Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопный обмен применение

    При опытных синтезах пирита с применением FeS, меченного радиоактивной серой, измерялась активность отогнанной избыточной серы. Она составляла от 0,5 до 2,5% от всей взятой активности. Это указывает на то, что в данных условиях проходил в некоторой степени изотопный обмен между серой в газовой фазе и серой в сульфиде. [c.48]

    Тяжелый изотоп водорода — дейтерий Оа нашел применение в атомной энергетике. Дейтерий входит в состав тяжелой воды ОаО, которая используется в качестве замедлителя нейтронов и как теплоноситель. Атомные электростанции используют значительное количество тяжелой воды (100 000—250 000 кг). Малое содержание дейтерия в водороде (1/6400) создает известные трудности при его получении. Извлечение дейтерия и получение тяжелой воды может быть осуществлено различными методами ректификацией воды, изотопным обменом, двухтемпературным (сероводородным) методом, ректификацией жидкого водорода. [c.253]


    Малоновую-Н кислоту-Н получали из недокиси углерода и воды-Н в соответствии с описанным методом [3—5] без использования растворителя [6], а также с применением в качестве растворителя четыреххлористого углерода [7]. Ее получали также изотопным обменом с водой-Н [6, 8, 12, 13]. [c.50]

    В выяснении механизма крекинга одно время возлагали большие надежды на применение дейтерия и трития, особенно в связи с распространенностью протолитической концепции действия алюмосиликатов. Исследование изотопного обмена подтвердило сходство алюмосиликатов с сильными минеральными кислотами и привело к появлению новых схем процесса. Однако дальнейшие работы показали отсутствие прямого параллелизма между каталитическим процессом и изотопным обменом водорода катализатора с углеводородами. Не удалось найти также связи между каталитической активностью алюмосиликатов и легкостью кислородного обмена. [c.152]

    Изотопный обмен находит применение и при синтезе меченых соединений кислорода и серы. Сомнительны перспективы нахождения каталитических методов прямого изотопного обмена атомов углерода. Продвижение в этом направлении было бы очень желательным. Следует упомянуть также о внутримолекулярном изотопном обмене, используемом при некоторых методах синтеза. [c.417]

    Основные научные работы посвящены применению масс-спект-рометрии для решения широкого круга химических, физических и геохимических задач. Одним из первых начал определять содержание различных изотопов в природных продуктах и указал, что с помощью этих данных можно установить происхождение соответствующих материалов. Показал, что данные, полученные при изучении кинетических изотопных эффектов, являются мощным средством при установлении механизма реакций, особеиио нри определении структуры активированного комплекса. Изучал содержание изотопов серы в различных природных продук-тах. Один из пионеров применения масс-снектрометрии для изучения содержания продуктов ядерного распада определил выход таких продуктов для многих реакций. Внес существенный вклад в изучение функции щитовидной железы с помощью радиоактивного иода. Разрабатывал методы разделения стабильных изотопов (изотопный обмен, термическая диф- [c.493]

    В 30-х годах XX в. в связи с открытием дейтерия и тяжелой воды электролиз воды нашел еще одно важное применение, так как тяжелая вода может получаться в качестве побочного продукта на крупных электролизных установках. Получение тяжелой воды чисто электрохимическим методом или комбинированием электролиза воды с изотопным обменом дейтерия между водородом и парами воды на катализаторе применялось и продолжает применяться в ряде стран. Опубликованы данные о работе в США, Норвегии, Индии крупных установок для получения тяжелой воды с использованием электрохимического метода, хотя к настоящему времени разработаны и другие методы производства тяжелой воды, более экономичные в определенных условиях. [c.12]


    Определение газов в металлах. При определении газов в металлах спектрально-изотопным методом применение ПК в качестве источника высокотемпературного нагрева образца для изотопного уравновешивания и источника возбуждения спектра имеет ряд преимуществ [247, 250, 887] 1) упрощается аппаратура 2) изотопный обмен осуществляется более интенсивно 3) становится возможным наблюдение за пределом уравновешивания изотопов 4) локальный нагрев образца обеспечивает значительное уменьшение поправки на холостой опыт 5) возможность измерения концентрации изотопов до и после уравновешивания исключает влияние разброса поправки холостого опыта точность анализа при этом определяется ошибкой измерения разности относительных концентраций изотопов. Это приводит к понижению предела обнаружения газов в металлах [249]. [c.201]

    С появлением тонких и чувствительных методов анализа в продуктах реакции органических соединений обнаруживаются очень малые концентрации отдельных химических соединений. О наличии некоторых из них в катализатах ранее можно было только предполагать, а некоторые появляются неожиданно. Это делает особенно важным установление истинных генетических связей продуктов при трактовке того или иного механизма реакции. Хорошей иллюстрацией этого могут служить проведенные недавно работы по применению хроматографии и радиохроматографии к изучению побочных реакций при дегидратации спиртов на окиси алюминия [25, 26]. (Об этих работах упоминалось в связи с изотопным обменом углерода.) [c.41]

    Подводя общий итог всему изложенному выше, констатируем, что применение очень сильных основных и кислотных катализаторов, соответственно в протофильных и протогенных растворителях, позволяет ускорить реакции водородного обмена примерно до двадцати порядков по сравнению с их скоростью в амфотерных растворителях без катализатора. Это и открыло возможность поставить со всей полнотой вопрос об изотопном обмене водорода в СН-связях углеводородов и их производных [30]. [c.44]

    Одним из наиболее распространенных методов изучения состояния дочерних атомов является применение изотопных носителей, соответствующих возможным формам данного элемента. При этом заключение о доле атомов дочернего элемента, существующей в виде данной химической формы, может быть сделано на основании измерения активности осадков изотопного носителя. Практическое осуществление таких исследований связано с введением в раствор изучаемого соединения большинства носителей предполагаемых химических форм дочернего элемента с последующим их разделением какими-либо методами. Совершенно очевидно, что если между некоторыми формами дочернего элемента в условиях разделения имеет место изотопный обмен, то этот процесс приведет к перераспределению элемента между отдельными формами. В результате устанавливаемое нами распределение дочернего элемента не будет отвечать первоначальному действительному его распределению. Иначе говоря, будут получены неверные результаты. [c.212]

    Изотопный обмен широко используется для введения радиоактивных изотопов в молекулы различных классов соединений. Для проведения синтеза достаточно контакта двух обменивающихся веществ и последующего их разделения. Применение изотопного [c.487]

    Интересно напомнить, что определение величины поверхности твердых тел методом изотопного обмена относится к числу первых методов, предусматривавших применение радиоактивных изотопов для решения химических проблем. Панет [197] показал, что если осадок сульфата свинца достигнет состояния равновесного обмена с насыщенным раствором сульфата свинца, содержащего торий В, то на основании данных о распределении радиоактивного изотопа можно оценить величину поверхпости твердого сульфата. Сейчас радиоизотопный метод широко распространен, и с его помощью выполнено множество ценных исследований в области химии поверхности (см. разд. 3.3.7.1), включая несколько попыток прямого анализа химического состава поверхностей катализаторов путем обмена или адсорбции меченых радиоактивных веществ из газообразной или жидкой фаз. Мы кратко рассмотрим здесь три примера такого анализа, причем два из них включают изотопный обмен между твердой и жидкой фазами. [c.95]

    Синтез изотопным обменом может быть применен для введения в молекулы радиоактивных и стабильных изотопов вместо атомов, находящихся в подвижном положении. Атомы неорганических соединений обладают большой подвижностью, поэтому изотопным обменом метка может быть легко введена в любое положение соединения, кроме случая, когда он — центральный атом комплексного иона. В органических соединениях подвижными являются атомы галоидов, металлов, в отдельных случаях атомы серы. Атомы водорода подвижны в ОН-, НН-, 5Н-группах. Связь С—Н более устойчива и обмен таких атомов водорода возможен лишь в жестких условиях (щелочной или кислой средах). Атомы углерода в органических соединениях неподвижны, но в условиях протекания перегруппировок введение радиоактивных атомов углерода в молекулу изотопным обменом возможно. [c.511]


    Е. Изотопный обмен. Важным подразделом метода, основанного на изучении химических свойств, является использование стабильных или радиоактивных изотопов. Применимость этих методов ограничивается в основном доступностью подходящих изотопов, счетного обрудования и аппаратуры для количественного определения изотопного замещения. Интересный пример применения этих методов описан в работе по термическому и фотохимическому разложению ацетальдегида. Реакция может быть представлена уравнением [c.100]

    Применение того или другого изотопа, конечно, не вызывает у веш ества новой способности обменивать атомы. Если в этих условиях происходит изотопный обмен, то это значит, что частицы данного вещества вообще могут обмениваться с окружающей средой атомами данного элемента. Применяя же определенный изотоп, можно обнаружить такую способность и исследовать процесс обмена, измерить его скорость и другие параметры. Метод изотопного обмена позволяет изучать и количественно ха-рактеризов ать подвижность атомов данного элемента в разных веществах при различных условиях. [c.544]

    Изучение воиросов, связанных с механизмом взаимодействия иоликомплексонов с катионами, кинетикой процесса, составом и стабильностью образуемых комплексов, осложнено трудностями в исследовании гетерогенных систем. Весьма успешно для этих целей применен ряд косвенных методов, основными из которых являются потенциометрическое титрование полимера в присутствии ионов металлов, определение значения pH, при котором наблюдается вымывание катиона из ионита, так называемое рН-декомплексование (О pH) изучение равновесных систем катион — поликомплексон — раствор мономерного лиганда элюирование катиона из ионита хелантами с различной комплексообразующей способностью, изотопный обмен [1, 167, 547, 548, 553—557]. [c.296]

    Вследствие низкой емкости каолинита и агрегации его частиц, зависящей от состава контактируемого раствора, статические методы и методы с применением обычных колонок не пригодны для исследования равновесной сорбции на каолините. Чтобы преодолеть эти трудности, Тамерс и Томас [20] медленно пропускали питающий раствор через непрерывно. перемешиваемую суспензию, поддерживая таким образом состав внешнего раствора приблизительно постоянным. В растворах галогенидов щелочных ме-талов обмен катионов и анионов протекал одновременно. Хотя, как показали опыты по изотопному обмену, равновесие между раствором и твердым веществом устанавливается очень быстро, обменная емкость уменьшается со временем и ее конечная величина.зависит, от природы и концентрации применяе-1 0Г0 татиона. (рис. 8). Эти результаты мджцо легко [c.50]

    На основании имеющихся в литературе работ по изотопному обмену серы, были выбраны органические соединения, содержащие наиболее подвижную серу в связях =S С—S—М. В результате проведенных опытов получены тиомочевина, тиоуксусная кислота, тиоценталовая кислота и ее натриевая соль (тиопеитал натрия), меченные S . Реакции изогопното обмена проводились с элементарной серой в растворах с применением в качестве растворителя изопропилового спирта (кроме тиоуксусной кислоты). После проведения реакции изотопного обмена смесь серы и органического комионеита разделялась и производилась очистка препарата. [c.178]

    Одним из возможных путей получения меченых соединений, наряду с реакциями синтеза, являются реакции изотопного обмена. До сих пор в связи с малой подвижностью углеродных атомов в большинстве органических соединений реакции изотопного обмена не полу П1ли широкого применения. Однако метоксильная группа в молекуле метилметакрилата должна обладать относительно большой подвижностью, поэтому было решено для получения метилметакрилата—воспользоваться одним из наиболее простых способов—изотопным обменом (изотопной переэтерифика- [c.183]

    На рис. 1 представлена схема изотопной обменной системы этих авторов. Главной частью обменной системы являлась газовая циркуляционная система, состоящая из парортутного диффузионного насоса (Р), двойного, ртутного затвора (С), измерительной камеры с платиновой нитью (К) и реакторной трубки (V), с помещенным в ней катализатором. Направление потока через систему указывается стрелками. Суть метода заключается в следующем. Пусть катализатор содержит воду на своей поверхности лишь с одним изотопом водорода (например, легкая вода НгО). В термостатированном сосуде (R) находятся иодяные пары чистой окиси дейтерия D2O. Из сосуда (R) в газоциркуляционную систему вводится определенное количество паров тяжелой воды. После впуска давление в циркуляционной системе составляет около 20—25 мм рт. ст., причем с таким давлением диффузионный ртутный насос, примененный авторами статьи, способен проводить циркуляцию со скоростью около 500 сж .в минуту. После достаточного количества циркуляционных циклов обменная реакция проводится полностью, т. е. наступает статистическое равновесие. Для измерения изотопного состава паров воды часть паров отсекается ртутным затвором (С) в измерительной камере (К) с платиновой нитью. Остальная часть паров продолжает циркулировать по укороченному пути1 После измерения изотопного состава затвор (С) открывается и восстанав-яивается прежняя циркуляция паров. [c.52]

    Метод изотопного обмена может быть применен также для получения органических соединений, меченных 8 5 [44, 85]. При этом необходимо учитывать некоторые особенности изотопного обмена серы в зависимости от ее положения в молекуле. Так, наибольшей подвижностью сера обладает по связям С = 5, вследствие чего происходит, например, быстрый изотопный обмен атомов серы в этил-ксантогенате калия. Скорость изотопного обмена серы зависит от природы катиона ксантогената, что вероятно, вызывается разной степенью поляризации связи 8—Ме. Благодаря сопряжению [c.52]

    Тяжелый кислород 0 — один из наиболее перспективных изотопных индикаторов. Он уже был успешно применен во многих работах для изучения т ших важнейших процессов, как фотосинтез, дыхание животных и растений, окислительные реакции (в частности, окислительный катализ), реакции перекисных соединений и др. Дальнейшее развитие исследований в этих областях с применением 0 сильно затрудняется недостатком сведений об изотопном обмене кислорода, которому до сих пор уделяли слишком мало внимания. Это в равной степени относится к органическим и к неорганическим соединениям, составляющим предмет настоящего сообщения. Изучение обмена кислорода не только необходимо для применения изотопа Окак индикатора, но имеет большой самостоятельный интерес, так как механизм этого обмена тесно связан со все еще очень неясным механизмом переноса кислорода при химических реакциях. [c.245]

    В свое время А. А. Баландин и Н. Д. Зелинский предположили, что такие процессы протекают без промежуточных стадий прямым присоединением водорода к мультиплетно адсорбированному циклу. Для бензола в качестве исходного состояния принималась секстетная адсорбция. Плоское расположение органических циклов на поверхности катализатора правдоподобно и согласуется с данными Кембелла [52] по изотопному обмену водорода у цикланов на металлических катализаторах. Как отмечалось нами на конференции по органическому катализу (1962 г.), для ароматических соединений такое плоское расположение может быть обусловлено особенностями поверхностных я-комплек-сов ароматических молекул. Такие л-комплексы — наиболее вероятные первичные хемосорбционные формы каталитического гидрирования. Одновременное присоединение шести или, соответственно, восьми атомов Н неправдоподобно. Конечно, процесс протекает в несколько этапов,— вероятно, с молекулой, сохраняющей It-комплексную связь с поверхностью. Это — своеобразная шести- или, соответственно, восьмичленная закрепленная цепь каталитического гидрирования. В качестве промежуточных состояний возникают я-комплексы с менее совершенной системой сопряжения и с более ограниченной делокализацией л-электро-нов. При этом комплексы с четным числом я-электронов, как например я-комплексы хемосорбированных циклогексадиена и циклогексена, вероятно, стабильнее и живут дольше во время реакции, чем комплексы с нечетным числом я-электронов и их ква-зистационарная поверхностная концентрация выше. Это увеличивает вероятность десорбции циклогексена и циклогексадиена в газовый объем, как это наблюдалось в недавних работах советских и иностранных исследователей [49а, б]. Не имея возможности разбирать сколько-нибудь подробно другие примеры, напомним только о существовании закрепленных цепей при мягком и глубоком каталитическом окислении углеводородов. К такому выводу для низкотемпературной области привело нас применение комплекса кинетических, адсорбционных и изотопных данных [48, 50]. При повышении температуры начинается заметный выход реакции в объем. Длинные и короткие безэстафетные закрепленные цепи, по-видимому, широко распространены в катализе. [c.504]

    С целью изучения механизма катализа различными окисями проводились опыты по изотопному обмену с применением 0 . В различных условиях наблюдались как первый, так и второй механизмы. При низкой температуре реакция происходит в хемисорбированном слое, а при высокой окись углерода действительно реагирует с кислородом поверхности, входящим в решетку. [c.322]

    Промышленное производство тяжелой воды в значительных количествах впервые было организовано в Норвегии на заводе электролиза воды фирмы Норск-Гидро (в Рьюкане) незадолго перед второй мировой войной. В связи с развитием работ по использованию атомной энергии производство тяжелой воды было организовано в ряде стран. На стадии начального концентрирования использовалась ректификация воды и сочетание электролиза с каталитическим и фазовым изотопным обменом на стадии конечного концентрирования применялся электролитический метод Затем в ряде стран были разработаны и внедрены другие более экономичные методы Однако, несмотря на применение таких методов производства тяжелой воды, как низкотемпературная ректификация водорода и двухтемпературный обмен между НгЗ и Н2О, электрохимические методы концентрирования сохраняют практическую целесообразность в тех случаях, когда, исходя из местных экономических условий, выгодно получение больших количеств водорода электролизом воды. При этом тяжелая вода может являться побочным продуктом [c.238]

    Алимарин и сотр. [59—61] разработали метод субстехиометри-ческого извлечения различных металлов с использованием колонки, заполненной хлороформным раствором диэтилдитиокарбамината цинка 2п(ДДК)2, который нанесен на пористый фторопласт ПФ-4. Метод применен для радиоактивациоиного определения следовых количеств цинка, меди, кадмия, серебра, ртути, марганца и железа в различных материалах — молибдене, иттрии, цирконии. При использовании образцов весом 0,1—1 г, облученных потоком нейтронов 1,2-10 н-см -с , чувствительность определения составляет 10 —10 %. ЫаДДК оказался наиболее удобным реагентом для такого метода (кроме него были изучены дитизон, купферон и 8-меркаптохинолин). Для разработки метода определения цинка изучен гетерогенный изотопный обмен между раствором 2п(ДДК)2 в хлороформе и водным раствором радиоактивного изотопа цинка (pH 6—7) выбраны условия такого изотопного обмена. [c.410]

    Изотопный обмен может быть применен также для определения равноценности одноименных атомов в органической молекуле. Так, с применением радиоактивного было показано, что дефенилиодоний (СдН5).2 2 в спиртовом растворе обменивает только один из атомов иода именно тот, который может отделиться от молекулы путем ионизации (СбН5)2 1+ + Р. [c.243]

    Для работ с применением радиоуглерода существенно, что в <9бычных для проведения каталитических реакций условиях практически не наблюдается и может не учитываться изотопный обмен углерода. [c.36]

    Таким образом, если препарат устойчив в условиях твердофазных реакций, этот метод позволяет получать меченые соединения с более высокой молярной радиоактивностью, чем при изотопном обмене с растворёнными соединениями, так как проведение реакций с газообразным тритием более эффективно при повышенных температурах, а в отсутствие растворителя изотопное разбавление значительно меньше. С другой стороны, возможность использования твердофазного метода не гарантирует, что это будут условия оптимальные для введения метки именно в данное вещество. Так, при введении метки в рибавирин и тиазофурин применение твердофазного метода предпочтительно, а при введении метки в алпразолам и залеплон к успеху приводит использование метода изотопного обмена с тритиевой водой [61]. Кроме того, недостатками метода твердофазного изотопного обмена, как и других методов изотопного обмена, является следующее. Во-первых, распределение метки не строго фиксировано (это уменьшает ценность данных препаратов для некоторых биологических исследований). Во-вторых, молярные радиоактивности соединений, которые не выдерживают жёстких условий твердофазного метода, недостаточны для проведения ряда экспериментов, например, рецепторных исследований. Так, методом изотопного обмена с тритиевой водой редко удаётся получить препараты с молярной радиоактивностью больше одного ПБк/моль. Эти проблемы позволяют решить химические методы введения тритиевой метки. С их помощью можно [c.528]

    Как станет ясно из дальнейшего, вопрос о реакциях изотопного обмена и их кинетике является одним из основных при разработке методов обогащения радиоактивных изотопов и разделения ядерных изомеров. Если между атомами, входящими в состав исходного соединения, и возникающими в результате ядерного процесса радиоактивными изотопами или ядерными изомерами имеет место более или менее быстрый изотопный обмен, то это делает невозможным их отделение от соответствующих стабильных изотопов или изотопов, находящихся в высшем изомерном состоянии. Неудивительно поэтому, что преледе чем решить вопрос о применении какого-либо соединения с целью обогащения или разделения ядерных изомеров, необходимо получить надежные сведения о реакциях изотопного обмена изучаемого элемента между исходным соединением и возможными формами радиоактивного изотопа или основного ядерного изомера. [c.213]

    Разделение изомеров кобальта. Изомеры Со и Со разделяются с применением исходного комплексного соединения Кз[Со(С204)з] ЗНгО, в котором центральный атом не способен к изотопному обмену с другими формами кобальта. Активные атомы Со , которые покидают комплекс, существуют в водных растворах как катионы Со +. После определенного времени накопления они отделяются от исходного вещества поглощением на катионообменной смоле [14]. [c.309]

    Книга представляет собой пособие для занятий по курсу Метод радиоактивных индикаторов в химии и содержит теоретические разделы, включающие физические и химические основы метода (радоактнвность, регистрация излучения, изотопный обмен, особенности поведения радиоактивных веществ, методы выделения, разделения и концентрирования радиоактивных изотопов) и принципы применения радиоактивных изотопов в аналитической, неорганической, физической и органической химии. Изложение иллюстрировано большим числом задач с подробными решениями. [c.2]

    Изотопный обмен уже в 1935 г. был применен С. 3. Рогинским для синтеза бромалкилов, содержащих радиоактивный бром. Метод изотопного обмена может быть применен и для получения легколетучих галогенидов металлов. [c.350]

    Дейтерий. Для получения тяжелой воды можно применять электролиз, электролиз с изотопным обменом, двухтемпературный обмен, дистилляцию воды и водорода. Метод электролиза был предложен Уошбэрном и Юри [33] и применен Льюисом [22] для приготовления первых порций ОоО. В Норвегии для получения тяжелой воды был использован завод Норск-Гидро (рис. 9. 3) этот завод, работающий на дешево й гидроэлектроэнергии, производит электролитический водород для синтеза аммиака и в качестве побочного продукта — тяжелую воду. [c.368]


Смотреть страницы где упоминается термин Изотопный обмен применение: [c.76]    [c.6]    [c.112]    [c.408]    [c.330]    [c.205]    [c.330]    [c.297]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.630 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопный обмен

Обмен изотопный Изотопного обмена



© 2025 chem21.info Реклама на сайте