Осадок оксалата кальция высушивают при 110° в сушильном шкафу, после чего в течение 30 мин. выдерживают в муфельной печи при температуре 475—525° при этом оксалат кальция переходит в карбонат кальция, а избыток оксалата аммония разрушается. Вместо муфельной печи можно воспользоваться песчаной баней. После охлаждения пробирку погружают в кипящую водяную баню и добавляют 50 X горячего 10-процентного раствора борной кислоты, содержащей индикатор. Раствор борной кислоты готовят непосредственно перед употреблением, нагревая суспензию борной кислоты до растворения и добавляя к , 0 мл раствора кислоты 2—3 капли индикатора. Нагревание в течение нескольких минут приводит к растворению карбоната кальция. После охлаждения раствор титруют с помощью капиллярной бюретки 0,01 н. раствором соляной или серной кислоты. Конечную точку титрования определяют, сравнивая полученную окраску с окраской, возникающей в такой [c.177]

    Аниониты и катиониты могут использоваться в равной мере как для выделения малых количеств кремния, так и для отделения от кремния других катионов и анионов [11—15]. Викболд [11 предложил использовать для отделения кремния сильно основные аниониты в С1-форме, удерживающие кремний в виде аниона SiF . Кремний вымывают из колонки раствором борной кислоты. Этот метод ирименяют для отделения кремния от фосфатов, арсенатов и других анионов [12, 13, 15 . На jm6o основных анионитах кремний отделяют от других анионов в виде растворимой кремниевой кислоты [12, 14]. [c.217]


Смотреть страницы где упоминается термин Борная кислота отделение от других кислот: [c.3]    [c.227]    [c.296]    [c.307]    [c.81]    [c.335]    [c.130]    [c.78]    [c.254]    [c.42]    [c.335]    [c.44]    [c.227]    [c.211]    [c.278]   
Ионообменные разделения в аналитической химии (1966) -- [ c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Борну

Кислота борная



© 2025 chem21.info Реклама на сайте