Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиды как растворители

    Формальдегид, амины, амиды, растворители, соединения серы, ацетилен, фенол и др. [c.357]

    Довольно значительное распространение в качестве растворителей при электрохимическом получении химических продуктов получили амиды. Растворители этого класса очищают химическими методами в сочетании с перегонкой. [c.142]

    Для разделения кипящих при близких температурах углеводородов с различным числом и характером п-связей методами экстрактивной ректификации и экстракции предложено большое число полярных органических веществ различных классов, содержащих кислород, серу и фосфор кетоны, альдегиды, спирты, эфиры, амины, нитрилы, нитраты, карбонаты, лактоны, амиды карбоновых, серусодержащих и фосфорсодержащих кислот, лак-тамы, сульфоксиды и др. [5—7]. Однако лишь небольшая группа растворителей из общего числа предложенных в литературе отвечает необходимым требованиям, предъявляемым к экстрагентам разделения близкокипящих углеводородов С4 и С5. Важнейшими из этих требований являются требования к селективности и растворяющей способности экстрагентов по отношению к разделяемым углеводородам. [c.669]


    Хорошие результаты получены [78] при очистке диметилформ-амидом дистиллята анастасьевской нефти, выкипающего в пределах 260—410 °С и предназначенного для производства трансформаторного масла. Этот растворитель характеризуется более низкой КТР в нем данного сырья, чем фурфурол, что позволяет проводить очистку при более низкой температуре. Выход рафината в случае использования диметилформамида больше, а качество выше, чем при фурфурольной очистке. Следовательно, этот растворитель обладает большей избирательностью по отношению к поли-циклическим ароматическим углеводородам и смолам. Кроме того, диметилформамид имеет более низкую температуру кипения (153 °С), что играет важную роль при его регенерации. При использовании Ы-метилпирролидона качество рафината лучше, однако его высокая растворяющая способность приводит к необходимости добавлять антирастворитель для уменьщения потерь ценных углеводородов с экстрактом, а невысокая избирательность к нафтеновым кислотам требует при получении трансформаторного масла предварительной щелочной очистки сырья.) Положительные результаты были получены [79—81] и при использовании рассмотренных выше новых растворителей для глубокой очистки жидких и твердых парафинов. Результаты очистки трансформаторного дистиллята различными растворителями приведены ниже  [c.112]

    По внешнему виду это роговидные продукты от белого до светло-кремового цвета. Полиамиды характеризуются высокой прочностью к ударным нагрузкам, эластичностью, низким коэффициентом трения и хорошей масло- и бензостойкостью. Температура плавления полиамидов зависит от природы исходных компонентов и находится в пределах 185—264 °С. Полиамиды не растворяются в обычных растворителях. Они растворяются лишь в таких сильнополярных растворителях, как концентрированные кислоты, фенолы, фторированные спирты, амиды. [c.84]

    Рассуждая с термодинамических позиций, можно сказать, что энергия переходного состояния комплекса металл — аминокислота благодаря стабилизации зарядов значительно понижена по сравнению с энергией переходного состояния при гидролизе свободной аминокислоты. Кроме того, на стадии катализа металлом составляющая связанная с перегруппировкой растворителя, по-видимому, небольшая величина. Следовательно, важна именно матричная роль иона металла при связывании с субстратом. Ионы металла ускоряют также гидролиз ряда амидов, но каталитический эффект не столь велик, как для соответствующим образом связанных эфиров. Причина этого — различия в природе уходящей группы. Худшая уходящая группа, амидная, нарушает контроль скорости реакции тетраэдрическим промежуточным соединением. [c.353]


    Один из методов расщепления эфирной связи, который может быть использован и для расщепления метиленовых эфиров двухатомных фенолов, заключается в обработке эфиров фенолов амидом натрия в индифферентном растворителе (например, е. толуоле). Расщепление проводят также путем нагревания эфира фенола с солянокислым пиридином при 200°. [c.540]

    При этом связь между углеродом и галогеном приобретает в известной степени характер двойной связи, ее длина укорачивается (от 1,78 до 1,72 А). Все это приводит к повыщению энергии связи С—X, уменьшению ее поляризации и понижению реакционной способности атома галогена при химических реакциях. Например, труднее протекают реакции элиминирования. В этом случае необходимо присутствие более сильных оснований вместо этилат-иона применяют амид-ион, т. е. в качестве растворителя используют не спирт, а аммиак. [c.101]

    В альдегидах и кетонах, а также карбоновых кислотах н их производных (ангидридах, галогенангидридах, амидах и др.) возможны три типа электронных переходов я - я, п - я и а. Однако наиболее характерным является поглощение, отвечающее переходу п - я. Обычно эта полоса поглощения находится в наиболее длинноволновой части спектра, так как переходу п -> я соответствует наименьшая энергия. Например, для альдегидов н кетонов она лежит в области 270—300 нм, для кислот, галогенангидридов, сложных эфиров и амидов — в области 200—230 нм. Характерной особенностью полос поглощения, вызванных п - я -переходами, является их низкая интенсивность (е = 10—50) и способность смещаться в коротковолновую область при увеличении полярности растворителя. Эту полосу легко индентифицировать при добавлении кислоты к раствору она исчезает, так как происходит связывание неподеленной пары электронов гетероатома ( -электронов) протоном. [c.134]

    ГЕКСАМЕТИЛЕНДИАМИН (СНа) NH2)2 — бесцветные блестящие кристаллы с т. пл. 42° С легко растворяется в воде и органических растворителях, на воздухе дымит, поглощает углекислый газ, образуя карбонат Г. С неорганическими и органическими кислотами образует соли. С двухосновными кислотами, альдегидами и кетонами вступает при нагревании в реакции конденсации и поликонденсации. Соли Г. с органическими кислотами при нагревании дают соответствующие амиды, например, [c.66]

    Кроме воды, при проведении электрохимического эксперимента в качестве растворителей применяют различные Органические диполярные жидкости, например спирты, амиды, нитрилы и др. Методы очистки органических растворителей зависят от их химической природы и дальнейшего применения. Самая элементарная операция очистки растворителя — простая или фракционная перегонка. Однако перегонкой часто не удается освободиться от ряда примесей, в том числе и от малых количеств воды. В связи с этим для очистки каждого конкретного органического растворителя разрабатываются специальные, иногда очень сложные методы. [c.27]

    Как И В случае амидов, частично двоесвязанный характер связи С(0)—N приводит к возникновению конфигурационных изомеров. Тремя возможными изомерами (названными по положению карбонильной группы относительно связи N—и имеющими плоское строение) являются цис-цис (88а) цис-транс (886) и транс-транс (88в), К сожалению, еще не проведено детальное изучение барьеров вращения, однако примеры изомеров каждого типа были обнаружены с помощью измерений ИК-спектров и дипольных моментов [7, 8]. транс-транс-Форшг является наименее вероятной, так как расстояние между двумя атомами кислорода составляет всего 0,250 нм. Однако диациламин все же существует в транс-транс-форме в твердом состоянии, но превращается в более стабильную цис-транс-форму в растворе [200]. N-Ацетиллактамы также имеют цис-транс-конфигурапию, в то время как цис-цис-формы являются единственно возможными для имидов с малыми кольцами. Изомеры с ч с-чис-конфигурацией (например, сукцин-имид) имеют очень низкий дипольный момент (около 1,50), так как моменты связей сильно компенсируют друг друга, оставляя незначительный момент вдоль связи N—R (88а). В случае щестичленных. колец, где угол между двумя копланарными карбонильными группами уменьшается, большой вклад вдоль оси связи N—R2 вносит момент связи карбонильных групп, который увеличивает общий дипольный момент до величины около 2,60. Имиды с чмс-гранс-конфигурацией имеют большую величину дипольного момента (около 3,00) в направлении, обозначенном на формуле (886), так как моменты связей вдоль оси N — R сильно компенсируются, оставляя остаточный компонент от одной карбонильной группы, перпендикулярный к оси N—R . Некоторые величины дипольных моментов приведены в виде таблиц в работах [7, 8]. В противоположность амидам растворитель может заметно влиять на величину дипольного момента имидов [201], хотя причины такого различия в поведении неясны. . [c.445]


    Вышеописанная методика с использованием большого избытка тионилхлорида пригодна для приготовления высококипящих хлорангидридов, таких, как ароилхлориды. Для получения ннзкокипящих хлорангидридов используют 1,5—2 ммоля тионилхлорида на 1 ммоль кислоты и следуют методике, описанной в разделе Б настоягцей главы. Для получения амидов алифатических кислот, содержащих менее 10 атомов углерода, бензольный раствор насыщают сначала сухим аммиаком, а затем фильтруют через складчатый фильтр для выделения амида растворитель испаряют или отгоняют. [c.451]

    Жидкий аммиак, как и вода, — сильный ионизирующий растворитель. При этом производные NH4 в жидком аммиаке (подобно производным ОНз в воде) ведут себя как кислоты аммонокислоты), а производные NH (подобно производным ОН" в воде) — как основания (аммонооснования). Например, сильными кислотами в жидком аммиаке являются NH l, NH4NO3, а основаниями — KNHj, Ba(NH2)2- Дигидронлтриды Zn(NHa)2, A1(NH.2)3 ведут себя как амфотерные соединения. Производные NHa" называются также амидами, а производные NH " — имидами. [c.348]

    Технологический процесс получения ацетилена этим способом основан на термоокислительном пиролизе метана с кислородом (соотношение кислорода и метана должно быть в пределах 0,58— 0,62) в реакторах при 1400—1500 °С и избыточном давлении. Процесс состоит из следующих стадий подогрева метана и кислорода пиролиза метана и закалки пирогаза очистки пирогазов от сажл в скрубберах или электрофильтрах компримирования пирогаза до давления 0,8—1,2 МПа и абсорбции ацетилена и его гомологов селективным растворителем (метилпирролидоном, диметилформ-амидом) фракционной десорбции газов в десорбере первой ступени (при давлении 20 кПа) и второй ступени (при вакууме 80 кПа) с выделением при 80—90 °С чистого ацетилена и нагреве с водяным паром (ПО—116°С) фракции высших гомологов ацетилена регенерации растворителя (удаления твердых продуктов полимеризации гомологов ацетилена) сжигания отходов производства в печи (сажи из сажеотстойников продуктов "полимеризации, выделенных при регенерации растворителя высших гомологов ацетилена, полученных на второй ступени фракционной десорбции). [c.28]

    Наряду с гидроксидами щелочных металлов в МФК используют также и другие основания твердые фториды щелочных металлов, бикарбонаты и карбонаты, гидриды и амиды. Вопросы о механизме участия в МФК первых двух анионов не представляют особого труда, так как эти анионы могут экстрагироваться в органические растворители при обычном проведении МФК в системе жидкая фаза/твердая фаза (о солюбилизации НСОз см. в [75]). Однако что касается остальных анионов, то в противоречии с предположениями, высказанными во многих статьях, оказалось, что они экстрагируются в неполярные среды достаточно трудно как с помощью ониевых солей, так и с помощью краун-эфиров. [c.66]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Исследуя совершенно различные типы реакций. Сан Филиппо с сотр. [586, 1194] получили высокие выходы в реакции расщепления сложноэфирных связей избытком КОг в присутствии каталитических количеств ( /з моля) 18-крауна-б при энергичном перемешивании в бензоле от 8 ч и редко до 140 ч и последующей обработкой водой. Оказалось, что такое расщепление на спирт и кислоту проходит со многими сложными эфирами первичных, вторичных и третичных спиртов, а также фенолов и тиолов. Также расщепляются фосфаты. При использовании в качестве растворителя ДМСО время реакции сокращается. Возможность разрыва связи кислород—алкил в результате воздействия супернуклеофила рассматривалась, но была отвергнута, по крайней мере для вторичных спиртов, так как наблюдалось обращение конфигурации на 99% [586]. Простые амиды и нитрилы не реагируют. [c.395]

    Плотность нафтеновых кислот меньше единицы. Они плохо раство]Н1мы в воде, но хорошо растворяются в углеводородах н многих органических растворителях. Вязкость нафтеновых кислот повышается с увеличением молекулярного веса. По химическим свойствам эти кислоты аналогичны карбоновым кислотам. Оии легко образуют сложные эфиры, хлорангидриды и амиды, легко вступают во взаимодействие со свинцом, цинком, медью н оловом на алюминий, так же как и другие органические кислоты, оии почти не действуют. [c.289]

    Карбонильные соединения дифференцируют по характеру поглощения в области 1620—1760 см . Карбоновые кислоты (1700— 1745 см 1 в СН2С12) и их эфиры (1710—1750 см в СН2С12) различают благодаря тому, что при смене указанного растворителя на тетрагидрофуран максимумы полос для кислот смещаются на 8— 12 см-1 в более длинноволновую, а для эфиров — на 6—10 см- в более коротковолновую часть спектра [131, 230]. Кетоны обнаруживают по максимуму поглощения близ 1695 см-. Ряд полос в области 1625—1690 см- (обычно с максимумами при 1645, 1660 и 1685 см-1) связывают с поглощением карбонильных групп в амидах [20, 22, 110, 129, 131 и др.]. [c.29]

    S0-K-5 растворитель Фишера (смесь 75% изопропанола и 25% метанола) Solan солан, Ы-(3-хлор-4-метилфенил) амид 2-метилвалериановой кислоты, СвНз(СНз)(С1)ЫН СОСН(СНз)(СзН,) (гербицид) [c.662]

    Фракцию С4 не удается разделить на индивидуальные углеводороды обычной ректификацией из-за близких температур кипения компонентов и образования азеотропных смесей. Для выделения бутиленов из продуктов дегидрирования бутана применяют экстрактивную ректификацию с такими селективными растворителями, как ацетонитрпл, диметилфор1У амид, диметилацетамид, Л -ме-тилпирролидон. Эти растворители используются сейчас на большинстве установок как за рубежом, так и в СССР вместо ранее применявшихся фурфурола и ацетона, проявляющих меньшую селективность. [c.172]

    Исследовалась зависимость селективности растворителей от их химического строения и на основе установленных закономерностей сформулирован ряд принципов для направленного поиска эффективных экстрагентов [47—49] 1) введение в молекулу растворителя заместителей или гетероатомов с низкими вкладами в энтальпию испарения и с высокими значениями констант Гам-мета— Тафта 2) переход от алифатических соединений к соответствующим циклическим и гетероциклическим аналогам, проявляющим более высокую селективность 3) повышение растворяющей способности растворителей путем скелетной изомеризации молекул, предпочтительно фрагментов, удаленных от электрофильных центров 4) уменьшение размеров цикла или числа углеродных атомов в молекулах алифатических растворителей 5) взаимное расположение заместителей в молекулах растворителей, обеспечивающее минимальное экранирование электрофильных центров и невозможность образования внутримолекулярных водородных связей 6) переход от сильноассоциированных растворителей к слабоассоциированным производным (например, метилирование амидов, цианоэтилирование спиртов) 7) использование в качестве разделяющих агентов неидеальных смесей [c.57]

    Присадка Найк (Афен) состоит из амида полиэтиленполиа-мина ТУ 6—02—594—75 на основе фракции синтетических жирных кислот С —С Д10—20%), оксиэтилированного алкилфе-нола ОП-7 ГОСТ 8433-65 (10—20%) и комплексного растворителя (ксилолы + изопропиловый спирт 1.1). Амид является основным носителем моющих, защитных и антиобледенительных свойств присадки. ОП-7 является стабилизатором раствора амида и, обладая моющими свойствами, усиливает действие амида. Ксилолы и изопропиловый спирт в смеси представляют собой активный растворитель, усиливающий антиобледенитель-ный эффект. [c.367]

    В связи с изменением ситуации в стране с получением отдельных компонентов присадки Найк (Афен) в 1989 г. была разработана и испытана присадка Афен-1, состоящая из амида полиэтиленполиамина по ТУ 6—02—594—85 на основе дистиллированных нефтяных кислот по ГОСТ 13 302—72 (10-20%), не-онола АФ-9-6 — оксиэтилированных алкилфенолов по ТУ 38.507—24—87 (10—20%) вместо ОП-7 и растворителя- веретенного или индустриального масла взамен смеси ксилолов с изопропиловым спиртом. [c.367]

    Уилмарт и Дэптон [.32] получили аналогичные результаты при исследовании активации водорода амидом калия в жидком аммиаке при —53°. Скорость конверсии параюодорода в этих опытах также линейно зависит от концентрации амидного иона, а обмен дейтерия с растворителем происходит со скоростью, лишь немного меньшей скорости конверсии параводорода. Хотя энергия активации конверсии пепосредственно не измерялась, авторы оценивают ее приблизительно в 10 ккал моль, считая, что пред-экспоненциальный множитель для нее имеет ту же величину, что и для реакции, катализируемой ионом гидроксила. Эта пониженная величина энергии активации была отнесена за счет того, что амидный ион обладает более сильными основными свойствами, чем ион гидроксила. Особый интерес представляет величина [c.211]

    Очень часто наблюдается аналогия между химическими реакциями в ионизирующихся растворителях и в водных растворах. Так, многие соединения, имеющие в своем составе анионы растворителя, проявляют амфотерные свойства, т. е. как и слабоосновные гидроксиды в водных растворах, по-разному взаимодействуют с кислотами и основаниями. Так, выпадающий при добавлении в жидкий аммиак раствора амида калия осадок А1(МН2)з растворяется в избытке в результате комплексообразования [c.443]

    Важнейшей группой ДПЭ-растворителей являются я-доно-ры, обладающие одной или несколькими несвязывающими парами электронов. Нуклеофильные центры часто сосредоточиваются на 0-, Ы- и 5-атомах молекулы растворителя. Самые известные представители этой группы — вода, спирты, эфиры, ке-тоны, амины, амиды кислот, тиоэфиры и тиокетоны. В я-донор-ных растворителях, к которым относятся среди прочих также ароматические и непредельные углеводороды, координационное присоединение основано на взаимодействии с я-электронной системой. [c.444]

    При классификации по донорно-акцепторным свойствам обычно выделяют протонные и апротонные растворители. П р отон-ные растворители обладают донорно-акнепторными свойствами по отношению к протону, т. е. могут отдавать или принимать протон и таким образом участвовать в процессе кислотно-основного взаимодействия. Апротонные растворители не проявляют кислотно-основных свойств и не вступают в протолитическое равновесие с растворенным веществом. Эта классификация в известной степени остается условной, так как большое значение имеет природа растворенного вещества. Например, обычно считающийся апротонным бензол в растворе амида натрия в аммиаке проявляет кислотные свойства. Однако для очень многих аналитически важных систем классификация вполне оправдывается. [c.34]

    Получение сложных эфиров нз солей органических кислот и галогенопроизводных применяется для получения сложных эфиров пространственно затрудненных кислот, при непосредственной эте-рификации которых спиртами не удается получить целевые продукты с хорошим выходом. Препаративную ценность метода повышает применение диполярных апротонных растворителей (диметилформ-амид, диметилсульфоксид), увеличиваюш,их нуклеофильную активность реагента. Хорошие выходы сложных эфиров достигаются и в неполярных растворителях при использовании катализаторов межфазного переноса и краун-эфиров. [c.102]

    Некоторые А. о. к. (напр., диметилформамид) применяют в качестве растворителей для многих неорганических и органических соединений, полимеров. А. о. к. используют при синтезе сульфамидных лекарственных препаратов, полимеров. Полипептиды и белки представляют собой амиды аминокислот, сульфамиды —амиды сульфокислот R—SO2NH2. [c.21]

    КАПРОЛАКТАМ (лактам е-аминокап-роновой кислоты) — белые кристаллы хорошо растворим в воде, спирте, эфире, бензоле, хлороформе и других органических растворителях. К.— циклический амид е-аминокапроновой кисло- [c.118]

    НИКОТИН Q0H14N2 — главный алкалоид табака, содержится в листьях, встречается в других растениях, В чистом виде выделен впервые в 1828 г, Пос-сельтом и Реймоном. Н.— бесцветная маслянистая жидкость, темнеющая на воздухе, с характерным запахом табака, т. кип. 246 С растворим в воде и в органических растворителях, В промышленности получают из отходов табачного производст ва или синтетически, Н.— сильный яд, действующий на центральную и периферическую нервную систему, вызывает сокращение кровеносных сосудов, в результате чего повышается кровяное давление, наблюдается ряд болезненных явлений. Н, применяется как инсектицид, в ветеринарии, в виде сульфата для борьбы с вредителями сельского хозяйства, для получения никотиновой кислоты и ее амида, [c.175]

    Ионная полимеризация протекает при пониженной температуре н пизкоки-пящем растворителе, например, полимеризация стирола в жидком аммиаке, катализируемая амидом калия. Катионной полимеразации легко подвергается изобутилен в присутствии ВР, и следов воды. [c.362]

    При полимеризации винилового мономера под действием амида калия в жиддом аммиаке ( —33°С) относительная константа передачи цепи на растворитель равна 0,67- 10 Вычислите начальную степень полимеризации, определяемую передачей цепи на растворитель, если концентрация мономера равна 0,2 моль-л .  [c.127]

    Уже приведенные выше данные указывают, что, вопреки теории Бренстеда, в ряде растворителей относительная сила кислот изменяется не только-в связи с зарядным типом кислоты, но и в связи с ее химической природой. Эти изменения проявляются уже в спиртах, которые являются нивелиру-юш ими растворителями по отношению к солям. Можно ожидать, что эти изменения будут проявляться особенно сильно в растворителях, дифференцирующих силу солей. К таким растворителям относятся нитрилы, нитросоеди-пения, альдегиды, кетоны и некоторые амиды. [c.284]


Смотреть страницы где упоминается термин Амиды как растворители: [c.84]    [c.162]    [c.172]    [c.224]    [c.25]    [c.316]    [c.49]    [c.225]    [c.338]    [c.392]    [c.50]    [c.66]   
Аналитическая химия неводных растворов (1982) -- [ c.36 , c.39 , c.115 ]




ПОИСК







© 2025 chem21.info Реклама на сайте