Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия взаимодействия гидратации

    Выше уже отмечалось влияние гидратирующей способности ионов на их задержание мембраной. Поэтому в качестве основной характеристики природы электролита естественно выбрать энергию (теплоту) гидратации (АЯ) составляющих его ионов, которая характеризует степень взаимодействия между ионом и его гидратной оболочкой. [c.206]

    Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице 18 стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов. [c.81]


    Отсюда видно, что энергия взаимодействия между ионами и образовавшимися ионными двойниками зависит от дипольного момента ионного двойника и расстояния между ионом и центром тяжести противоположных зарядов молекулы. Этот путь учета энергии пригоден и к рассмотрению взаимодействия между любыми молекулами и ионами при гидратации ионов молекулами воды взаимодействие будет определяться зарядом иона и дипольным моментом молекулы воды, так как выведенное уравнение применимо для любого взаимодействия между ионом и дипольными молекулами. [c.121]

    Из данных табл. 13 следует, что диссоциация кислот на ионы в вакууме может идти лишь при затрате большой энергии (320—350 ккал/моль). Поэтому кислоты не диссоциируют в вакууме, а диссоциируют в растворе, так как при взаимодействии протона с растворителем выделяется энергия, необходимая для отрыва протона. Это — энергия присоединения протона к молекулам воды и энергия присоединения аниона к молекулам воды, т. е. энергия их гидратации. [c.161]

    Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды, Най. дя А и до и зная экспериментальные значения AOf., можно по уравнению [c.284]

    АОз(Л) — изменение энергии Гиббса при сольватации (гидратации), кДж-моль и — энергия взаимодействия иона с ионной атмосферой, Дж-моль  [c.3]

    Лантаноиды - химически очень активные металлы и очень сильные восстановители. Они непосредственно реагируют практически со всеми неметаллами и взаимодействуют с водой, легче - с горячей, растворяются в обычных кислотах и нерастворимы в щелочах. Стандартные потенциалы Е° (М /М) всех лантаноидов ниже -2 В. От лантана к лютецию потенциалы монотонно и очень незначительно повышаются - от -2,52 до -2,25 В. Этот рост идет параллельно снижению радиусов ионов и, соответственно, повышению энергии их гидратации, стабилизирующей катионы в растворе. [c.380]

    Ряд напряжений (ряд активности) металлов характеризует поведение металлов только в водных растворах, поскольку электродные потенциалы учитывают особенности взаимодействия иона с молекулами воды. Именно поэтому ряд активности начинается литием, тогда как более активные в расплавленном состоянии рубидий и калий находятся правее лития. Это объясняется исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов. [c.510]


    В области высоких концентраций ГК (0,025% и выше) влияние полярных фупп на энергию взаимодействия растворенных молекул ГК с растворителем велико, что обусловливает малые значения Av, близкие к значениям исходной воды С уменьшением концентраций ГК, особенно в случае сильно разбавленных растворов, т е при сохраняющейся в целом сетке Н-связей, эффект полярных групп компенсируется преимущественным проявлением эффекта гидрофобной гидратации неполярных фрагментов, что выражается в росте Av При таких концентрациях, на наш взгляд, происходит максимальное влияние молекул воды на изменение надмолекулярной структуры ГК, т е на изменение молекулярной подвижности ее отдельных компонентов и степени полидисперсности молекул ГК Это приводит к увеличению значений параметра Av и свидетельствует о структурировании водной матрицы [c.384]

    Процесс агрегации коллоидных и полуколлоидных систем (суспензий) весьма сложен и зависит от изменения энергии взаимодействия между частицами (мицеллами) при их сближении, от сольватации (гидратации) этих частиц, [c.81]

    На основании изложенного ранее, следует предположить, что частота обмена (коэффициент диффузии) определяе / я потенциальным барьером, разделяющим молекулы вод 4 в гидратной оболочке от молекул воды, входящих в агрегаты молекул, не связанные с ионом. Обмен зависит не от полной энергии взаимодействия, а от изменения энергии на очень малых расстояниях вблизи иона. В связи с этим можно ожидать любой характер влияния ионов на трансляционные движения молекул воды. Самойлов считает в связи с этим, что представления о связывании воды в гидратную оболочку не являются общими. Общий подход следует основывать на рассмотрении влияния ионов на трансляционное движение ближайших к иону молекул. Если обмен ослаблен, то гидратация иона значительна. По мере того, как частота обмена возрастает, гидратация ослабляется. [c.291]

    Третий член в уравнении Бернала и Фаулера определяется энергией дезориентации молекул воды в связи с появлением в растворе ионов, т. е. энергией перестройки структуры воды из решетки типа кварца в тетраэдрическую решетку. Эта величина обозначается С/ш. Таким образом, величина энергии гидратации в первом приближении определяется тремя величинами энергией взаимодействия между молекулами воды и ионом, энергией переноса иона (эта величина всегда имеет положительный знак, так как /0 меньше единицы) и энергией дезориентации молекул воды С/ш. В результате выражение Бернала и Фаулера существенно отличается от выражения Борна наличием членов, учитывающих взаимодействие между диполем и ионом. Все дальнейшие исследователи считали эти величины главными в выражении для сольватации. [c.335]

    Гидратация ионов не остается постоянной, а зависит от концентрации, и это вызывает изменение энергии ионов. Не только изменяется число молекул, сольватирующих ионы, но изменяется энергия взаимодействия между ионом и молекулами растворителя, а это приводит к изменению коэффициентов активности. Впервые количественный учет влияния гидратации был дан Робинсоном и Стоксом. Однако произведенный ими учет гидратации также не привел к совпадению рассчитанных и экспериментальных данных. [c.32]

    Первый член показывает взаимодействие между ионом и диполем воды, второй показывает изменение энергии иона в связи с переходом его из вакуума в среду с определенной диэлектрической проницаемостью. Третий член в уравнении Бернала и Фаулера определяется энергией дезориентации молекул воды в связи с появлением в растворе ионов, т. е. энергией перестройки структуры воды из решетки типа кварца в тетраэдрическую решетку. Эта величина обозначается 7 . Таким образом, величина энергии гидратации в первом приближении определяется тремя величинами энергией взаимодействия между молекулами воды и ионом, энергией переноса иона (эта величина всегда имеет положительный знак, так как 1/е меньше единицы) и энергией дезориентации молекул воды 7 . В результате выражение Бернала и Фаулера существенно отличается от выражения Борна наличием членов, учитывающих взаимодействие между диполем и ионом. Все дальнейшие исследователи считали эти величины главными в выражении для сольватации. [c.202]

    На расстоянии 2,5 KU r) = 20,4 ккал/молъ, и пренебрегая взаимодействием молекул воды, которое достаточно мало, можно подсчитать энергию гидратации одновалентного иона в газовой фазе шестью молекулами воды. На расстоянии около 2,5 А эта величина оказывается равной 122 ккал/моль. Энергии этих взаимодействий того же порядка, что и теплоты большинства химических реакций. Поэтому такого рода сольваты следовало бы относить к числу комплексных ионов, а не агрегатов частиц, довольно слабо связанных между собой . Энергию взаимодействия между двумя диполями можно подсчитать, исходя из уравнения (XV.6.5). Если расстояние г измеряется вдоль линии центров диполей и 0 — азимутальной угол между каждым из диполей и линией центров, то энергия взаимодействия равна [c.445]


    Первый случай соответствует связыванию близлежащих молекул воды во втором случае молекулы воды вокруг иона становятся более подвин ными. Последнее явление и названо Самойловым отрицательной гидратацией. Он считает, что представления об обмене в гидратной оболочке не противоречат тому факту, что гидратация ионов всегда сопровождается выделением большого количества энергии. По его мнению, большой эффект соответствует дальнейшей гидратации иона, хотя, как будет показано ниже, почти 70% энергии выделяется при гидратации за счет ион-дипольного взаимодействия. Самойлов считает, что установление отрицательной гидратации приводит к пебходимости отказаться от представлений о связывании молекул воды ионами. Он подчеркивает, что обмен молекул воды зависит не от полной гидратации, составляющей десятки килокалорий на моль воды, и полной энергии взаимодействия молекул воды со, также имеющей порядок (10 ккал/моль) 4186 10 Дж/моль, а изменения энергии на малых расстояниях Акя Аса, имеющих порядок (1 ккал/моль) 418 10 Дж/моль. За счет более быстрого падения энергии взаимодействия молекул при Я > со может иметь место соотношение Ак < Ао). Основываясь на развитых представлениях, Самойлов объясняет увеличение активности воды в растворах солей, ионы которых имеют отрицательную гидратацию, и рассматривает связь подвижности ионов с коэффициентами самодиффузии. [c.151]

    Приведенная выше классическая трактовка гидратации ионов формулировалась на основе представления о самой воде как о жидкости, состоящей из отдельных независимых молекул. Если стать на другую точку зрения и считать, что за счет водородных связей вода обладает упорядоченностью внутренней структуры (IV 3 доп. 32), то ионы должны прежде всего заполнить ее пустоты. Происходящее при этом большее или меньшее искажение исходной структуры требует затраты энергии, которая компенсируется энергией взаимодействия ионов с молекулами воды. По трактовке растворов электролитов с этих поз1щий имеется монография ,  [c.211]

    В гораздо большей степени эффекты влияния обнаруживаются в растворах электролитов, в которых сильное электрическое поле иона вносит существенные искажения в льдоподобную структуру воды. Для водных растворов расчеты показывают, что энергия взаимодействия ион —диполь воды в четыре раза превышает энергию взаимодействия диполей воды друг с другом (—0,25-10- и —1,0-10 Дж/молекула соответственно для однозарядного катиона). Ион, оказавшийся в воде, нарушает ее структуру и тем эффективнее, чем больше его заряд, так что вокруг иона образуется область первичной гидратации, в которой молекулы воды относительно прочно связаны, затем область большого радиуса, содержащая воду с нарушенной структурой (деструктурированная вода), и, наконец, еще дальше от иона простирается область, в которой сохраняется структура обычной воды (Клотц). [c.252]

    Изменение физических свойств воды — ее структуры, плотности, поверхностного натяжения, вязкости и др. при воздействии магнитного поля зависит от магнитной восприимчивости воды и содержания в ней ионов. Оценить теоретически магнитную восприимчивость, поляризационный магнитный момент и энергию взаимодействия (в нашем случае — гидратация ионов воды) позволяют методы физической химии. Кроме того, поляризационный момент молекулы зависит от направления линий магнитного поля, то есть имеет место анизотропия диамагнитной восприимчивости многоатомных молекул. На практике анизотропия молекул означает, что поляризация различных молекул и ионов возможна при воздействии магнитного поля изменяющихся направлений — переменного магнитного поля. Исходя из этого для снижения коррозионной активности одной жидкости (в данном эксперименте для пластовой воды горизонта Сеноман) достаточно воздействия магнитного поля постоянного направления, для другой (подтоварная вода с ЦПС БКНС-3) — переменного магнитного поля. [c.71]

    Известно, что НО (рис. 4.19) в водных растворах находятся в гидратированном состоянии и ассоциируют друг с другом. Так как расположение полярных групп в НО различно, то можно предполагать различия в их гидратации, которые влияют на взаимодействия между основаниями в воде. Это подтверждается исследованиями рисунка воды вокруг четырех оснований гуанина, аденина, цитозина и тимина по данным кристаллографического анализа [80]. Обнаружены конфор-мационно-зависимые различия как в геометрии, так и в степени гидратации оснований. Ассоциация НО в воде достаточно полно изучена и не вызывает сомнений. Например, самоассоциация Ade исследована в работе [81]. Гидратация и самоассоциация Ura изучена спектроскопическими методами в работах [82, 83] и установлено, что гидратация карбонильной группы С(4)-0(4) значительно выше, чем гидратация группы С(2)-0(2). Кроме того, сделан вывод, что Ura образует в воде циклические димеры при участии групп С(4)-0(4). Т. Лилли с сотрудниками [84] показано, что кофеин ассоциирует в воде с образованием димеров, тримеров и т.д. с одинаковой константой равновесия для каждой стадии. Наконец, спектроскопическими методами установлено [85], что величины констант ассоциации для комплексов убывают в следующем порядке yt + yt > yt + Ura > Ura + Ura, что характеризует склонность HO к самоассоциации в воде. Ассоциация НО в водных растворах является выгодным процессом с энергетической точки зрения [86]. Основным фактором, стабилизирующим образование димеров, является изменение энергии взаимодействия молекул воды друг с другом, которое связано со значительным изменением ее структуры молекулами НО. Моделирование ассоциации af в водном растворе с помощью метода Монте-Карло свидетельствует [87], что метильные группы мономеров при димеризации располага- [c.234]

    При этом в экстрагент селективно извлекаются ионы тех металлов, рад11усы которых в наибольшей степени соответствуют размеру полости макроцикла. Например, 18-краун-6 с размером полости 0,28-0,32 нм особенно селективен к катиону калия (ионный диаметр — 0,266 нм). Введение боковых заместителей в полиэфир влияет как на основность атомов кислорода в цикле, так и на его кон-формационную гибкость, что также изменяет значение константы экстракции металла. Краун-соединения с пространственно жесткой структурой более предпочтительно проявляют так называемый пик селективности, т.е. особенно избирательны к одному из ряда близких по свойствам ионов. Природа аниона, в зависимости от энергии его гидратации, влияет в основном на А д. Однако помимо общей тенденции изменения коэффициента распределения может наблюдаться и изменение селективности экстракционного процесса, связанное как со специфическим взаимодействием аниона с макроциклическим лигандом, так и с частичной электролитической диссоциацией ионных пар. [c.167]

    Если ограниченно растворимое в воде вещество обладает в растворе свойствами слабого электролита (частично ионизировано), то на его адсорбцию существенно влияет различие в энергии взаимодействия с водой неионизированных и ионизированных молекул. Электрическое ноле органического иона является причиной ориентации диполей воды и, следовательно, усиления энергии гидратации в расчете на 1 з-ион вещества. Поскольку гидратация молекул усиливает их связь с растворителем, адсорбция более сильно гидратированных ионов сопрял ена с выполнен11ем добавочной работы, и — адсорбции ионов, как было показано выше, меньше, чем — А/ адсорбции неионизированных молекул. Таким образом, частичная ионизация слабых электролитов в растворах приводит к неодинаковым условиям адсорбции ионизированных и неионизированных молекул, причем из-за более слабой гидратации должны адсорбироваться преимущественно [c.133]

    Методом ЛКАО-МОполучены оценки энергии взаимодействия ионов с ближайшими молекулами Н2О. При гидратации энергия электронов уменьшается в последовательности > Na+> К" > НЬ" " > Сз" . Энергия анионов изменяется на меньшую величину, чем энергия катионов. Вблизи иона трансляционная подвижность молекул Н2О увеличивается при переходе от Ь к Се .  [c.202]

    Первый случай соответствует связыванию близлежащих молекул воды. Во втором случае молекулы воды вокруг иона становятся более подвижными. Это явление и названо Самойловым отрицательной гидратацией. Он считает, что представления об обмене в гидратной оболочке не противоречат тому факту, что гидратация ионов всегда сопровождается выделением большого количества энергии по его мнению, этот большой эффект соответствует дальнейшей гидратации иона, хотя, как будет показано ниже, почти 70% энергии выделяется при гидратации за счет ион-дипольного взаимодействия. Самойлов считает, что установление отрицательной гидратации приводит к необходимости отказаться от представлений о связывании молекул воды ионами. Он подчеркивает, что обмен молекул воды зависит не от полной энергии гидратации, составляющей десятки ккал на моль воды, и полной энергии взаимодействия молекул воды со, также имеющей порядок Юккал на моль, а от изменения энергии на малых расстояниях Д/г и Асо, имеющих порядок 1 ккал на моль. За счет [c.293]

    Квадратные скобки содержат все взаимодействия катиона и, соответственно, аниона со своей оболочкой, причем обозначения отдельных эффектов те же, что в г.п. IV, стр. 89 при расчете теплоты гидратации для т = 0. Члены, обозначенные Я, отражают энергию взаимодействия ионов с молекулами воды гидратных комп.лексов соседних ионов. Члены, обозначенные д,— энергию взаимоде ствия молекул воды соседних гидратных комплексов между собою. Иа геометрических соображений следует, что каждг.тй из членов Я и д, в свою очередь, может быть вычислен только как сумма нескольких эффектов. [c.131]

    Для алюмогеля зависимость теплот смачивания образцов и содержания структурной ВОДЫ от температуры их обработки представлена на рис. 2. Как следует из этого рисунка, по мере увеличения температуры прокаливания образца, содержание структурной воды падает, а теплота смачивания соответственно растет. На кривой содержания структурной воды заметны перегибы, причем значительное количество содержащейся в образце воды (около половины) выделяется до 200°. Представляло интерес получить зависимость между теплотой смачивания поверхности алюмогеля и содержанием структурной воды в образце. На рис. 3 подобная зависимость построена по данным, приведенным на рис. 2. Сравнение полученной кривой с приведенными на рис. 1 показывает, что характер найденной зависимости совершенно иной, чем для силикагеля и алюмосиликатов. На кривой для алюмогеля (рис. 3) можно различить 5 участков. Участок 1 соответствует температурам обработки от 20 до 150°. Рост теплоты смачивания в этом случае, так же как и для силикагеля, может объясняться освобождением поверхности от адсорбированной воды или уменьшением числа гидроксильных групп, связанных между собой водородной связью. Участок 2 лежит в интервале температур 170—200°. Здесь, несмотря на значительную потерю воды, свойства поверхности образца не изменяются. Если считать, что свойства поверхности алюмогеля, как и силикагеля, определяются степенью ее гидратации, это может происходить в том случае, если О бразец содержит объемный гидрат глинозема. Тогда выделение воды из образца может происходить за счет диссоциаций объемного гидрата, в данном случае байерита АЬОз ЗНгО, наличие которого было обнаружено рентгенографически , гидратация же поверхности остается неизменной. Такой процесс, очевидно, будет происходить до полного разложения объемного гидрата . Рост теплоты смачивания на участке 3, который соответствует обработке образцов при температурах от 200 до 500°, показывает, что по мере дегидратации поверхности энергия взаимодействия ее с водой увеличивается. Значительный интерес представляет участок 4, соответствующий интервалу температур 500—700°. В этом интервале температур содержание структурной воды меняется мало, как это видно из рис. 3, а теплота смачивания (теплота гидратации поверхности) резко возрастает. По-видимому, этому участку кривой соответствует появление новых твердых фаз в результате перестройки кубической решетки уАЬОз, образование которых лишь начинается с поверхности, а затем, с повышением температуры, распространяется в объем. Промежуточные высокотемпературные модификации глинозема к, 0, б, а также корунд (а-АЬОз), рентгенографически были обнаружены только для образцов, обработанных при 800—900°, т. е. там, где эти модификации составляют уже объемное соединение и присутствуют в достаточном количестве для их рентгено-графического определения. Процесс образования новой твердой фазы путем перестройки кристаллической решетки исходной фазы, очевидно, начинается с наиболее слабых мест этой решетки, которыми могут быть различные ее дефекты. Поэтому, естественно, было предположить, что образование новой твердой фазы [c.424]

    Отсутствие данных по энергии гидратации комплексных ионов препятствует однозначному выяснению характера влияния молекул воды на энергию взаимодействия комплексообразующих ионов. Комплексы типа МГалг являются единственной формой, для которой возможна оценка энергий гидратации. [c.95]

    Как известно, при адсорбции конкурируют два вида межмолекулярных взаимодействий гидратация молекул растворенного вещества, т. е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул адсорбирующегося вещества с атомами поверхности твердого тела. Разность энергий этих двух процессов и представляет собой энергию, с которой извлеченное из раствора вещество удерживается на поверхности погруженного в раствор адсорбента. Наиболее сильное адсорбционное взаимодействие наблюдается, слив ст рукту ре молекул имеются двойные связи, образующиеся с участием я-электронов. Поэтому ароматические соединения сорбируются значительно лучше алифатических. [c.389]

    Процесс набухания делится на две стадии сольватации и собственно набухания. При набухании в воде сольватацию называют гидратацией. На стадии сольватации происходит взаимодействие свободных активных групп полимера с молекулами низкомолекулярного вещества растворителя. При этом энергия взаимодействия между молекулами полимера и раствооителя должна быть больше [c.148]

    Сольватацией называется такое взаимодействие растворенного вещества с растворителем, которое приводит к более низкой активности растворителя вблизи частиц растворенного вещества по сравнению с чистым растворителем. В случае водных растворов сольватация называется гидратацией. Гидратация ионов обусловлена ориентацией дипольных молекул воды в электрическом поле иона, а гидратация полярных групп — в молекулах неэлектролитов и полимеров— ориентацией молекул воды в результате взаимодействия диполей и образования водородных связей. В гидратном слое молекулы воды располагаются более упорядоченным образом, но остаются химически неизмененными, чем гидратация отличается от химического соединения с водой окислов металлов и ангидридов кислот. Благодаря постепенному падению энергии связи растворенного вещества с растворителем (по мере удаления от молекулы растворенного вещества), сольватный слой имеет несколько диффузный характер, но в основном энергия взаимодействия и наибольшее падение активности растворителя сосредоточены в первом молекулярном слое. Растворитель в сольватной оболочке обладает, меньшей упругостью пара, меньшей растворяющей способностью, меньшей диэлектрической постоянной, меньшей сжимаемостью, он труднее вымораживается, обладает большей плотностью и т.,д. изменение любого из этих свойств раствора может быть использовано для определения величины сольватации. Наиболее прямой метод измерения сольватации состоит в установлении теплового эффекта поглощения навеской полимера определенного количества растворителя из смеси последнего с инертной к полимеру жидкостью например, Каргин и Папков определили, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около 1 молекулы растворителя на одну полярную группу — ОМОг полимера (табл. 15). Думанский и Некряч определили гидратацию ряда полимеров по теплоте смачивания (см. стр. 78), в частности, для крахмала найдено, что на глюкозный остаток приходится 3 молекулы связанной воды. Думанский установил также, что связывание воды самыми различными веществами происходит с тепловым [c.173]


Смотреть страницы где упоминается термин Энергия взаимодействия гидратации: [c.15]    [c.308]    [c.173]    [c.124]    [c.244]    [c.70]    [c.161]    [c.294]    [c.180]    [c.95]    [c.15]    [c.138]   
Явления переноса в водных растворах (1976) -- [ c.576 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия взаимодействия

Энергия гидратации



© 2025 chem21.info Реклама на сайте