Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинационного рассеяния спектроскопия структура

    Поведение и структура ионных пар и более сложных комплексов широко изучались такими методами, как кондуктомет-рия, спектроскопия комбинационного рассеяния, спектроскопия в УФ-, видимой и ИК-областях, а также методами электронного, и ядерного магнитного резонанса. Эти методы и полученные результаты описаны в обзоре [22]. [c.17]


    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Удобным методом для анализа фуллеренов является спектроскопия комбинационного рассеяния [I]. Линии спектра комбинационного рассеяния с частотами 1469, 497 и 172 см относятся к молекуле С60, тогда как линии с частотами 1568, 1232, 1185, 1062 и 260 см приписываются молекуле С70 [3]. С помощью данного метода авторами [10] была окончательно утверждена структура молекулы С60 как усеченного икосаэдра. [c.8]

    Промышленные углеграфитовые материалы состоят из нерегулярно агрегированных дефектных кристаллитов. Сами кристаллы могут содержать набор ар -(преимущественно), зр - и ар-связей, определяющих их свойства. Исследование и количественная оценка распределения этих связей (особенно зр и зр ) методом спектрометрии комбинационного рассеяния (Ра-ман-спектроскопии) представляют значительный интерес при изучении механизма формирования структуры и свойств. [c.24]

    В данной главе рассматриваются наиболее важные и широка применяемые методы исследования структуры силикатов дифференциальный термический анализ, рентгеноструктурный и рентгенофазовый анализ, электронная микроскопия, инфракрасная спектроскопия, спектры комбинационного рассеяния и электронный парамагнитный резонанс. [c.150]

    К спектральным методам исследования структуры веществ наряду с инфракрасной спектроскопией относится спектроскопия комбинационного рассеяния. [c.159]

    Измеряя температурную зависимость диэлектрической проницаемости газа, можно найти электрический дипольный момент его молекулы и поляризуемость а ар. Для этого обрабатывают экспериментальные данные о зависимости от 1/Г по методу наименьших квадратов И находят коэффициенты Ап В линейной зависимости (19.10) и, следовательно, Од и ц. От поляризуемости молекул зависит так называемое дисперсионное взаимодействие атомов и молекул, которое играет важную роль в свойствах жидкостей и растворов, в процессах адсорбции, конденсации и др. Поляризуемость молекул важна при учете взаимодействия их с электромагнитным полем. Ею определяется интенсивность рассеяния света молекулами, в частности комбинационное рассеяние света (КР). Спектроскопия КР — важный метод исследования структуры. молекул. [c.75]


    Спектроскопию комбинационного рассеяния широко используют в биологии, биофизике и медицине для исследования строения молекул и изучения временного хода химических реакций в биологических объектах, поскольку в сложных молекулах колебательные частоты чувствительны к их геометрической структуре и системе связей локализованных групп атомов, изменение которых может происходить в процессе химической перестройки и межмолекулярных взаимодействий. Причем такого рода исследования часто невозможно провести с помощью ИК-спектроскопии, так как большинство представляющих интерес колебательных частот попадает в область спектрального поглощения воды. [c.776]

    Комбинационное рассеяние света (КРС) - рассеяние света исследуемым веществом, связанное со структурой его молекулы и сопровождаемое заметным изменением длины волны рассеиваемого света [33]. Явление было открыто в 1928 в зарубежной литературе КРС обычно называют эффектом Рамана [34], откуда возникло название рамановская спектроскопия . [c.206]

    Для установления некоторых структурных особенностей аренов можно использовать также ИК-спектроскопию [6]. Определение взаимного положения заместителей в молекуле не представляет трудностей, поскольку изменения в некоторых областях спектра, связанные с замещением, не зависят существенно от тнпа заместителя. Поглощение в области 3100—3000 см" указывает на присутствие бензольных колец (колебание С—Н), что подтверждается наличием колебаний кольца в области 1600—1500 см . После того как присутствие ароматического кольца установлено, для изучения взаимного расположения заместителей в кольце исследуют области 2000—1660, 1250—1000 и 1000—650 см . Обычно наиболее информативной является первая из них, а для подтверждения полученных результатов изучают области более низких частот. В области 2000—1660 см- наблюдаются обычно слабые полосы, однако при использовании относительно толстых кювет можно получить полезные сведения. В спектрах комбинационного рассеяния (КР) аренов имеется несколько характеристических полос, которые могут быть полезными, если структура еще не установлена однозначно. [c.321]

    Исследование структуры молекул и их ассоциатов в жидком и твердом состоянии проводится, кроме рассмотренных спектроскопических методов, основанных на взаимодействии частиц с электромагнитным полем, еще многими десятками физических методов, базирующихся как на взаимодействии с электромагнитным излучением (микроволновая спектроскопия, спектроскопия комбинационного рассеяния, у-резонансная спектроскопия, рентгенография, электроно- и нейтронография, люминесцентная спектроскопия, рефрактометрия, поляриметрия), так и с другими типами полей, в частности с электрическим полем (полярография, кондуктометрия, потенциометрия и др.), гравитационным полем. [c.132]

    Доказательство существования карбкатионов в растворе и установление их структуры осуществляется методами спектроскопии ЯМР и комбинационного рассеяния (Раман-спектроско-пия). Стабильные карбкатионы можно исследовать с использованием ИК-спектроскопии и УФ-спектрофотометрии. [c.394]

    Наряду с такими микроскопическими методами исследования реальной структуры, как ЭПР, оптическая спектроскопия, комбинационное рассеяние и т. д., необходимо привлекать те или иные методы диэлектрической спектроскопии, изучающей макроскопические характеристики кристаллов электропроводность и комплексную диэлектрическую проницаемость до 10 ° Гц. Особую значимость эти методы приобретают в тех случаях, когда точечные дефекты реального кристалла непарамагнитны, оптически неактивны, но электрически активны в невозбужденном состоянии. [c.131]

    Применение для определения строения окружения ионов спектров са.мих ионов и.меет явное преи.мущество перед классическими методами инфракрасной (ИК) спектроскопии и комбинационного рассеяния (КР). В ИК и КР спектры дают вклад все эле.менты структуры исследуемых систем, как правило, многоатомных, что приводит к многочисленным наложениям спектральных линий, в то время как на оптических спектрах ионов-зондов отражается лишь влияние ближайшего окружения этих ионов. В качестве редкоземельного зонда наиболее часто используется европий. [c.199]

    Лаборатория молекулярной спектроскопии и квантовой химии (руководитель Л. А. Грибов) занята разработкой автоматизированной системы идентификации органических соединений по их спектрам. Ведутся работы по инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. Кроме того, проводятся исследования в области электронной спектроскопии, в частности с целью изучения состава и структуры комплексных соединений переходных металлов. Важное место в работе этой лаборатории занимают расчетные методы квантовой химии. [c.201]

    Здесь уместно упомянуть еще об одном очень интересном спектральном методе, который пока еще не получил широкого распространения в каталитических исследованиях. Речь идет о резонансном комбинационном рассеянии света, который часто позволяет получить большое число хорошо разрешенных компонент колебательной структуры. Использование этих данных для расчета поверхностей потенциальной энергии связей в каталитических комплексах и адсорбированных молекулах требует, однако, дальнейшей разработки теории колебаний в многоатомных системах и создания соответствующих автоматизированных программ для расчетов на ЭВМ. Решение этой задачи будет способствовать и более строгой интерпретации спектров фосфоресценции, а также позволит исследовать с помощью ИК-спектроскопии многие нехарактеристические колебания, которые нельзя трактовать в простом двухатомном приближении. Таким образом, перспективы дальнейшего использования спектральных методов для изучения элементарных стадий катализа достаточно широки. [c.35]


    Структуру и динамику самых разнообразных жидкостей, начиная от жидкого водорода и кончая расплавленными силикатами, можно изучать посредством различных спектральных методов. Среди них наиболее важны дифракция рентгеновских лучей, нейтронография, ядерный магнитный резонанс, лазерная спектроскопия комбинационного рассеяния и рассеяние света. Одним из самых мощных новейших методов является импульсное лазерное возбуждение. В пикосекундном диапазоне (10 с) мы можем исследовать движение молекулы растворенного вещества внутри клетки молекул растворителя. Теперь можно непосредственно наблюдать за фундаментальными химическими событиями в реальном времени. Например, можно наблюдать, как два атома иода в жидкости соединяются в молекулу, как захватывается (сольватируется) жидкой водой свободный электрон, как энергия, поглощенная молекулой растворенного вещества (азот или бензол), передается от нее окружающим молекулам растворителя. [c.190]

    Лазерная спектроскопия комбинационного рассеяния Спектроскопия протяженной тонкой структуры рентгеновского поглощения (ИТСРИ) [c.12]

    Для изучения структуры твердых солей, а также растворов можно использовать колебательную инфракрасную и Раман-(комбинационного рассеяния) спектроскопию [30]. Эти методы позволяют получать данные о симметрии молекул и определять силовые постоянные различных типов колебаний. Так, простота инфракрасного спектра циклогептатриенилбромида, трихлорцикло-пропенилтетрахлоралюмината и трифенилметильных солей свидетельствует, что эти соединения обладают очень симметричными структурами (соответственно О /, и О н)- Силовые постоянные, определенные для двух ароматических ионов, образуют ряды, согласующиеся с рядом для бензола, и коррелируют с кристаллографическими длинами связей С—С. Карбениевые ионы обычно характеризуются поглощением в области 1250—1550 см (табл. 2.7.8), достаточно интенсивным за счет больших изменений дипольного момента при возбуждении. Сравнение ИК- и Раман-спектров ряда третичных алкил-катионов позволяет провести полное отнесение полос поглощения. В частности, спектр грег-бутил-катиона аналогичен спектру изоэлектронного ему триметилбора и [c.526]

    Кроме перечисленных выше методов, дающих непосредств. информацию о геометрич. параметрах молекул (кристаллов), широко примен. т. и. косвенные методы — электронный парамагнитный резонанс, инфракрасная спектроскопия, комбинационного рассеяния спектроскопия, масс-спектрометрия и т. д. Эти методы позволяют определять тип симметрии молекулы, первичную структуру (т. е. порядок соединения атомов) и век-рые геом. параметры на основе эмпирич. корреляц. соотношений, предварительно установленных и проверенных для большого числа соед. известного строения. Для определения структуры в-в наряду с экспериментальными примен. разл. расчетно-теоретич. методы, в частности квантовохямические. Для грубых оценок геометрии молекулярных систем часто рассчитывают длины связей исходя из ионных и ковалентных атомных радиусов их усредненные значения, найденные путём анализа большого числа эксперим. данных, а также типичные величины валентных углов табулированы. [c.549]

    Рассеяние рентгеновских лучей Лазерная спектроскопия комбинационного рассеяния Спектроскопия протяженной тонкой структуры рентгеновского поглощения (ПТСРП) [c.12]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    В литературе имеются примеры анализов при совместном использовании газового хроматографа и диспергирующего спектрофотометра [41]. Спектры, показанные на рис. 4.14, получены от газохроматографической фракции нефти. Методом хроматомасс-спектрометрии была установлена молекулярная формула этой фракции — С,оН,4, которой отвечает структура либо индана, либо одного иэ изомеров метил-стирола. Даже если качество этого спектра не сравнимо с качеством спектра, полученного при более медленном сканировании и для образца большего объема, и то с уверенностью можно сказать, что эта фракция — л<-метилстирол. В других примерах, приведенных в указанной статье, для идентификации выделенных микрообразцов требуется применение таких дополнительных методов, как ЯМР и спектроскопия комбинационного рассеяния света. Поскольку эти ме-1оды требуют 0,1 — 1 мкл вещества, они наиболее ценны, когда в распоряжении имеется соответствующее количество образца. Кроме того, они позволяют быстро разделять и характеризовать компоненты, не прибегая к фракционной перегонке. [c.114]

    Для количественных оценок различных типов вторичных структур пользуются спектроскопией комбинационного рассеяния, срав- [c.111]

    Современные представления о структуре молекул возникли в результате применения различных физических методов исследования — рентгенографии и электронографии, спектроскопии в уль-трафиол етовой и инфракрасной областях и изучения спектров комбинационного рассеяния света. [c.407]

    Масс-спектральная, ипфрак])асная, ультрафиолетовая спектроскопия, а также спектроскопия комбинационного рассеяния света классифицируются как основные методы молекулярной спектроскопии, в которых спектргл вещестиа характеризуют эти вещества в зависимости от их молекулярной структуры. [c.4]

    Основное направление научных работ — изучение структуры молекул методами спектроскопии. Исследовал инфракрасные спектры и спектры комбинационного рассеяния многоатомных молекул. Является пионером в изучении ко-лебатадьных и вращательных движений таких молекул с помощью квантово-механических расчетов. Занимался (с середины 1940-х) микроволновой спектроскопией. Создал ряд спектрометров очень высокой чувствительности. Использовал спектроскопическую технику для изучения перехода энергии от одной молекулы к другой при их столкновениях. Изучал возможность использования квантово-механических расчетов для предсказания свойств молекул. [c.502]

    Для рюследования структуры полимеров п органич. соединений обычно изучают "спектры поглощения, т. е. определяют, какая часть энергии падающего света с данной длиной волны поглощается при прохождении его через слой исследуемого вещества. Колебательные спектры поглощения полимеров м. б. получены методами ИК-спектроскопии и спектроскопии комбинационного рассеяния света (КР-спектроскопии). ИК-поглощение обусловлено изменением электрич дипольного момента системы колеблющихся атомов, а КР-эффект — изменениями электрич. поляризуемости той же системы атомов при колебании. При исследовании полимеров метод ИК-спектроскопии играет пока ведущую роль. Это обусловлено преимуществами экспериментальной техники ИК-спектроскопии и нек-рымн трудностями интерпретации КР-спектров полимеров. Обычно в спектрах регистрируется отношение интенсивности света I, прошедшего через образец, к интенсивности падающего света /о- В большинстве случаев удобнее использовать оптич. плотность Z) = log (/о//)- Эта величина пропорциональна толщине слоя вещества, концентрации поглощающих частиц и коэфф. поглощения 8, к-рый характеризует свойства поглощающих молекул. [c.529]

    В последние годы структура стекла широко изучалась разносторонними методами исследования [2725—2763, 3045— 3084]. Так, Тарасов [2725, 2726], используя разработанный им метод определения низкотемпературной теплоемкости, показал, что особенность структуры силикатных и других неорганических стекол кроется в том, что они обладают полимерным анионом и мономерным катионом. Гросс и Колесова [2727], на основании изучения спектров комбинационного рассеяния многих стекол, показали на примере щелочносиликатных стекол, что в них имеет место постепенный переход от структуры стеклообразного кремнезема к структуре стеклообразного метасиликата щелочного металла, подобно тому, как это наблюдается для случая смешанных кристаллов. Флоринская и Печенкина [2728, 2729], основываясь на результатах, полученных методом инфракрасной спектроскопии, рассматривают стекла как сложные и неоднородные соединения, содержащие зоны с упорядоченным строением — кристаллиты. Расположение атомов в них такое же, как в кристаллах силикатов или кремнезема. Существует постепенный переход от наиболее упорядоченной части этих зон к беспорядку и обратно — к порядку в соседних кристаллитах. Формирование группировок, из которых в дальнейшем образуются кристаллиты, начинается очень рано, еще в расплаве стекла выше температуры ликвидуса. В пользу кристаллитной теории строения стекла приводятся и другие соображения [2730—2747]. Однако в отдельных работах утверждается, что некоторые виды стекол имеют структуру беспорядочной сетки [2748]. Как показал Порай-Кошиц [2749],пользуясь рентгеноструктурным методом, невозможно сделать окончательные выводы о правильности той или иной гипотезы о строении стекла. Полученные с помощью этого метода данные подтверждают обе гипотезы — как о кристаллитной структуре, так и о структуре беспорядочной сетки. По мнению автора, получения окончательного ответа на вопрос о размерах упорядоченных областей в однокомпонентных телах можно ожидать в результате их исследования электронномикроскопическим методом. [c.460]

    Предметом высокоразрешенной спектроскопии комбинационного рассеяния является изучение вращательной структуры спектров газообразных веществ. Исследование проводится в первую очередь для получения данных о структуре молекул. Если вращательная структура на полученном спектре оказывается разрешенной, то анализ спектра позволяет в принципе вычислить моменты инер-ции, а следовательно, межъядерные расстояния и углы между связями в молекуле. Такие исследования дают также информацию о симметрии молекул, вращательно-колебательном взаимодействии и, в некоторых случаях, о ядерном спине и статистике, которой подчиняются ядра. В настоящей статье делается попытка обобщить успехи, достигнутые в этой области, рассказать о технике эксперимента, о возможностях и ограничениях метода и дать краткий очерк теории вопроса. [c.115]


Смотреть страницы где упоминается термин Комбинационного рассеяния спектроскопия структура: [c.349]    [c.537]    [c.654]    [c.349]    [c.537]    [c.5]    [c.114]    [c.102]    [c.224]    [c.21]    [c.98]    [c.598]    [c.180]    [c.209]    [c.532]   
Физические методы в неорганической химии (1967) -- [ c.2 , c.4 , c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Комбинационное рассеяние

Спектроскопия комбинационного

Спектроскопия комбинационного рассеяни

Спектроскопия комбинационного рассеяния



© 2025 chem21.info Реклама на сайте