Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицеллы в волокнах целлюлозы

    ОГО мицеллами, и способствует диффузии. Это влияние температуры особенно сильно сказывается в случае шерсти, где возможно усиленное набухание вследствие разрыхления перекрестных связей в молекулярной структуре (см. стр. 491). Причина сродства прямых красителей с волокном неизвестна. Молекулы краски, возможно, удерживаются побочными валентными силами. В случае целлюлозы длинные прямые молекулы красителя наиболее легко располагаются между цепями и мицеллами и крепко там удерживаются. Многие непосредственные красители целлюлозы имеют такую структуру, но и другие факторы, еще недостаточно известные, бесспорно играют важную роль. [c.511]


    Целлюлоза представляет собой важнейшее растительное сырье. Она образует в природе волокна, в которых макромолекулы упакованы в мицеллы с большой степенью упорядоченности. Так как целлюлоза содержит множество гидроксильных групп, то соседние макромолекулы очень сильно связаны друг с другом водородными связями. Для нее характерны громадная разрывная прочность, доходящая у длинноволокнистого хлопка и рами до прочности стали, а также полная нерастворимость. [c.34]

    Принято считать, что несколько кристаллитов (называемых также микрофибриллами, или мицеллами) образуют фибриллу последняя является составной частью волокна, видимой в микроскоп. На рис. 16 приведена фотография фибриллы целлюлозы, полученная при помощи электронного микроскопа (увеличение в 23 500 раз). [c.292]

    Некоторые свойства гелей. Гели обладают сравнительно большой механической прочностью, обусловленной их мицел-лярным скелетом. Если мицеллы расположены нитями, то гель получает значительную эластичность. Общеизвестными примерами такого строения являются каучук, вискоза, целлюлоза в виде волокон ниток и тканей. Действительно, в этих случаях рентгеновский анализ подтвердил соединение мицелл в длинные цепочки и волокна ( 137). [c.407]

    Свойства целлюлозы определяются не только строением ее отдельных цепных молекул, но и взаимным их расположением, т. е. надмолекулярной и морфологической структурой волокна. Изучение строения целлюлозного волокна в основном при помощи физических методов исследования (метода двойного лучепреломления, микроскопии и электронной микроскопии, инфракрасной спектроскопии, рентгенографии и электронографии) привело к созданию теории ориентированного (аморфно-кри-сталлического) строения целлюлозы. В клеточных стенках древесины целлюлоза находится в виде тончайших волоконцев — целлюлозных микрофибрилл. Длинные цепные молекулы целлюлозы проходят вдоль микрофибрилл на ряде участков ориентированно (т. е. параллельно друг другу и на близких расстояниях), а на ряде других участков их ориентация менее совершенна. Участки целлюлозы, в которых существует совершенный порядок в трех пространственных направлениях (т. е. совершенная ориентация), называют ориентированными участками, кристаллитами, или мицеллами (в современном понимании). Длина этих участков около 500—600 А, ширина 50— 100 А. Участки, в которых совершенный порядок отсутствует и сохраняется лишь общая продольная направленность цепей, называются неориентированными, или аморфными (рис. 35). Ориентация цепей в кристаллитах поддерживается за счет сил межмолекулярного взаимодействия — сил Ван-дер-Ваальса и, [c.67]


    Наличие в целлюлозном волокне участков, различающихся по степени упорядоченности и ориентации макромолекул и по среднему расстоянию между макромолекулами, было в свое время положено в основу мицеллярной теории строения целлюлозы, которая имела широкое распространение в период 1925—1935 гг. Эта теория, наиболее четко сформулированная Марком и Мейером, исходила из предположения о существовании в волокне групп ассоциированных, параллельно расположенных макромолекул, пространственно ограниченных (отделенных поверхностью раздела) от других макромолекул. Такая группа молекул называлась мицеллой . Мицеллярная теория основывалась на следующих положениях  [c.70]

    Вымывание водорастворимых остатков из волокна влияет определенным образом на его структуру, так что находящиеся на поверхности мицелл гидроксильные группы как бы освобождаются и могут образовывать с гидроксильными группами соседних мицелл новые связи. Подобное же явление может происходить и с отдельными целлюлозными цепями, которые ранее находились в аморфных областях. Это свидетельствует об увеличении упорядоченности в направлении, перпендикулярном оси волокна. Многочисленные наблюдения подтверждают, что, несмотря на действие реагентов, приводящих к деструкции целлюлозных цепей, кристалличность целлюлозы может после гидролиза увеличиваться. Такой процесс называют рекристаллизацией. Это явление уже рассматривалось выше при описании свойств размолотых препаратов целлюлозы, и было отмечено, что отбеленная и облагороженная целлюлоза, а также целлюлоза, подвергшаяся гидролизу или другим обработкам, более плотна, чем исходные образцы. Что касается механизма разрыва цепи при кислотном гидролизе, то по опытам и [c.133]

    Прямые красители, окрашивающие волокнистые материалы непосредственно при погружении последних в красильный раствор в присутствии электролитов, обладают ясно выраженным сродством к растительным волокнам. Это сродство обусловлено в первую очередь возникновением водородных связей между окси- и аминогруппами красителей и оксигруппами целлюлозы, а затем наличием сил Ван-дер-Ваальса и возникновением дисперсионных сил Лондона (между молекулами красителей и мицеллами целлюлозы). Электролиты уменьшают отталкивание анионов красителя от отрицательно заряженного волокна. [c.82]

    Молекулярные цепи целлюлозы образуются из очень большого количества остатков глюкозы и достигают большой длины. Рентгенографическое исследование волокна показало, что такие молекулярные цепи ассоциируются (связываются за счет остаточного сродства) в пучки-мицеллы, внутри которых образуется кристаллическая решетка. Молекулярные цепи всегда ориентированы по длине волокна. [c.409]

    Молекулярный вес целлюлозы лежит в пределах от 300000 до 500 000, что соответствует 3000—5000 структурных единиц Се в полимере. Данные рентгеноструктурного анализа указывают на то, что длина одной структурной ячейки вдоль оси полисахаридной цепи (период идентичности) близка к величине 10,25 А, вычисленной для длины одной целлобиозной единицы следовательно, полисахаридные цепи должны быть приблизительно прямыми, вытянутыми вдоль оси волокна целлюлозы. Тот факт, что в волокнах целлюлозы обнаруживаются кристаллические области, объясняется, по-видимому, наличием кристаллической структурной единицы, построенной из пакета (связки) параллельно ориентированных цепей (мицелл). Ширина мицеллярной единицы составляет около 60 А (100—200 целлюлозных цепей), длина—по крайней мере 200 А (200 глюкозных единиц). Значительная механическая прочность и химическая устойчивость приписыва ется мицеллярной структуре целлюлозы.  [c.565]

    Другой интересный вопрос — возможность существования крупных мицелл в агрегатах кристаллов хризотила, сравнимых с мицеллами в волокнах целлюлозы. Указания на реальность мицеллярных аранжировок можно вывести из электронографических исследований этого асбестового минерала О Данийла и Кедесди . Чистый железосодержащий серпентин в железных рудах Миннесоты представлен гриналитом (Ре Mg)6[Si40u/ /(0Н)б]Н20, описанный Грунером .  [c.40]

    В тех л<е случаях, когда структура куска имеет определенную ориентировку (анизотропия) (например, волокна целлюлозы), то при набухании волокна молекулы воды располагаются между длинными мицеллами, увеличивая значительно и ирнну волокна в результате проникновения воды длинные мицеллы искривляются, и общая длина волокна уменьшается. [c.391]

    При сравнении древесины с волокнами целлюлозы, хлопка и рами было установлено большое сходство в их структуре. Они несколько разли-чал 1сь лишь по ширине промежутков между светлыми линиями. В волокне древесины они были равны 1 мк, а в воло ше целлюлозы 0,8 мк в среднем. В воло гнах хлоп <а и рами, где нет лигнина, полосчатость образуется только мицеллами целлюлозы. [c.17]

    Синтетические моющие средства, особенно соли сульфокислот и алкилсульфлты, пе обладают способностью удерживать смытую грязь в растворе, т. е. способностью предотвращать товторное поглощение волокном окрашенной грязи — свойством, которым мыло обладает в очень высокой мере. Окрашенные загрязнения, состоящие из пыли и прочих неорганических составных частей, частично удерживаются на ткани органическими веществами, именно как жиры, масла и пот. Если эти вещества моющим средством извлекаются из ткани, переходя в эмульгированное состояние, то загрязнения в значительной мере теряют свою связь и также отделяются от волокна и связываются с мицеллами натурального мыла, что препятствует их обратному поглощению волокном. В случае синтетических средств типа солей сульфокислот, у которых вследствие слабовыраженного коллоидного характера мицеллы образуются лишь в меньшей мере, способность удержания смытой грязи в растворе выражена значительно слабее. Синтетические моющие средства обладают большой диспергирующей способностью, в результате чего грязь, переходя в раствор, оказывается сильно диспергированной и в таком виде вновь частично поглощается хлопчатобумажным волокном. Это приводит к тому, что со временем наблюдается посерение белья, которое, правда, становится заметным лишь после повторных стирок. Чтобы предупредить такое посерение белья, необходимо к синтетическим моющим веществам, не обладающим способностью удержания смытой грязи в растворе, прибавлять вещества, способные выполнить роль мицелл мыла. Такие вещества были найдены, -например, в виде тилозы НВК (эфира целлюлозы и гликолевой кислоты, являющегося продуктом реакции алкилцеллюлозы с моно-хлоруксуснокислым натрием — карбоксиметилцеллюлозы), применяемой либо самостоятельно, либо в смеси с силикатом натрия. В настоящее время их прибавляют в определенном количестве к каждому синтетическому моющему средству, особенно к мыльным порошкам. [c.409]


    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

    В результате ряд исследователей (Марк, Мейер и др.) предложили первоначальную мицеллярную теорию строения целлюлозы. Согласно этой теории полагали, что целлюлозные волокна построены из агрегатов молекул - мицелл, имеющих поверхность раздела и связанных межмицеллярными сипами. На раннем этапе исследований (30-е гг. нашего столетия), когда реальную длину цепей целлюлозы еще не установили, строение целлюлозных волокон описьгаали моделью бахромчатой мицеллы и каждую мицеллу со своей бахромой (разупорядоченные окончания молекул) на обоих концах рассматривали как индивидуальную частицу. При этом понятие мицеллы еще практически совпадало с аналогичным понятием коллоидной химии. [c.236]

    Данная теория, однако, не могла объяснить некоторые особенности поведения целлюлозы, например, обязательную стадию набухания перед растворением. Было непонятно, почему вообще возможно набухание, то есть какими силами удерживаются мицеллы при проникновении растворителя в целлюлозное волокно и почему оно не распадается сразу на отдельные мицеллы. Определенная на основании результатов рентгенографических измерений длина мицелл составляла примерно 50...60 нм, что соответствовало степени полимеризации молекул всего лищь около 100. Однако работы Штаудингера по вязкости растворов целлюлозы вскоре показали, что целлюлоза представляет собой типичный полимер и ее СП в действительности намного вьпле. Первоначальная мицеллярная теория подвергалась критике, и понятие мицеллы в результате работ отечественных исследователей (Роговин, Н. Никитин, Шарков и др.) и зарубежных (Фрей-Висслинг, Ренби, Престон и др.) бьшо пересмотрено. Марк и Мейер изменили свои взгляды на кристаллическую структуру целлюлозы, а результаты рентгенографических измерений получили иную трактовку. Была предложена новая мицеллярная теория строения целлюлозы - теория аморфно-кристаллического строения. [c.236]

    Во время смешения каждая частица наполнителя покрывается пленкой полимера, в которой макромолекулы ориентированы таким образом, что их полярные группы о0ращены к полярным группам наполнителя. Картина во многом напоминает ориентацию молекул эмульгатора в мицеллах при эмульсионной полимеризации. Большое значение имеет предварительная обработка поверхности наполнителя, усиливающая его связь с полимером и снижающая свободную энергию поверхности на границе полимер — наполнитель, что приводит к увеличению работы адгезионного отрыва — прививка полимера к волокнистым наполнителям, гидро-фобизация стеклянного волокна за счет взаимодействия его гидро ксильпых групп с кремнийорганическими соединениями или изоцианатами и т. д. Аналогичный эффект достигается введением карбоксильных групп в макромолекулу каучука, если наполнителем служит вискозный корд (взаимодействие групп СООН с группами ОН целлюлозы), предварительным поверхностным окислением неполярных полимеров — обра.зование активных групп, способных реагировать с функциональными группами наполнителя или адгезива. [c.471]

    Высказывалось предположение, что цел-пюлоза не участвует в каких-либо химических реакциях, будучи просто диспергирована в растворе цементирующих пектиновых веществ, которые скрепляют и удерживают отдельные частицы целлюлозы или мицеллы в природном волокне. Однако это предположение вряд ли совместимо с тем, что целлюлоза может быть повторно восстановлена из медноаммиачного раствора без заметного изменения свойств. Трудно представить себе, как это пектиновое рвщество, связывающее частицы природной целлюлозы, может быть регенерировано по осаждении. [c.369]

    Это представление о физической структуре волокна совершенно отличается от того, что вытекало из мицеллярпой теории Марка—Мейера. По Марку-Мейеру, в идеальном волокне мицеллы расположены совершенно правильно и параллельно оси волокна, наподобие кирпичеобразной кладки. Такое волокно является фактически монокристаллом и, следовательно, термодинамически устойчивой системой, обладающей минимумом свободной энергии. Реальные волокна отличаются от идеального лишь тем, что в них некоторая часть мицелл дезориентирована относительно оси волокна, вследствие чего в системе возникают поверхности раздела между кристалликами, свободная энергия системы возрастает и поэтому она не является равновесной. Отсюда следует, что при любом процессе, самопроизвольно протекающем в волокне, ориентация его может только повышаться. Но если целлюлозные гели рассматривать как высокоструктурированпые жидкости, то ориентация цепей главных валентностей не будет вести к образованию монокристалла, а лишь к изменению характера среднестатистического распределения их направлений относительно оси волокна. Таким образом, новейшие представления о природе целлюлозы выдвинули вопрос об устойчивости ориентации и характере ее изменения под влиянием различных воздействий, способных вызвать нарушение структуры целлюлозы как псевдокристаллического вещества, обла- [c.18]

    Таким образом, один из авторов мицеллярной теории уже в корне изменил своим первоначальным представлениям о мицелле, сохранив, однако, в этом новом понимании основные представления о кристаллическом строении целлюлозы. Наконец, в качестве компромиссного представления о существовании аморфного и кристаллического состояний целлюлозы представляют большой интерес работы Заутера [13, 14], разработавшего новый метод рентгеносъемки целлюлозных препаратов, и последняя работа Фрей-Вислинга [15], показавшего на основе использования температурного коэффициента двойного лучепреломления препаратов из волокон рами, что свойства их в направлении оси волокна соответствуют свойствам кристаллов, а в направлении, перпендикулярном оси волокна, — свойствам жидкостей. [c.31]

    Исходя, таким образом, в основном из рентгенографических данных строения целлюлозы и ее производных (в чистом виде, в набухшем состоянии для отдельных периодов набухания и для продуктов, полученных при различных условиях этерификации), а также частично из данных двойного лучепреломления, ряд указанных выше исследователей признает наличие в целлюлозном волокне и, следовательно, в продуктах из целлюлозы и ее производных взаимно ориентированных групп цепей главных валентностей или отдельных участков цепей, являющихся кристаллической частью целлюлозы, и в силу этого неодинаковую реакционнунз способность отдельных частей высокопо.тимерного вещества, т. е. наличие мицелл . [c.32]

    Построение больших молекул путем добавления звено за звеном может иметь более сложный механизм. Так, для целлюлозы и белков это — дегидратация, в синтезе амидного волокна — реакции конденсации, в процессе Фишера — Тропша — процессы гидрирования СО с замыканием новых С — С-связей, В неорганической химии распространен и другой тип укрупнения, в котором прямо реагируют друг с другом молекулы увеличиваюшегося размера с образованием коллоидных мицелл. Для органической химии такой характер укрупнения менее интеоесен. [c.377]

    В молекулу целлюлозы входят до 2000 молекул глюкозы. 1Чолекулы имеют упорядоченную структуру и образуют кристаллиты (мицеллы), представляющие собой компактные пучки, обладающие сходной структурой во всех волокнах. Мицеллы соединяются в ф и б р и л л ы, в которых имеются межмицеллярные пространства, оказывающие значительное влияние на свойства целлюлозного волокна, например на его плотность. В древесине содержатся также гемицеллюлозы, которые могут быть извлечены из целлюлозы при помощи щелочи или гидролизованы разбавленной кислотой легче, чем целлюлоза. Тем не менее в целлюлозе всегда остается некоторое количество гемицеллюлоз, к которым относятся иентозаны и гек-с о 3 а н ы. Сахара, содержащиеся в сульфитных щелоках или растворах после предварительного кислотного расщепления древесины, образуются главным образом из сопутствующих ей углеводов—пентозанов или гексоза-нов. В твердой древесине содержится больше пентозанов, поэтому в сульфитных щелоках, получаемых после обработки буковой древесины, присутствуют преимущественно пентозы. [c.310]

    Вопросы о том, являются ли водные растворы прямых красителей для хлопка истинными или коллоидными растворами, обсуждался неоднократно. До последнего времени обычно думали, что прямые красители образуют коллоидные растворы, причем размер агрегатов данного красителя зависит от температуры и добавляемой соли считали, что молекулярно растворенные частицы, свободно диффундирующие через волокно, не принимают участия в процессе крашения до тех пор, пока не будут изменены условия (например, добавлением солей) для изменения степени агрегации. Робинсон исследовал структуру водных растворов прямых красителей для хлопка разными методами — измерением осмотического давления, диффузии, электропроводности и чисел переноса — и полностю подтвердил наличие агрегации. Можно с полным основанием предположить, что структурные факторы, содействующие прочной абсорбции молекулы красителя на целлюлозе, будут благоприятствовать также агрегации в водном растворе поэтому задача сводится к количественному определению степени агрегации данного красителя в условиях, в которых ведется процесс крашения. Доказательство агрегирования Небесно-голубого РР было получено путем измерения электропроводности. , Краситель образует голубые растворы в воде и в растворах катионных мыл при концентрациях, превышающих критические концентрации, необходимые для образования мицелл. При концентрациях ниже критических раствор имеет красноватый оттенок, и изменение окраски достаточно отчетливо для определения конца титрования раствора мыла, содержащего краситель, водным раствором красителя. Степень агрегации Небесно-голубого РР в отсутствие солей неизвестна. Валько принимает число агрегац1ш для 0,002—0,02%-ных растворов красителя в присутствии 0,02—0,05 молярных растворов хлористого натрия равным 3,7. Измерение равновесия седиментации указывает, что растворы Конго красного монодисперсны и что молекулярный вес красителя в 0,1 н. растворе [c.1441]

    В 1930 г., после того как подтвердилось мнение о том, что волокна действительно кристалличны, хотя величина их кристаллов настолько мала, что они не могут быть видимы даже в микроскоп, исследователи вернулись к мицеллам. Однако в настоящее время под мицеллами понимают кристаллы или кристаллические участки волокна. Размеры кристаллических мицелл целлюлозы, подсчитанные Марком на основании рентгенографических данных, следующие длина — 500А, ширина — 50А таким образом, длина мицеллы примерно в 50 раз превышает длину остатка целллобиозы, а ширина ее примерно в 7 раз больше ширины остатка целлобиозы, поэтому мицелла целлюлозы должна содержать около 2500 целлобиозных единиц при длине цепи, равной около 100 глюкозных остатков. [c.67]

    В настоящее время установлено, что длина макромолекул в волокнах значительно больше длины мицелл. Реальность существования макромолекул мы можем сейчас принять без колебаний разработан ряд методов определения молекулярных весов полимеров, из которых состоят волокна. Как было установлено, макромолекулы природной целлюлозы могут содержать до 9000 остатков глюкозы, что соответствует длине макромолекулы около 45 ОООА, в то время как длина мицеллы оказалась равной примерно БООЛ-Поэтому надо отказаться от представления о мицеллах, как изоли  [c.69]

    Вывод о том, что одна и та же макромолекула целлюлозы может находиться кСак в упорядоченных, так и в неупорядоченных участках волокна, может быть сделан только исходя из представлений о сгибаемости макромолекул. Понятие о коэффициенте ассоциации как об определенной характеристике величины мицелл, отпадает, так же как и представление о реальной поверхности раздела между мицеллами. Значительные расхождения между различными исследователями по вопросу о макромолеку-лярном или мицеллярном строении целлюлозы, имевшие место в период 1936—1940 гг., в настоящее время потеряли сво " значение, так как ошибочность первоначальной мицеллярной теории строения целлюлозы в настоящее время очевидна. В твердой фазе или в концентрированных растворах имеет место ассоциация макромолекул, т. е. взаимодействие между макромолекулами, осуществляемое межмолекулярными силами. В разбавленных растворах находятся в основном не ассоциированные группы молекул, а отдельные макромолекулы. Также бесспорно наличие в препаратах как природной целлюлозы, так и гидратцеллюлозы участков, в которых структурная анизотропия, а в ряде случаев и анизотропия механических свойств волокон, различна, что и обусловливает различные скорости протекания реакций. Представление о существовании поверхности раздела между участками с различной степенью ассоциации макромолекул и о коэффициенте ассоциации, с которым соединяли обычно понятие о мицеллярном строении целлюлозы, полностью оставлено почти всеми исследователями еще 10—15 лет назад. [c.72]

    При крашении целлюлозных волокон механизм действия веществ, способствующих равномерному окрашиванию, несколько отличен. В случае целлюлозы, вне зависимости от того, происходит ли крашение субстантивными или кубовыми красителями, краситель удерживается на волокне не электростатическими силами, а силами побочной валентности (Ван-дер-Ваальса). Величина этих сил сцепления красителя с мицеллами целлюлозы определяет и скорость, с которой краситель линяет , т. е. легкость, с которой он может быть удален при стирке. Имеется сравнительно небольшое число красителей, которые проччо и длительно связываются целлюлозой к ним относятся субстантивные красители и растворимые лейкоформы кубовых красителей. Очевидно, что, как и в случае крашения шерсти, любой фактор, замедляющий скорость адсорбции красителя, будет способствовать большей равномерности окраски. Повидимому, механизм этого эффекта на целлюлозе в отличие от шерсти заключается не в вытеснении адсорбирующихся ионов красителя с поверхности волокон целлюлозы, а в замедлении скорости адсорбции, обусловленном изменением состояния этих ионов в растворе, в результате чего снижается их способность к адсорбции. В водных растворах субстантивных красителей и лейкоформ кубовых красителей между отдельными молекулами и образованными ими мицеллами, аналогичными мицеллам моющих средств, существует подвижное равновесие, и адсорбироваться на волокнах из этих растворов способны только изолированные молекулы. Поэтому при крашении целлюлозных волокон выравнивающее [c.375]

    В искусственных волокнах и пленках можно вызвать и плоскостную и осевую ориентацию посредством подходящей механической деформации, как например, растягивание или вальцевание, особенно в набухшем состоянии. Бургени [67], Краткий [44], Сиссон [68], Сузич [63], Вейсенберг [79], а особенно Германе [40] изучали это явление. По-видимому, плоскостная ориентация может быть сравнительно легко получена как только посредством сжатия или вальцевания меняется размер образца, тогда как осевая ориентация может быть вызвана только при сравнительно более сильной деформации. Это указывает на то, что мицеллы целлюлозы [c.136]

    Фактически все открытия в области природы и размеров структурных единиц целлюлозы и ее производных, диспергированных в растворах, были сделаны в течение последних 20—25 лет. Раньше считали целлюлозу коллоидом, диспергированным в виде мицелл или агрегатов мицелл, описанных Нэгели [56] в 1858 г. Только после того, как Каррер, Фрейденберг, Ирвин и Хэуорс (глава V) опубликовали очень интересные данные, полученные ими при изучении химического строения целлюлозы, а Спонслер и Дорэ [57], а также Мейер и Марк [58, 591 сообщили о своих первых открытиях в области кристаллического строения целлюлозного волокна, сделанных ими с помощью рентгенографического метода исследования, приступили к серьезному изучению физической природы растворов целлюлозы. [c.203]

    По-видимому, первыми реагируют те гидроксильные группы, которые находятся на поверхности волокна и его составляющих (гл. И) вплоть до мицелл и пучков цепей, и в молекулах на неупорядоченных (аморфных) участках. После того как прореагируют доступные гидроксильные группы, реакция прекращается, если только исключается возможность проникновения реагента внутрь мицелл. Нередко в состав самой реакционной смеси входит какое-либо вещество, вызывающее набухание, например сильная щелочь (при метилировании) или сильные минеральные кислоты, или соли, способствующие также дегидратации при нитрации и ацетилировании. В других случаях, например при ксантогенировании, целлюлоза предварительно набухает в щелочи, в результате чего расширяется кристаллическая решетка целлюлозы и рвутся некоторые водородные мостики или другиё силы межмолекуляриого взаимодействия, связывающие гидроксильные группы одной цепи с гидроксильными группами или кислородными кольцами соседних цепей. Вследствие этого возрастает количество доступных гидроксильных групп и увеличивается расстояние между цепями целлюлозы. По мере того как реагируют эти, ставшие доступными гидроксильные группы, цепи раздвигаются за счет общего количества введенных радикалов, и еще большее количество гидроксильных групп становится доступным. Если производные целлюлозы растворяются в реакционной смеси, цепи целлюлозы постепенно переходят в раствор (как это в большинстве случаев имеет место при ацетилировании или ксантогенировании). Нередко производные целлюлозы не растворяются в реакционной смеси (например, при нитрации и при некоторых реакциях этерификации). Эти производные имеют волокнистую форму, причем их почти нельзя отличить от исходного целлюлозного волокна. [c.241]

    Изучение распределения замещающих групп. О характере реакций можно судить по распределению замещающих групп в неполностью прореагировавшей целлюлозе. Распределение может быть различным на наружной поверхнссти и внутри волокна, в разных морфологических структурах и единицах, вдоль молекулярных цепей и в отдельных ангидроглюкозных остатках. При изучении макрогетерогенных реакций определяли, какие части волокна уже прореагировали. В кристаллизованной части целлюлозы аналогичные изменения в мицелле обнаруживались с помощью рентгенографического анализа. Очень мало известно относительно распределения замещающих групп вдоль цепей полимеров. Наиболее надежные данные получены относительно распределения замещающих групп в ангидроглюкозных остатках. [c.247]

    Во время смешения каждая частица наполнителя покрывается пленкой полимера, в которой макромолекулы ориентированы таким образом, что их полярные группы обращены к полярным группам наполнителя. Картина во многом напоминает ориентацию молекул эмульгатора в мицеллах при эмульсионной полимеризации (стр. 143). Большое значение имеет предварительная обработка поверхности наполнителя, усиливающая его связь с полимером (прививка полимера к волокнистым наполнителям, гидрофобизация стеклянного волокна за счет взаимодействия его силановых групп с кремнийорганическими соединениями или изоцианитами и т. д.). Аналогичный эффект достигается введением карбоксильных групп в макромолекулу каучука, если наполнителем служит вискозный корд (взаимодействие групп СООН с группами ОН целлюлозы). [c.358]

    Штаудингер в своих работах впервые высказал предположение о макромолекулярной природе полимеров. Однако и до этого было известно, что крахмал и целлюлоза построены из глюкозы. Их необычное поведение, например, при образовании волокна, или высокая вязкость их растворов обычно связывали с агрегацией олигомерных глюкозидных молекул (вплоть до декасахаридов) благодаря действию межмолекулярных вторичных валентных сил. Так, раствор крахмала в воде представляли в виде коллоидного раствора, состоящего из агрегированных молекул олигомерных а-1,4-глюкозидов, и сравнивали его с раствором мыла, являющимся коллоидным раствором молекулярных агрегатов (мицелл). [c.275]


Смотреть страницы где упоминается термин Мицеллы в волокнах целлюлозы: [c.236]    [c.364]    [c.253]    [c.310]    [c.141]    [c.1449]    [c.1451]    [c.1449]    [c.1451]    [c.181]    [c.102]    [c.266]    [c.204]   
Физическая химия силикатов (1962) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Мицеллы



© 2024 chem21.info Реклама на сайте