Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура при набухании

    В зависимости от длины молекулярной цепи и структуры полигликолей вязкость их может изменяться в широких пределах от 6—8 до 10 ООО сст и более при 50° С. Полигликолевые масла отличаются от нефтяных масел лучшими противоизносными свойствами, низкой температурой застывания (от 55 до —65° С), высокими индексами вязкости (в пределах 135 180), малой испаряемостью. Полигликолевые масла не образуют смолистых соединений при повышенных температурах в присутствии кислорода, воздуха, выдерживают высокие температуры (до 300° С), не корродируют металлы, не вызывают набухание или размягчение синтетической и натуральной резины. Воспламеняются они с большим трудом, чем нефтяные масла. В табл. 34 приведены свойства масел на основе полигликолей, а на рис. 75 — их вязкостно-температурные кривые. На этом же рисунке для сравнения нанесены вязкостно-температурные кривые минеральных масел МК-8 и турбинного МК-22. Из рисунка видно, что полигликолевые масла имеют более пологую вязкостно-темпера- турную кривую, чем минеральные масла равной вязкости. [c.147]


    В подобных случаях изменение структуры коллоидной системы при неизменности внешних условий называется старением. Это явление связано с медленно идущими химическими реакциями при весьма затрудненной диффузии продуктов реакции, молекулярными перегруппировками, вызванными отсутствием термодинамического равновесия, релаксацией внутренних напряжений и т. д. Наиболее изученными являются процессы укрупнения структурных элементов (агрегации) и уплотнения структуры всей коллоидной системы в целом, сопровождающиеся вытеснением жидкой фазы — синерезисом, а также противоположные этому процессы распада структуры — набухание и пептизация гелей, растворение и распад крупных структурных элементов на мелкие. [c.10]

    Гашеная известь эффективно повышает прочность структуры большинства глинистых растворов, а растворы, содержащие ССБ и ее модификации, разжижаются. Расход реагента существенно зависит от состава раствора. Известковая обработка частично предупреждает набухание глин, обвалы пород стенок скважин, разжижает перенасыщенные твердой глинистой фазой растворы путем регулируемой частичной коагуляции. [c.58]

    С увеличением содержания ДВБ пространственная сетка смолы приобретает более жесткую структуру, набухание уменьшается, активные группы становятся более обнаженными, что приводит к увеличению их взаимного электростатического отталкивания и ослаблению связи активной группы с каркасом смолы. Следовательно, в гидратированном состоянии активные группы находятся на большом расстоянии друг от друга, поэтому взаимное влияние сказывается меньше. [c.210]

    Готовое мыло и небольшое количество масла загружают в варочный котел. После нагрева до нужной температуры, обезвоживания мыльной основы, набухания и растворения мыла в масле в котел подается остальное количество масла. Диспергирование мыла в масле производится при интенсивном перемешивании. Присадки добавляют в смазку, как правило, после растворения мыла в масле. После варки смазку из варочного котла или сливают непосредственно в тару, или предварительно охлаждают и подвергают механической обработке для придания ей необходимой структуры. [c.192]

    Раствор, приготовленный из ацетата целлюлозы, растворителя (ацетона и воды) и агента набухания (перхлората магния, иногда формамида) в соотношении 22,2 66,7 10,0 и 1,1% (масс.), поливается тонким слоем на стеклянную пластину, подсушивается в течение нескольких минут и затем погружается в холодную воду при температуре около О °С, где выдерживается в течение 1 ч до отделения пленки от подложки. За это время происходит практически полное формование мембраны. В начальной стадии формования ацетон быстро испаряется с поверхности отлитой пленки и на ней образуется гелеобразный слой, препятствующий испарению растворителя с более глубоких слоев раствора полимера Таким образом, в момент погружения в воду, являющуюся осадителем для данного раствора, система представляет собой желированную оболочку, внутри которой находится раствор. В момент соприкосновения с водой гель затвердевает, сохраняя очень тонкую структуру пор поверхностного слоя. Раствор полимера, находящийся внутри оболочки, коагулирует медленнее, так как диффузия воды сквозь поверхностный слой затруднена. При этом водой вымывается как растворитель, так и порообразователь. [c.48]


    Аномалии в механических свойствах полимеров достаточно подробно рассмотрены в работах [2—5, 16, 17, 43, 48, 49]. Причины, вызывающие эти аномальные отклонения, кроются в свойствах и строении цепных макромолекул, а также в развитии тех или иных надмолекулярных структур. Исходя из современных представлений релаксационных явлений полимерных тел [16, 18, 42, 48], можно утверждать, что рассматриваемой системе полимер — растворитель при ограниченном набухании полимера с пространственной структурой присущи свойства, характерные как для жидкости, так и для твердого тела,— так называемые вязкоупругие свойства. Свойства вязкоупругости проявляются различными путями. Тело, не являющееся идеально твердым, не достигает постоянных значений деформации при постоянных напряжениях, а продолжает медленно деформироваться с течением времени (ползти). С другой стороны, не являющееся полностью жидким, тело при течении под действием постоянного напряжения может накапливать подводимую энергию, вместо того чтобы рассеивать ее в виде тепла. [c.308]

    Набухание углей при пропитке их жидкостями представляет собой первичную стадию сольволиза аналогично тому, как это происходит при контакте геля с растворителем. Такое набухание тесно связано с пористой структурой. Влагоемкость представляется частным случаем этого общего явления. [c.28]

    Модельные образцы представляют собой искусственные керны с жесткой структурой порового пространства, однородные по пористости и проницаемости, с гидрофильной поверхностью, близкие по своему минералогическому составу к естественным песчаникам. Связывающим материалом служила каолиновая глина, которая стабильна к набуханию в воде [100, 179]. Химический состав образцов, используемых в опыте, приведен ниже. [c.189]

    Другие ученые, отдавая должное влиянию геологических факторов, считают, что основное значение при изменении углей имеют физико-химические процессы, связанные с превращениями исходного материала. Матвеев [28] в качестве основных процессов называет биохимические, геологические, а также процессы, связанные с изменением структуры угольного вещества как коллоидной системы. К ним он относит старение и набухание коллоидных веществ в углях. [c.43]

    Различают межструктурное и внутриструктурное набухание. При межструктурном набухании молекулы растворителя, диффундируя внутрь аморфного полимера, занимают имеющееся в нем свободное пространство прежде всего между элементами надмолекулярных структур. Если полимер и растворитель близки по природе, молекулы растворителя пррцикают и внутрь надмолекуг [c.313]

    И кажущимся увеличением Ф до / Ф (где / — коэффициент набухания). Точное значение / зависит не только от структуры агрегатов, на которую влияет, например, число капель (рис. 1У.37), толщина электрического двойного слоя, время старения, но также и от скорости сдвига. [c.303]

    Необходимость разработки многочисленных, столь не сходных между собой моделей макромолекул вызвана не только и не столько расхождениями взглядов различных исследователей на структуру асфальтенов, сколько невозможностью описать единой моделью особенности ВМС различного происхождения. Так, если слоистая модель удовлетворительно согласуется с результатами анализа упоминавшихся выше нефтей [395, 1030—10351, то крайне сомнительно соответствие ее реальной макроструктуре асфальтенов из таджикской нефти (Кичик-Бель) [396], очень слабо метаморфизован-ной,смолистой, сернистой,высокоцикличной. Кичикбель-ские асфальтены, не выделяясь по средней молекулярной массе, обладают очень большими размерами изолированных частиц (см. табл. 7.2) и в рентгеновских спектрах не дают сколько-нибудь четко выраженных пиков отражения, характерных для упорядоченных структур (см. рис. 7.1, кривая 2). Этп ас-фальтепы совершенно не проявляют способности к набуханию при растворении, хотя именно такое поведение типично для слоистых макрочастиц. Макромолекулы этих ВМС вероятно, должны иметь монослойное строение. [c.188]

    Для тампонажных цементов усадка особенно нежелательна, а определенное увеличение объема при затвердевании является весьма полезным свойством. Увеличение внешнего объема цементного камня, превышающее по величине естественное набухание, называется расширением. Для получения расширения необходимо создать условия, способствующие возникновению в достаточно малых объемах дезориентированных напряжений, которые способны вызвать равномерную раздвижку элементов структуры цементного камня. [c.132]

    Из данных табл. 41 видно, что наиболее интенсивное снижение величины К2 бентонита происходит в интервале температур 22—100° С. При повышении температуры со 100 до 150° С величина К2 снижается менее интенсивно, но резко возрастает средняя скорость набухания. Прочность образующихся структур системы [c.72]

    Другие исследователи признавали основной причиной обвалов скорость набухания, связанную с особой структурой глин, или размокание глинистых пород. [c.87]

    Химическая стойкость, значение обменной емкости, селективность, механическая прочность и другие свойства иопитов зависят от природы и концентрации ионогенных групп, структуры макромолекул, прочности связи между полимером и ионогенной группой. Поскольку макромолекулы ионитов имеют пространственное строение, растворитель вызывает только набухание ионита, степень которого определяется структурой полимера, природой и концентрацией ионогенных групп и составом раствора электролита. Как правило, иониты поликонденсационного тина имеют худшие показатели химической стойкости, чем иониты полимеризационного типа. [c.96]


    Механизм ионного обмена обусловлен структурой и свойствами ионита. Так, например, иониты с кристаллической решеткой содержат в ее углах ионы, удерживаемые электростатическими силами под действием этих сил и происходит в основном ионный обмен. Свойства многих ионитов связаны с их способностью к набуханию в водных растворах набухание обычно сопровождается весьма значительным повышением давления. [c.566]

    Строго говоря, уравнение (11.2) пригодно только для совершенно круглых волокон и для начальных условий крашения, когда концентрация красителя в ванне Св практически не изменяется. Даже в этих условиях оно справедливо только при с < 0,5. Но для предварительной оценки влияния скррости диффузии красителя внутри волокон на скорость их крашения в целом и сравне--ния условий крашения различных видов химических волокон, а также для оценки влияния надмолекулярной структуры, набухания волокна и температуры крашения это уравнение вполне пригодно. [c.320]

    В настоящее время почти несомненным представляется, чта большинство консистентных смазок имеет волокнистую структуру, причем масло удерживается между волокнами за счет сил притяжения или просто в результате механического набухания. Броунинг (Browning [76]) заменял выщелоченное гексаном масло глицерином или жидким силиконом, не изменяя при этом мыльного компонента. [c.503]

    Стойкость вулканизатов тиоколов к растворителям определяется структурой мономерного звена, содержанием серы в нем, а также степенью разветвленности. Лучшую стойкость к растворителям имеет тетрасульфидный тиокол А. Вулканизаты тиоколов ДА, РА и 5Т имеют более высокую степень набухания в бензоле, однако по набуханию в других растворителях они близки к тиоколу А. Вулканизаты довольно хорошо противостоят действию разбавленных соляной и серной кислот. [c.569]

    Преимущества метода стандартных золей заключаются в наличии точных, методов контроля размеров частиц, а таклсе в сферической их форме. Последний фактор значительно уменьщает стерические препятствия при прохождении частицы через пористую перегородку. Метод можно использовать в том случае, когда мембрана не набухает в органическом стабилизаторе данного золя, так как набухание приводит к изменению пористой структуры мембраны. [c.94]

    Максимум иабухаемости клейковины имеет место при температуре 28—30 °С, а при 60—70 °С белковые вещества тесто.-хлеба дена-гурируются и свертываются, освобождая при этом воду, поглощенную при набухании. При повышении температуры до 50—60 °С крахмал муки интенсивно набухает и начинается клейстеризация крахмала и разрушение внутренней мицеллярной структуры. При температуре 50—70 °С протекают процессы клейстеризации крахмала и коагуляция белков, которые обусловливают переход тесто-хлеба в состояние мякиша. Повышение температуры до 60—70 °С приводит к резкому изменению консистенции — сгущению теста. Мякиш хлеба выдерживают в печи до температуры 92—98 °С в центре для придания ему необходимой упругости [24, 251. [c.50]

    Рассмотрение кинетики набухания в указанных аспектах приводит к проблеме решения уравнения нестационарной диффузии в условиях перемещающихся границ. Точное решение задач подобного рода известно лишь в очень ограниченном числе случаев [27, 28]. Метод аналитического решения задач диффузии (теплопроводности) при наличии движущихся границ предложен [29—31]. Этот метод основан на разложении искомого решения в ряд по некоторым системам мгновенных собственных функций соответствующей задачи. Таким образом, рассмотрение процесса набухания с учетом диффузионных явлений приводит к весьма сложной проблеме решения уравненийТмодели. Этот подход к описанию кинетики набухания нельзя признать исчерпывающим по ряду причин. Так, здесь недостаточно четко отражены физические особенности внутренней структуры полимеров. Параметры моделей не имеют явной связи с молекулярными характеристиками ноли- [c.299]

    Аналитическая форма математической модели процесса сульфирования с предварительным набуханнем в тионилхлориде. Аналитической формой модели процесса сульфирования, записанной в виде диаграммы связи на рис. 5.12, является система уравнений переменной структуры [c.356]

    Глины тина коалинита и галлуазита также применяют в качестве катализаторов крекинга. Эти глины состоят из двухслойной решетки чередующихся слоев октаэдров А1(0,0Н)б и тетраэдров 51(0, ОН)4, связанных между собой общими атомами кислорода. Структура галлуазита, представленная на рис. 5, помогает объяснению его свойств и, в первую очередь, отсутствия внутрикристаллического набухания, легкости частичного обезвоживания и реакционной способности кремния и алюминия [11]. Эти глины приме- [c.11]

    Неокисленные битумы имеют более высокое содержание ароматических углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов. Неокисленные битумы и полимеры СБС имеют большое сродство и поэтому в большей степени совместимы. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что в составе окисленных битумов содержится 30-31% мелких коллоидных частиц размером до 16 А и 69-70% крупных коллоидных образований с размерами до 440 А. Такой битум, представленный в основном грубодисперсными частицами, можно отнести к системам типа золь-гель . Неокисленный битум содержит 85-86% частиц с размерами 9-10 А и лишь 12-13% частиц с размерами до 405 А. Такую коллоидную систему можно отнести к типу золь . В мелкодисперсной системе заметно выше скорости диффузии растворителя в полимер, процессы набухания проходят быстрее, растворение более полное. [c.39]

    Растворы большинства высокомолекулярных соединений, как было сказано, являются истинными. Однако значительные молекулярные массы и полидисперсность обусловливают нарушение термодинамической обратимости их свойств уже при малых концентрациях. Отличительной особенностью процесса растворения является набухание, предшествующее собственно растворению. В зависимости от первичной структуры полимера (наличия и природы боковых заместителей в звеньях полимерной цепи, регулярности строения макромолекулы) набухание может быть ограниченным и неофаниченным, т.е. завершающимся образованием раствора. [c.90]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    Взаимодействие полимеров с растворителями обычно начинается с набухания. Процесс набухания состоит в поглощении растворителя веществом, объем и масса которого при этом увеличиваются. Набухание наиболее характерно именно для высокомолекулярных соединений. В результате набухания их объем и масса могут увеличиваться в 10—15 раз. Неорганические материалы, обладающие жесткой структурой, мало способны к набуханию. Они могут удерживать жидкостн в порах в основном благодаря адсорбции и капиллярным силам при этом их структура, а следовательно, и объем не изменяются. [c.312]

    Эластическими свойствами отличаются студни с коагуляцион-ной структурой, примером которых являются студни желатины, агара, мучное тесто. Такие студни образуются в растворах линейных и разветвленных ВМС в не очень хороших растворителях. В хороших растворителях студни обычно ие образуются. Студни с коагуляционной структурой могут разрушаться с повьплением температуры и переходить в состояние раствора. Этот ироцесс называется плавлением студня. Студни конденсационного типа образуются ири трехмерной полимеризации в растворе или в результате набухания пространственного полимера. Химические связи между макромолекулами не разрушаются прн нагревании, поэтому такие студни не плавятся. Типичным примером студней с конденсационной структурой являются ионообменные смолы, степень набухания которых находится в прямой связи со степенью сшивки пространственной сетки. [c.381]

    Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных волокнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур. [c.289]

    Ацилированные препараты хитозана в водной среде набухают, образуя системы, обладающие высокой селективной сорбционной способностью по отношению к аминокислотам, красителям, а также к разделению рацемических смесей. Это обусловливает интерес, который представляют данные препараты в качестве полимерного носителя в гель-хроматофафии, а также при изготовлении волокнистых и пленочных материалов медико-биологического назначения. Под влиянием гидрофобных ацильнЫх радикалов сорбированная этими препаратами при набухании вода частично гидратирует полимерный субстрат, а частично остается инклюдйрованной в порах геля. При этом изменяется структура жидкой воды, обусловливая возможность регулирования интенсивности гидрофобных взаимодействий в системе. В табл. 6.6 приведены результаты экспериментов по изучению взаимодействия воды в изотермических условиях (298 К) с ацилированными препаратами хитозана. [c.334]

    Ответ. В процессе гидротермических обработок ( размотка коконов, отварка шелка-сырца) происходит количественное удаление из нити жировосковых веществ и значительной части водорастворимого белкового компонента - серицина, первичная структура которого характеризуется увеличенным содержанием аминокислотных звеньев с гидрофильными боковыми радикалами Ser, Asp, Glu, Thr, Lis. Экстракция серицина происходит в условиях интенсивного набухания полимерного субстрата. [c.343]

    Натуральный шелк представляет собой нить, полученную размоткой коконов шелкопряда в условиях интенсивного набухания при гидротермических обработках. Получаемая таким образом нить характеризуется сложным морфологическим строением два фиброиновых стержня соединяются в единую нить с помощью серициновой прослойки. После дополнительного удаления серицина до содержания его 20-25% коконная нить превращается в шелк-сырец, а при более глубокой отмывке (до 4-5%) - в натуральный шелк. В зависимости от своих функций (формирования армирующей основы шелка - фиброиновых стержней или обеспечения связи между ними) полипептидные цепи имеют первичную структуру, включающую большее (в фиброине) или меньшее (в серицине) количество гидрофобных аминокислотных звеньев, но четкое различие между этими белками отсутствует (рис.6.12). Связь между ними обеспечивается проходными цепями, дисульфидными и сложноэфирными мостиками, межмолекулярными водородными связями, а также через небелковые фрагменты, например через монозы. [c.376]

    При исследовании влияния химических реагентов на Р содержание иммобилизованной жидкости в пробах поддерживали постоянным в результате постоянного объема нор в сухих образцах глин. Было установлено, что в водных растворах химических реагентов прочность структур, образующихся при набухании паст глин, зависит в основном от химического состава и концентрации реагента. При величине набухания, большей чем в воде (пептизация глин), сущ(зствует зависимость чем больше набухание, тем меньше величина Р ц. При набухании, меньшем чем в воде, ни влажность, ни ко )ффициент набухания не могут служить однозначными показателями, предопределяющими изменение прочности структуры паст глин. Так, при одинаковых величинах набухания и влажности глинистых паст, набухших в растворах определенных концентраций хлористого натрия, КМЦ-350, хлористого кальция и силиката натрия величина Рщ соответственно равна 482, 153, 247 и 500 гс/см [49]. [c.40]

    Объяснить ЭЮ можно, исходя из данных П. А. Ребиндера, показавшего, что все твердые тела обладают дефектами структуры — слабыми местами, распределенными таким образом, что участки твердого тела между ними имеют в среднем коллоидные размеры (порядка 10 см), т. е. один дефект встречается в среднем через 100 правильных межатомных (межмолекулярных) расстояний. Такие дефекты, очевидно, имеются и в сланцевых глинистых породах. С повышением гидростатического давления возрастает перепад давленш в системе скважина — пласт и, следовательно, глубина проникновения фильтрата промывочной жидкости. Проникающий по этим дефектным местам или микротрещинам фильтрат промывочной жидкости в зависимости от химического состава будет вызывать тот или иной эффект понижения твердости глинистых пород со всеми вытекающими последствиями для устойчивости стенок скважин. Проникновение фильтрата промывочных жидкостей в глинистые отложения за счет высокой гидрофильности глинистых минерале3, составляющих глинистые породы, имеет место и при отсутствии перепада давлений в системе скважина — пласт, но при наличии перепада давлений в системе скважина — сланцевые глинистые породы этот процесс интенсифицируется. Для полного увлажнения сланцевых глинистых пород, обладающих малой удельной поверхностью, требуется значительно меньше водной среды, чем для высококоллоидальных глин с их огромной удельной поверхностью. Поэтому требования к величине водоотдачи при разбуривании сланцевых глинистых пород должны быть значительно выше. Величины водоотдачи и перепада давлений хотя и играют значительную роль, но не являются определяющими в сохранении устойчивости стенок скважин, сложенных глинистыми породами. Устойчивость стенок скважин и основном определяется физико-химическими процессами, протекающими в глинистых породах при их контакте с фильтратами промывочных жидкостей на водной основе. Влияние этих процессов на изменение свойств малоувлажненных глинистых пород в значительной мере может быть оценено величинамп показателей набухания и предельного напряжения сдвига. [c.105]

    Влияние объемного изменения грунтов на покрытие. Механическое воздействие грунтов в зависимости от их структуры моя<ет быть различным. Грунты несвязанные (гравелистые и другие), а также грунты, обладающие постоянным объемом при увлаяшении и высыхании, действуют на защитное покрытие прежде всего силой тяжести, вызывая его сдвиг и продавливание. Связанные грунты при увлажнении и высыхании изменяют свой объем. Они действуют на покрытие не только своим весом. Обладая высокой липкостью, эти грунты в период усадки и набухания развивают сдвиговые усилия, вызывающие разрывы покрытия и отрыв его от трубы. [c.54]

    Набухание полимеров. Процесс растворения полимеров, как указывалось, проходит через стадию их набухания. Внешне процесс набухания выражается в изменении объема и веса образца вследствие поглощения полимером растворителя. Набухание можно рассматривать как одностороннее смешение, т. е. только как проникание растворителя в полимер. Подвижность макромолекул слишком мала, а силы когезин велики, поэтому вначале макромолекулы полимера пе диь 1фуиднруют в растворитель. Молекулы растворителя, диффундируя в полимер, вначале заполняют в нем межмолекулярные пространства, а затем, по мере увеличения объема растворителя в полимере, начинают раздвигать макромолекулы. Скорость диффузии растворителя в полимер мавпсит от свойств растворителя и структуры полимера, С увеличением количества продиффундировавшего в полимер растворителя расстояние между макромолекулами постепенно возрастает, что приводит к пропорциональному увеличению размеров набухающего образца. Таким образом, набуханием называют проникание молекул растворителя между макромолекулами 1[олимера, вследствие чего увеличиваются расстояния между 01-дельными сегментами, а затем и цепями полимера. [c.63]


Смотреть страницы где упоминается термин Структура при набухании: [c.207]    [c.65]    [c.520]    [c.315]    [c.36]    [c.377]    [c.44]    [c.333]    [c.416]    [c.169]    [c.37]    [c.211]   
Нестехиометрические соединения (1971) -- [ c.429 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание



© 2025 chem21.info Реклама на сайте