Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий с гафнием и цирконием

    В английском патенте перечисляются борогидриды лития, магния, бериллия, алюминия, тория, гафния, циркония и урана. Необходимо отметить, что борогидриды натрия и калия в этом списке отсутствуют. Действительно, в одном из примеров, лежащем в основе патента, показано, что при полимеризации этилена в присутствий 1 г окисномолибденового катализатора и 0,2 з борогидрида лития в среде ксилола образуется 9,3 г твердого полимера. При замене борогидрида лития равным по весу количеством борогидрида натрия твердый полимер не образовывался. В патенте утверждается, что натрий обладает электроотрицательностью, равной [c.327]


    Общей характеристикой борогидридов, используемых при полимеризации на окислах металлов VA группы, может служить то, что эффективными промоторами являются два класса борогидридов. К первому классу относятся борогидриды щелочных металлов, в том числе борогидриды лития, натрия, калия, рубидия и цезия. Во второй класс входят борогидриды магния, бериллия, алюминия, тория, гафния, циркония и урана, которые характеризуются своей способностью восстанавливать соли многовалентных металлов и присутствием металла, электроотрицательность которого не менее единицы по шкале Полинга. В этом случае эффективные вещества не могут быть все определены и охарактеризованы одинаковым образом. [c.328]

    Публикуемые данные освещают ряд важных вопросов электрохимии и металлургии алюминия, магния, натрия, титана, циркония, гафния, ванадия, ниобия, вольфрама, редкоземельных металлов, а также процессов, протекающих при высоких температурах. [c.2]

    Нерастворимость фосфата циркония в минеральных кислотах имеет существенное значение для аналитической химии этого элемента мышьяковая кислота [22, 37] и некоторые ее производные также образуют нерастворимые циркониевые соединения. Арсенат прокаливанием в восстановительных условиях может быть превращен в двуокись циркония, но фосфат или взвещивают как таковой, или (при неизвестном содержании гафния, присутствие которого не позволяет сделать точного расчета) превращают в окись сплавлением (однократным или двукратным) с углекислым натрием. Осаждение циркония в виде основного селенита [39, 40] из раствора в минеральной кислоте может заменить осаждение купфероном при прокаливании селенит превращается в двуокись циркония. [c.176]

    ЭТОМ отчетливо вырисовывается, что линии, отвечающие однотипным хлоридам, принадлежат к одному семейству и сравнительно мало -различаются по углу наклона. Такова группа линий хлоридов лития, натрия, калия и серебра, к которым можно было бы добавить и другие подобные им хлориды, не показанные на рисунке во избежание его загромождения. Такова группа линий тетрахлоридов углерода, кремния, германия, олова, титана, циркония и гафния. [c.101]

    При увеличении числа связей, образуемых данным ионом металла с соседями, возрастает прочность металла и повышается энтальпия испарения (сублимации). Полинг, рассматривавший структуры решеток металлов с позиций теории ВС, отметил, что прочность металлов возрастает при переходе от металлов, имеющих малое число валентных электронов, к металлам переходного характера с его точки зрения металлы, имеющие частично незаполненные d-зоны, располагают большим числом электронов для осуществления межионных связей, а потому и должны быть прочнее. Энтальпия сублимации, отнесенная к одному электрону, действительно изменяется в ряду металлов от I до V группы таким образом, что ее максимальное значение приходится на титан, цирконий и гафний, а энергия, отнесенная к одному электрону, колеблется в пределах 84—168 кДж/моль, что близко к обычным энергиям химической связи. Необходимо, конечно, учитывать, что распределение энергии по большему числу связей скажется на падении ее значения на одну связь. Значение энтальпии испарения металлов имеет, в общем, тот же порядок, что и у ионных кристаллов, однако проводить сравнения трудно из-за влияния природы анионов. Соответствующие значения для хлоридов калия, натрия, магния лежат в пределах 125—168 кДж/моль, а энтальпия испарения металлического натрия равна 100,3. [c.285]


    Некоторые металлы, в том числе титан, цирконий, гафний, лантан и лантаноиды, удобнее всего получать взаимодействием их окислов или галогенидов с более электроположительным металлом. Для этих целей часто используют натрий, калий, кальций и алюминий. Так, титан можно получить восстановлением тетрахлорида титана кальцием [c.329]

    Большинство упомянутых элементов замещает в кристаллической решетке сподумена литий. При оценке заместителей лития в структуре сподумена следует иметь в виду то, что литий обнаруживает сходство не только с ближайшим соседом по группе — натрием, но и с элементами соседней группы, прежде всего с магнием и кальцием. Это понятно, если учесть, что ионный радиус лития лишь на 5% отличается от ионного радиуса магния и его величина, таким образом, находится в пределах 0,7—0,9 А (аналогично радиусам циркония, гафния, олова, железа и других элементов). В ряде случаев в структуре сподумена замещается алюминий. [c.182]

    В химической промышленности применяют экстракцию для извлечения уксусной кислоты из разбавленных водных растворов, муравьиной кислоты из ее азеотропной смеси с водой аконитовой кислоты из патоки кислот, альдегидов, кетонов и спиртов из продуктов окисления природного газа хлорбензола в производстве синтетического фенола для обезвреживания промышленных стоков для очистки едкого натра от хлоридов и хлоратов натрия для выделения перекиси водорода из продуктов каталитического гидрирования 2-этилантрахинона для получения высококачественной фосфорной кислоты, силиконов высокой степени чистоты и др. Методом экстракции пользуются в коксохимической промышленности (извлечение фенолов и ароматических углеводородов), в химико-фармацевтической (выделение многочисленных природных и синтетических соединений, в том числе антибиотиков и витаминов) в пищевой промышленности (для очистки масел и жиров) в металлургических процессах (для извлечения урана и тория, для регенерации облученного ядерного горючего, для разделения ниобия и тантала, циркония и гафния, редкоземельных элементов) и т. д. [c.562]

    Эффективным катализатором полимеризации является смесь окисп никеля на активированном угле с борогидридом металла, например натрия, лития и калия. Интересно отметить, что борогидриды, которые могут быть использованы в качестве сокатализаторов (например, борогидриды натрия, лития, калия, магния, бериллия, алюминия, тория, гафния, циркония и урана), характеризуются, согласно данным патента [15], тем, что все они в условиях процесса полимеризации, т. е. между 25 и 250°, реагируют с водой с образованием водорода. Указанные борогидриды способны также восстанавливать соли многовалентных металлов, например восстанавливать титан в Ti l4 до трехвалентного состояния. Борогидриды применяют в количестве от 0,05 до 2,5 весовой части на 1 весовую часть окиси никеля, включая носитель, но лучшие результаты получаются, когда это количество составляет 0,5—1,0 весовой части. [c.319]

    В американском патенте перечисляются борогидриды как щелочных металлов, главным образом натрия, лития и калия, так и магния, бериллия, алюминия, тория, гафния, циркония и урана. В нем приводятся те же примеры, что и в английском патенте, включая разобранные выше примеры, показывающие эффективность борогидридов лития и недостатки борогидридов натрия в качестве промоторов Однако приводится и дополнительный пример, показывающий эффективность борогидрида натрия в качестве промотора. Причина различной эффективности борогидрида натрия в этих примерах, очевидно, обус.тювлена применением в последнем случае более высокого соотношения промотора и металлического катализатора и заменой ксилола толуолом. Полимеризация в присутствии борогидрида лития в сочетании с окисью молибдена (реакционная среда — ксилол) или окиси вольфрама на окиси циркония (реакционная среда — изооктан или декалин) протекает успешно, если [c.327]

    Сырьевая база циркония включает два богатых им минерала — циркон и бадделеит, содержащие 45,6% и 69,1% циркония соответственно. В этих минералах цирконию сопутствует гафпий — металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80-х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Последующая технология включает электронно-лучевой аффинаж. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов. [c.687]


    Изучено влияние природы осадителя на растворимость гидроокисей гафния и циркония в 98%-ной уксусной кислоте. В качестве осадителей применяли 2,5 М растворы аммиака, едкого натра и едкого кали осаждение проводили на холоду из 500 му1 исходного раствора при интенсивном перемешивании, скорость подачи осадителя 5 мл1мин. Осаждение щелочами заканчивалось при pH 10 — 10,5, а аммиаком—при pH 9 (более высокого значения pH достигнуть не удалось из-за буферного действия фтористого аммония). Затем осадки гидроокисей растворяли в колбах, снабженных обратными холодильниками, в равных объемах 98%-ной уксусной кислоты в течение 3 часов при температуре 50°. Нерастворившуюся часть осадка отфильтровывали, прокаливали до двуокиси гафния (циркония) и взвешивали. Результаты опытов приведены в табл. 1. [c.150]

    И снабжен нагревательными элементами. Электролит 2 состоит из смеси хлоридов натрия, калия, кальция или магния. Катод 3 представляет собой металлическую трубку, через которую в расплавленный электролит вводится газообразный хлорид получаемого металла (например, Hf li). Анодом служит слой расплавленного магния 4, который соприкасается с железной стенкой электролизера. Для отделения катода от анода и католита от анолита катод окружен колоколом 5 из изолирующего материала. Катодное пространство заполнено аргоном. В нижней части катода осаждается металлический гафний (цирконий) (6). [c.92]

    Литий, рубидий, калий, це зий, радий, барий, стронций кальций, натрий, лантан, маг НИИ, плутоний, торий, непгу нпй, берилли , уран, гафни) алюминий, титан, цирконий, ва надий, марганец, ниобий, хром цинк, галлий, железо [c.40]

    Работы Г. Мозли (1887—1915) показали, что действительной основой периодического закона являются не атомные массы, а положительные заряды ядер атомов, численно равные порядковому номеру элемента в периодической системе. На основании периодического закона и работ Г. Мозли был решен важный вопрос о числе еще неоткрытых элементов. Было установлено, например, что между водородом н гелием или между натрием и магнием новых элементов быть не может. Открытие и дальнейшее развитие периодического закона не только избавило исследователей во многих случаях от бесполезной и трудоемкой работы по поиску новых элементов, но и позволило установить число неоткрытых элементов и их порядковые номера в периодической системе. Однако знание только порядкового номера не давало еще оснований помещать элемент в определенную группу периодической системы. Этот вопрос решался с помощью электронной теории строения атома. Применение этой теории показало, например, что неоткрытый элемент № 72 должен быть аналогом циркония, а не лантаноидов. Элемент № 72 (гафний) действительно был найден в циркониевом минерале в 1923 г., а не в лантаноидах, где его много лет безуспешно искэли, ошибочно считая аналогом лантаноидов. Даже спустя 70 лет после открытия периодического закона в таблице элементов до урана пустовали четыре клетки с номерами 43, 61, 85 и 87. Эти элементы — технеций, прометий, астат и франций — были [c.14]

    Цирконий и гафний растворяются только в плавиковбй кислоте и кипящей H2SO4. При растворении в плавиковой кислоте выделяется водород. /Кислоты, в том числе и органические, с добавлением фторидов щелочных металлов и аммония растворяют цирконий и гафний, но менее энергично, чем титан. В отличие от титана цирконий стоек к действию соляной кислоты при комнатной и повышенной температуре, но менее устойчив, чем титан, против действия смесей кислот азотной и соляной, азотной и серной, соляной и серной. По коррозионной стойкости цирконий уступает только танталу. Гафний обладает несколько меньшей коррозионной стойкостью по отношению к кислотам. На цирконий не действуют растворы и расплавы щелочей, гафний же не разъедается даже в кипящем растворе едкого натра, содержащем перекись натрия. [c.213]

    На рис. 74 можно видеть, что кривыеД0° для многих хлоридов пересекаются друг с другом, следовательно, взаимная их устойчивость меняется с изменением температуры. Это необходимо учитывать при анализе хлорирования многокомпонентного сырья, когда хлориды одних металлов могут быть хлорирующими агентами по отношению к другим металлам или окислам. На том же рисунке видно, что при данной температуре металл способен вытесняться из хлорида другими металлами (восстанавливаться) тем легче, чем выше егоДО°, и, наоборот чем ниже лежит кривая AG° образования хлорида, тем сильнее восстановительные свойства данного металла. Металлические титан, цирконий и гафний получают восстановлением их тетрахлоридов магнием или натрием. Кривые Д0°, Mg и Na l лежат значительно ниже кривых указанных тетрахлоридов, поэтому реакции восстановления протекают практически нацело. Выше 2000° в качестве восстановителя может быть использован водород, так как в этой области кривая для реакции (40) лежит ниже кривых для тетрахлоридов  [c.259]

    Восстановление фтористых солей. Из термодинамических данных следует, что фториды циркония и гафния могут быть восстановлены кальцием, натрием, магнием, алюминием. Реакция 2гр4 с Са начинается при 700—750° и протекает до конца  [c.346]

    Осажденные твердые катализаторы для приготовления высокомолекулярных полиэтиленов при низком давлении можно готовить взаимодействием солей титана, циркония, гафния, тория, урана, ванадия, ниобия, тантала, хрома, молибдена и вольфрама с триалкилалюминием [101]. Вместо триалкилалюми-ния можно применять галогениды алюминия [102] и алкильные производные магния и цинка [103]. Возможно также использовать алкильные производные металлов группы I, например натрия или лития [52, 75]. Аналогичные -катализаторы могут использоваться и для полимеризации высших олефинов [1, 59]. [c.288]

    Ацетилацетонат циркония был впервые приготовлен Бильтцем и Клинчем [1] из нитрата циркония и ацетилацетоната натрия в водном растворе. Он выкристаллизовывался из слабокислого раствора в виде соединения, содержащего 10 молекул воды. Затем его обезвоживали многократной перекристаллизацией из спирта. Хевеши и Леджструп [2] позднее разработали метод получения ацетилацетоната гафния, который оказался применимым и для синтеза ацетилацетоната циркония. Этот метод применяется в описываемом ниже синтезе. [c.119]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Фториды имеют преимущество перед хлоридами вследствие их малой гигроскопичности. В настоящее время в промышленных масштабах производят тетрафторид циркония Zrp4 и фторцирконат калия K2ZrF6. Фториды циркония и гафния могут быть восстановлены натрием, кальцием, магнием и алюминием. Использование в качестве восстановителя кальция и магния приводит к образованию нерастворимых фторидов, в то время как NaF легко удаляется из реакционной смеси в результате обработки водой. [c.245]

    Исходный раствор получают растворением тетрахлорида циркония в воде или же растворением цирконата натрия, изготовленного сплавлением циркона со щелочью, в соляной кислоте Исследована пригодность трибутилфосфата и диизоамилме-тилфосфината для разделения циркония и гафния в роданидной системе Для ТБФ коэффициент разделения составляет всего 4, для ДАМФ — 25 Хорошее разделение роданидов циркония и гафния получается при использовании в качестве экстрагента циклогексанона Циклогексанон в значительной степени растворяется в воде Для экстракции можно использовать также ацето-фенон, который относится к наиболее дешевым и доступным экстрагентам, но недостатком является его пожароопасность Метод экстракции роданидов удобен для получения концентратов гафния, так как в этом случае гафний экстрагируется [c.203]

    Углерод. Карбид титана растворяют в смеси соляной и азотной кислот, в разбавленной фтористоводородной кислоте, в смеси азотной и фтористоводородной кислот, в смеси серной (1 4) и небольшого количества азотной кислоты при нагревании. Для определения азота растворение проводят в смеси концентрированной серной кислоты с сульфатом калия. Карбид циркония растворяют в серной кислоте (1 4), добавляя по каплям азотную кислоту проводят также сплавление с едким натром расплавляют 2—3 г NaOH в никелевом тигле при 350— 400 °С, на остывший плав помещают навеску (0,1 г) и, постепенно нагревая до 700—800 С, производят сплавление. Карбид ванадия растворяют в азотной кислоте (1 2). Карбид хрома сплавляют с 10-кратным количеством пероксида натрия. Карбид молибдена растворяют в концентрированной азотной кислоте. Карбид вольфрама растворяют в смеси фтористоводородной и азотной кислот. Карбид гафния растворяют в серной кислоте (1 1) с добавкой по каплям азотной кислоты. Карбиды щелочноземельных металлов растворяют в соляной кислоте (1 20). Карбид бора сплавляют в железном тигле со смесью едкого натра и пероксида натрия (1 1) или спекают с карбидом бария при 950 °С в течение [c.13]

    Экстракция полученным раствором нитрозофенилгидроксил-амина купферонатов Th, Zr и Hf из раствора 0,1 N соляной кислоты, содержащей формиат натрия. При этом торий экстрагируется полностью, цирконий — на 99,8—99,9%, а гафний — в среднем на 95%. [c.98]

    Тантал совместно с ниобием, титаном, цирконием, гафнием и оловом можно количественно выделить из раствора, полученного после разложения горной породы, осаждением фениларсоновой кислотой следующим способом. К 300 мл раствора 2—3 н. по концентрации соляной кислоты, содержащего небольшие 1 олйчества серной и 5 з винной кислоты, прибавляют 5—Ю з фениларсоновой кислоты. Вводят немного мацерированной бумаги, нагревают на водяной бане 2 ч и оставляют при комнатной температуре на 48 ч. После этого осадок отфильтровывают и промывают холодной разбавленной (1 10) соляной кислотой или холодным,2%-ным раствором нитрата аммония. Для полного разложения горной породы может потребоваться 1) нагревание а фтористоводородной й серной кислотами, последующее удаление фтора, прибавление раствора винной кислоты и фильтрование 2) сплавление осадка с карбонатом натрия, растворение в соляной кислоте и фильтрование 3) сплавление остатку с пиросульфатом калия и растворение плава в растворе винной кислоты [c.679]

    В случае сомнения в нормальном составе прокаленного остатка, особенно когда последнего много, или если желательно качественно идентифицировать цирконий, применяют следующий способ. Прокаленный остаток ZrPjO, сплавляют с карбонатом натрия, выщелачивают плав водой, нерастворимый остаток гфокаливают, сплавляют с пиросульфатом, снова осаждают, но не фосфатом, а аммиаком, прокаливают и взвешивают в виде ZrO . Для доказательства присутствия циркония в прокаленном остатке переводят его в раствор, осаждают цирконий аммиаком, растворяют осадок в соляной кислоте, выпаривают до объема в 1—2 капли и испытывают куркумовой бумагой или проводят микрохимическую реакцию на цирконий. При оп ределении очень малых количеств циркония проба с куркумовой бумагой может не дать никакой окраски, хотя окраска легко появляется от 1 мг ZrO2, а при очень тщательном проведении пробы — дан е от 0,3 мг. Кроме гафния, ниобия, тория и тантала, никакие [c.972]

    Цирконий и гафний обладают чрезвычайно большим сходством химических и физико-химических свойств. Соединения гафния были выделены Г. Хевеши путем дробной кристаллизации фторцирконата—- фторгафнаТа калия. Несколько позднее, в 1926 г., им же был получен черновой гафний путш восстановления гафна-та калия металлическим натрием. Компактный ковкий гафний [c.5]

    Сильные основания, например едкий натр, вызывают гидролиз тётраманделата циркония и гафния. [c.65]


Смотреть страницы где упоминается термин Натрий с гафнием и цирконием: [c.125]    [c.174]    [c.475]    [c.476]    [c.479]    [c.11]    [c.235]    [c.6]    [c.661]    [c.638]    [c.16]    [c.94]   
Успехи химии фтора (1964) -- [ c.98 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Гафний

Натрия циркония



© 2025 chem21.info Реклама на сайте