Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полосы части спектра фиг

    Не все имеющиеся в ИК-спектрах полосы характеристичны. В области 650—1300 см 1 спектры даже структурно близких гомологов отличаются друг от друга. Обычно эту часть спектра называют областью отпечатков пальцев . Она широко используется при идентификации органических веществ путем сравнения спектра идентифицируемого вещества со спектром эталона. [c.279]


    Характерная группа из трех полос для цепей средней длины. В спектрах к-алканов выше С]4 четко не проявляется. Все три полосы сдвигаются в сторону высоких частот при уменьшении длины цепи (см. рис. 87). Полоса 1270—1320 сж сливается с другими в спектрах соединений с короткими цепями. Разветвления часто приводят к появлению новых полос в этой области или к другим изменениям, которые затрудняют идентификацию полос. В спектрах к-алканов выше С14 имеется полоса ( родней интенсивности около 1307 см и нет полос от нее до —1070 см . [c.607]

    В альдегидах и кетонах, а также карбоновых кислотах н их производных (ангидридах, галогенангидридах, амидах и др.) возможны три типа электронных переходов я - я, п - я и а. Однако наиболее характерным является поглощение, отвечающее переходу п - я. Обычно эта полоса поглощения находится в наиболее длинноволновой части спектра, так как переходу п -> я соответствует наименьшая энергия. Например, для альдегидов н кетонов она лежит в области 270—300 нм, для кислот, галогенангидридов, сложных эфиров и амидов — в области 200—230 нм. Характерной особенностью полос поглощения, вызванных п - я -переходами, является их низкая интенсивность (е = 10—50) и способность смещаться в коротковолновую область при увеличении полярности растворителя. Эту полосу легко индентифицировать при добавлении кислоты к раствору она исчезает, так как происходит связывание неподеленной пары электронов гетероатома ( -электронов) протоном. [c.134]

    Поместив источник и образец в твердые кристаллические решетки, мы не оказали воздействия на переходы без отдачи для всех ядер, но увеличили вероятность перехода без отдачи. Причина этого заключается в том, что энергия у-лучей может привести к возбуждению колебаний решетки. Эта энергия влияет тем же самым образом, что и энергия отдачи в газе, т. е. она приводит к снижению энергии излучающей частицы и увеличению энергии поглощающей частицы. Некоторые характеристики кристалла и условия эксперимента для излучения и поглощения не меняют исходного колебательного состояния решетки, т.е. будут удовлетворять условиям перехода без отдачи. Следует подчеркнуть, что эти условия определяют просто интенсивность наблюдаемых линий, поскольку этим эффектом задается только число частиц с подходящей энергией. Нас не интересует абсолютная интенсивность полос, поэтому здесь не обсуждается этот аспект МБ-спектроскопии. Однако упомянем, что для некоторых веществ (обычно твердых молекулярных веществ) решеточные и молекулярные колебания возбуждаются до такой степени, что при комнатной температуре происходит только небольшое число переходов без отдачи и спектр не наблюдается. Часто спектр регистрируют путем значительного понижения температуры образца. [c.287]


    Спектры поглощения или испускания молекул состоят из отдельных полос, причем каждая полоса имеет большое число линий. Отдельные полосы образуют закономерные группы, которые могут повторяться в различных частях спектра, давая систему групп. Такое наличие тройных закономерностей в молекулярных спектрах (линии, полосы, группы полос) отвечает трем видам движения в молекулах вращению молекул, колебанию ядер и движению электронов. Энергия молекул складывается из трех видов энергии энергии вращения молекул, энергии колебания ядер и энергии движения электронов. При этом наименьшей оказывается энергия вращения цр молекул, несколько большей — энергия колебания ядер Е ая и наибольшей — энергия электронных переходов Соотношение между этими видами энергии, примерно, следующее Еэ Е оа-Еър = 1000 100 1. Наименьшей энергией молекула обладает в невозбужденном состоянии. Прн этом электроны находятся на самых низких [c.64]

    Поглощение в ультрафиолетовой и инфракрасной областях. Изменения в колебательной энергии молекул сопровождаются излучением, возникающем в инфракрасной части спектра. Колебатель- ) ные переходы сопровождаются изменениями вращательной энергии, которые дают серию близко расположенных линий. Получаемая при этом колебательно-вращательная полоса излучений расположена обычно В области длин волн 1—23 мкм. В инфракрасной области только этот вид колебаний связан с изменениями дипольного момента. [c.51]

    В отличие от ароматических углеводородов исследованные образцы смол в инфракрасной части спектра обнаружили полосы, характерные для связей С—О (1720 см ). Полос, характерных для связей 3—Н, О—Н и N —Н, в спектрах изученных смол обнаружено не было. [c.70]

    Методом спектроскопии КР легко изучать также низкочастотные колебания, тогда как снятие ИК-спектров в низкочастотной области сопряжено со значительными трудностями. Спектроскопия КР имеет преимущества перед ИК-спектроскопией и при изучении химических равновесий в растворах, так как концентрации растворенных веществ обычно более точно определяются по интенсивностям линий КР. Кроме того, в ИК-спектрах часто трудно отличить полосы основных колебаний от обертонов и комбинационных полос. В спектрах КР эта проблема обычно не возникает ввиду низкой интенсивности полос обертонов и комбинационных частот. [c.222]

    Известно, что для определения силовых полей молекул практически недостаточно одних спектроскопических данных, так как число колебательных частот молекулы всегда меньше числа силовых постоянных. Кроме того, часто из-за перекрывания полос в спектре возникают трудности с выделением полос отдельных колебаний. Использование колебательного кругового дихроизма помогает в решении этого вопроса, поскольку правила отбора могут существенно различаться для отдельных полос в области их перекрывания, например, г(С —Н) в -валине [c.213]

    Пятичленные гетероциклические соединения (фуран, тиофен и пиррол) имеют по две полосы поглощения — интенсивную коротковолновую полосу в области 200—210 нм и малоинтенсивную — в области длинноволновой части спектра (252—350 нм) (табл, 5). [c.136]

    Однако л-комплексы, образующиеся из бесцветных компонентов, часто окрашены и имеют собственные полосы поглощения в видимой или УФ-частях спектра. л-Комплексы, образованные из молекул с небольшим дипольным моментом, часто бывают полярны. [c.317]

    Сравнение спектров поглощения симметричных и несимметричных молекул показывает, что полосы поглощения последних по сравнению с первыми сдвинуты в коротковолновую часть спектра. Большой периодический потенциал сильнее связывает я-электроны в несимметричных молекулах, чем значительно меньший потенциал в симметричных молекулах. [c.95]

    II. В высокочастотной области, соответствующей колебательным движениям малых и даже очень малых групп (атомы водорода, отдельные электроны), зондирование структуры основано на несколько ином принципе. Возникновение организованных, в первую очередь кристаллических, структур сразу же резко ограничивает подвижность наблюдаемых при соответствующей частоте групп. По аналогии с температурными искажениями релаксационного спектра это должно приводить к смещению или размазыванию резонансных линий. В радиочастотном диапазоне это может быть расширение линий протонного магнитного резонанса при введении в полимер. электронного парамагнитного зонда — какого-либо устойчивого свободного радикала— характер его ЭПР-сигнала меняется в зависимости от плотности окружения, т. е. от того, находится ли он в кристаллической, жидкокристаллической или изотропной (аморфной) области. В оптическом диапазоне по тем же причинам могут изменяться форма, положение и интенсивность полос колебательных спектров (часто приходится, например, встречаться с термином кристаллическая полоса ). Можно вводить в-полимер электронный зонд— люминофор (например, антрацен) и по изменениям спектральных характеристик поляризованной люминесценции снова судить о подвижности или плотности тех участков, в которых расположен люминофор. [c.54]


    Переходы я - п связаны с меньшей затратой энергии и поэтому находятся в более длинноволновой части спектра (в видимой или ближней УФ области). Эти переходы наблюдаются в ненасыщенных соединениях (наличие связей с—с или С=С). В спектроскопии эти переходы часто обозначают как К-полосы. [c.127]

    Этими методами весьма трудно анализировать сложные смеси, так как каждый компонент смеси обычно поглощает довольно широкую часть спектра, полосы поглощения различных веществ накладываются друг на друга. Поэтому для анализа сложных смесей чаще применяют химические методы. [c.18]

    Изучение межмолекулярного взаимодействия по спектрам поглощения в ультрафиолетовой, видимой или инфракрасной части спектра или по спектрам комбинационного рассеяния (можно рекомендовать изучение димеризации ацетонитрила в органических растворителях, влияние растворителей на положение и интенсивность полос поглощения или линий комбинационного рассеяния кетонов). [c.466]

    Действительно, спектры ЯМР высокого разрешения протонов воды в дисперсиях а- и Ь -монтмориллонита [103] характеризуются сдвигом резонансного сигнала в сторону более сильного поля. Это указывает на то, что под влиянием поверхности часть водородных связей в воде граничных слоев толщиной й 7,5 нм (межчастичное расстояние —15 нм) разрушается. Приведенные результаты нашли независимое подтверждение при изучении ИК-спектров водных дисперсий Ыа-монт-мориллонитрила 20—110%-й влажности в области составной полосы (5200—4900 см ) деформационного и валентного асимметричного колебаний связей ОН (г-2 + з) [Ш]- В цитируемой работе было показано, что вклад высокочастотной составляющей 5200 СМ , относящейся к слабосвязанным молекулам воды, в интегральную интенсивность сложной полосы для дисперсий выше, чем для жидкой воды. ИК-спектры полимолекулярных адсорбционных слоев на поверхности кварца в области валентных ОН-колебаний [112] также обнаруживают увеличение поглощения при 3600 см , характерного для слабо нагруженных ОН-групп молекул воды, хотя основная полоса 3400 см сдвинута по сравнению с аналогичной полосой в спектре жидкой воды в сторону меньших частот. (Последнее, по-видимому, связано с образованием более прочных водородных связей между поверхностными гидроксильными группами кварца и адсорбированными молекулами воды первого слоя.) Таким образом, приведенные выше данные указывают на то, [c.39]

    Комплексы, молекулы которых асимметричны вследствие асимметрии центрального иона, характеризующиеся полосой поглощения в видимой части спектра, как правило, обладают аномальной дисперсией. [c.59]

    По сравнению с энергетическими уровнями колебательного и вращательного движения электронные энергетические уровни расположены далеко друг от друга, и если переход с одного уровня на другой разрешен, то поглощается или выделяется излучение высокой частоты. Поэтому полосы, соответствующие переходу электронов с одного уровня на другой, появляются в видимой и ультрафиолетовой частях спектра. [c.309]

    В некоторых случаях, начиная с волны определенной длины (иногда внезапно, а иногда — постепенно), исчезает вращательная структура полос. Полосы существуют, но имеют диффузный характер. Такие диффузные полосы иногда прослеживаются вплоть до области сплошного поглощения в ультрафиолетовой части спектра. Иногда вращательная структура полос при приближении к области сплошного поглощения вновь вo taнaвливaeт я. Если освещать молекулы спетом с длинами волн, соответствующими диффузным участкам полос,. то можно обнаружить продукты диссоциации исследуемого [c.66]

    Формальдегид, Н2СО, обнаруживает в ультрафиолетовой части спектра полосу сильного электронного поглощения, которую можно отнести к переходу п к (см. обсуждение этилена в разд. 13-6). Кроме того, в спектре Н2СО и всех органических соединений, содержащих карбонильную группу (С=0), обнаруживается еще слабая полоса поглощения с большей длиной волны (в области 270-300 нм). Дайте описание электронного строения и молекулярных орбиталей Н2СО и предложите объяснение и отнесение длинноволновой полосы в его спектре поглощения. [c.599]

    Из проведенного выше обсуждения очевидно, что УФС-спектры относительно больших молекул содержат довольно много информации о потенциалах ионизации, энергиях колебаний ионизованной молекулы, спин-орбитальных взаимодействиях, ян-теллеровских расщеплениях и электронных обменных взаимодействиях. К сожалению, полосы часто перекрываются и появляются широкие линии с неразрешенной колебательной структурой. Примером небольшой молекулы, в спектре которой наблюдается большое число линий, служит газообразная NO. На рис. 16.13 показаны спектры этой молекулы, полученные Асбринком и сотр. [32] при разрешении ЮмэВ и источнике Не(1) и при разрешении 25 мэВ и источнике Не (II). С процедурой отнесения линий читатель может познакомиться в цитированной работе, однако даже внимательное рассмотрение рис. 16.13 показывает, что в спектре разрешены как обменное, так и спин-орбитальное расщепления. [c.346]

    Проведя полное гидрирование смол, авторы получили нафтеновые углеводороды высокой вязкости с низким (О—37) индексом вязкости. Это подтверждает полицикличность исследованных смолистых веществ, а также косвенно указывает на присутствие в них ко,ротких боковых парафиновых целей. Нафтены, получаемые при гидрировании высокомолекулярных ароматических углеводородов, выделенных из тех же нефтей, заметно отличаются от полученных при гидрировании смол их индекс вязкости значительно более высок, что, очевидно, связано с меньшей цикличностью исходных ароматических углеводородов к наличием в них более длинных боковых цепей. Исследование инфракрасных спектров у-казанных выше смолистых веществ показало большое сходство между собой этих продуктов все они соде,ржат ароматические кольца (полосы 1600 см ) и группы СНз и СНа (полосы 1380 см , 1460 см ) в насыщенной части всех смол преобладают группы СНа, что подтверждает, по мнению авторов, наличие в смолах нафтеновых циклов. В отличие от ароматических углеводородов для исследованных образцов смол в инфракрасной части спектра обнаружены полосы, характерные для связей С—О (1720 см- ). Полос, ха,рактерных для связей 5—Н, О—Н и N—Н, в спектрах изученных смол не обнаружено. [c.31]

    Карбонильные соединения дифференцируют по характеру поглощения в области 1620—1760 см . Карбоновые кислоты (1700— 1745 см 1 в СН2С12) и их эфиры (1710—1750 см в СН2С12) различают благодаря тому, что при смене указанного растворителя на тетрагидрофуран максимумы полос для кислот смещаются на 8— 12 см-1 в более длинноволновую, а для эфиров — на 6—10 см- в более коротковолновую часть спектра [131, 230]. Кетоны обнаруживают по максимуму поглощения близ 1695 см-. Ряд полос в области 1625—1690 см- (обычно с максимумами при 1645, 1660 и 1685 см-1) связывают с поглощением карбонильных групп в амидах [20, 22, 110, 129, 131 и др.]. [c.29]

    Спектр поглощения 1-(Г-нафтил)-3-фенил-2-тиапропана-соеди-нения, содержащего различные арил-радикалы и присоединенную к ним сульфидную группу, измерен авторами в хлороформе, следовательно только с 250 нм. В описанной части спектра обнаруживается широкая полоса с максимумом на длине волны 287 нм и напоминает полосу поглощения алкилнафталинов, смещенную в длинноволновую область, т. е. как и у соединений, содержащих сульфидную группу и нафтильный радикал, поглощение определяется нафтилом, а роль фенила оказывается незначительной. [c.180]

    Увеличение длины цепочки между бензольными кольцами до Сз (1,3-дифенилпропан) сопряжено с усложнением длинноволновой части спектра (появляется много новых полос различной четкости выражения), тогда как характер коротковолновых полос меняется мало. Дальнейшее увеличение числа атомов С в алифатическом мостике (до дифенилнентана включительно) сравнительно мало сказывается на спектре. Характеристические для индивидуальных углеводородов ряда дифенила длинноволновые полосы отчетливо проявляются при низких температурах. Введение атома кислорода [c.486]

    ИК-спектры отражают положение колебательных и вращательных энергетических подуровней в молекулах. В то же время молекулы могут изменять свою электронную конфигурацию вследствие поглощения более высокочастотного электромагнитного излучения. Обычно полосы, соответствующие электронным переходам в молекулах, проявляются в видимой и ультрафиолетовой частях спектра. ИК-спектроскопня — один из папболее универсальных методов анализа моторных масел [98]. [c.55]

    Анализ УФ-спектров дает возможность классифицироваль соединения по их структуре, так как каждый тип соединенш поглощает в своей области спектра. Так, методами УФ-спект-роскопии трудно изучать алкапы и пафтеиы, поскольку их полосы поглощения лежат в области 150—200 им. В остальной части спектра эти вещества прозрачны. Наибольший интерес вызывает анализ ароматических углеводородов. Моноциклические ароматические углеводороды имеют ряд полос в области 250—290 нм. Боковые цепи, присоединенные к ароматическому ядру, могут вызывать батохромный или гинсохромный сдвиг. Часто вследствие малых сдвигов невозможно количественно установить содержание компонентов в смеси, и метод оказывается неэффективным. Однако смеси ароматических углеводородов с различным числом бензольных колец могут рассчитываться, так как изменение числа колец существенно сдвигает полосы. [c.56]

    Возможны переходы с несвязывающей атомарной орбитали на молекулярную орбиталь с большей энергией переходы и п- о. Полосы п->л -переходе в наблюдаются в ближней УФ и видимой областях спектра и часто называются -полосами. Полосы п а -переходов наблюдаются в дальней, а иногда и в ближней УФ-областях. Переходы п- л являются запрещенными и их интенсивности значительно ниже интенсивностей переходов л я и я уст (коэффициент поглощения для разрешенных переходов 10 и более, для запрещенных — меньше 10 ). В УФ-области в вакууме наблюдаются переходы с орбитали в основном состоянии на одну из орбиталей с очень высокой энергией, приводящие к образованию молекулярных ионов. Метод эмпирической идентиф икадии я->л -и п л -переходов основан на их поведении при растворении вещества в различных растворителях. Для л я -переходов при увеличении полярности растворителя наблюдается (хотя и не всегда) сдвиг /С-полосы поглощения в длинноволновую часть спектра. Исключением является обратный сдвиг Я -полосы поглощения для некоторых ароматических молекул (смещение полосы поглощения в длинноволновую часть спектра называют батохромным сдвигом, в коротковолновую часть — гипсохромным). Для п я -переходов при увеличении полярности растворителя наблюдается гипсохром-ный сдвиг соответствующей -полосы поглощения, причем сдвиг на гораздо большую величину, чем для /С-полос. В табл. 1 показано влияние растворителей на спектр окиси мезитила. Обычный батохромный сдвиг полос, обусловленных я- -л -переходами, вызван взаимодействием с растворителем, которое несколько увеличивает свободу движения электронов в молекуле. Однако при л л -переходах изменения в распределении электронов более значительны, соответственно увеличиваются изменения в расположении ядер. Согласно принципу Франка — Кондона, процесс перехода в новое электронное состояние происходит за 10 с за это время ядра не успевают изменить своего взаимного расположения, поэтому наблюдаемый переход происходит при более коротких длинах волн, когда ядра еще не успели занять своего нового положения. [c.9]

    Инфракрасные спектры поглощения. Любое соединение в той или иной степени поглощает падающие на него инфракрасные лучи в определенной области длин волн. Это проявляется в виде полос поглощения в инфракрасном спектре данного соединения. В зависимости от сложности молекул число полос поглощения колеблется от 2—3 до нескольких десятков. Полосы поглощения определяют молекулу в целом, а некоторые из них характерны для отдельных атомных группировок н структурных особенностей молекулы (например, для групп СНг, (]Нз, двойной связи). Спектр смесей представляет собой наложение спектров отдельных соединений. Следовательно, изучая инфракрасные спектры поглощения, можно качественно расшифровать состав углеводородной смеои, а по интенсивности полос в отдельных случаях определять и количественный состав последней. Идентификация ароматических углеводородов хорошо проводится также и по спектрам поглощения в ультрафиолетовой части спектра. [c.62]

    В вопросе о происхождении азотистых соединений имеет большое значение наличие в нефтях и ее природных производных соединений типа гемина и хлорофилла (порфирины). Они были обнаружены Трейбсом по характерным спектрам поглощения спиртовых г.ытяжек из нефтей. Растворы порфирина показывают четыре ясные полосы поглощения в видимой части спектра и одну — в ультрафиолетовой. Порфирины образуют комплексные соединения с металлами, что вызйвает появление новых полос [c.164]

    Системы сопряженных связей. Как мы знаем, электроны, входящие в атомные остовы и валентные ст-электроны, находятся на энергетических уровнях, которым соответствуют локализованные электронные состояния. Поэтому, чтобы установить электронную конфигурацию молекулы, обладающей системой сопряженных связей, достаточно определить энергетические уровни ее делокализо-ванных я-электронов. Заметим, что большой энергии связи ст-элек-тронов, равной 62,7 ккал/моль, отвечает большая разность энергий между их валентным и возбужденным энергетическими уровнями, равная 7,9 эВ. Следовательно, полоса поглощения ст-связи лежит в коротковолновой ультрафиолетовой части спектра и начинается от 155 ммк. [c.91]

    Поэтому гексааква-ионы преобладают лишь в сильнокислых растворах (рН<1). Различные гидроксо-ионы [Ре(Н20)е-п (ОН) Р )+ окрашены в желтый цвет, так как их полосы переходов с переносом заряда простираются и в видимую часть спектра. [c.637]

    Иногда л-комт1лексы настолько стабильны, что имеют характерные температуры плавления, налриме(р, комплексы ароматических углеводородов с пикриновой кислотой или 2, 4, 7-тринитрофлуореноном. Однако чаще молекулярные комплексы не настолько устойчивы, чтобы их можно было выделить в чистом виде. Тем не менее их образование может быть установлено по изменениям в спектрах поглощения растворов по сравнению со спектрами индивидуальных компонентов. Эти изменения могут происходить в видимой части спектра (изменение окрашивания растворов) или ультрафиолетовой (появление новых полос поглощения). [c.14]

    Если высокая растворимость амидокомплексов препятствует их выделению в свободном состоянии, то амидопревращение может быть изучено спектрофотометрически. Установлено, что в результате амидореакции полосы поглощения в видимой или ультрафиолетовой части спектра сдвигаются в сторону более длинных волн. В данном случае это проявляется в появлении келтого окрашивания у растворов бесцветных аминов при добавлении щелочи. Иногда желтое окрашивание раствора может и не наблюдаться. Это означает, что смещение полос поглощения наблюдается не в видимой, а в ультрафиолетовой области. [c.140]

    Частота вращательного движения молекулы составляет величину порядка 10 ° сек- частота излучения при переходе с одного энергетического уровня на другой сравнительно низка, а длина волны велика. Соответствующие полосы поглощения проявляются в далекой инфракрасной и микрорадиоволновой частях спектра. В действительности только что намеченные границы оказываются достаточно размытыми, а расшифровка спектров (т. е. отнесение отдельных линий спектра за счет того или иного типа движения в молекуле) затруднена. [c.309]


Смотреть страницы где упоминается термин Полосы части спектра фиг: [c.67]    [c.69]    [c.466]    [c.91]    [c.296]    [c.166]    [c.340]    [c.78]    [c.49]    [c.166]    [c.341]    [c.403]    [c.122]    [c.309]    [c.313]   
Физическая химия силикатов (1962) -- [ c.207 ]




ПОИСК







© 2025 chem21.info Реклама на сайте