Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Руды, анализ определение сурьмы

    Другой раздел работы Бергмана посвящен анализу определенных руд в нем описывается определение золота, серебра, платины, ртути, свинца, меди, железа, олова, висмута, никеля, мышьяка, кобальта, цинка, сурьмы и марганца в рудах. В качестве примера рассмотрим несколько подробнее анализ свинца [129]. [c.67]

    Описанный ход анализа можно принять также для определения сурьмы в известковых и фосфатных породах, железных рудах и других материалах после их растворения в кислотах и при соответствующей обработке нерас-творившегося остатка [c.240]


    Спектральный анализ широко применяется для открытия и определения небольших количеств висмута, а также одновременно II других элементов в свинце, меди, олове, цинке, алюминии и их сплавах, сурьме, золоте, железе и стали, в некоторых рудах, минералах и горных породах, биологических материалах и других объектах. Чувствительность спектрального метода достигает 0,001% и меньше Bi, точность определения 5—10% при содержании от 0,1 до 0,001% Bi. [c.322]

    При наличии в пробах большого количества меди и цинка на линии Ад 3280,68 А налагается интенсивный фон от близко расположенных линий Си 3274,97 и Zn 3282,33 А. В этих случаях определение серебра можно вести только по линии Ад 3382,89 А [137]. Однако и эта линия непригодна для анализа проб, обога-ш енных сурьмой, вследствие соседства линии ЗЬ 3383,15 А [1582]. Определение серебра в минералах, содержащих одновременно сурьму и медь (или цинк), например в блеклых рудах, на спектрографе средней дисперсии представляет трудную задачу. Задача упрощается при использовании дифракционного спектрографа ДФС-13. Чувствительность анализа на этом приборе составляет [c.135]

    Иодометрический метод считается лучшим для определения меди. Он достаточно точен. Присутствие посторонних веществ не оказывае существенного влияния на точность результатов анализа. При анализах сложных смесей, например медных руд, это обстоятельство имеет большое значение. Мешают вещества, окисляющие иодид калия, например мышьяк (V), окисляющиеся иодом, например мышьяк (111), сурьма (III), и осаждающие иодид-ионы, например ионы висмута и серебра. [c.217]

    Полярографический методы анализа широ ко используют в хи мико-аналитических лабораториях предприятий цветной метал лургии для определения меди, никеля, кобальта, цинка, висмута кадмия, сурьмы, олова и других металлов в рудах, металлах, полупродуктах и отходах производств . В тех же лабораториях эти методы, естественно, используют и для анализа производственных сточных вод. Для анализа сточных вод других производственных процессов их применяют редко .  [c.18]

    Подобно галлию и индию, для галогенидных комплексов таллия характерно образование экстрагируемых бензолом ионных ассоциатов с красителями группы родаминов. Предложено качественное открытие ионов ТР+ с родамином С в солянокислой среде [221, 265]. Эта реакция использована и для количественного фотометрического определения [297], а для отделения от мешающих примесей таллий предварительно экстрагирует в виде дитизоната [298]. Несмотря на некоторые указания на то, что флуоресцентный вариант этого метода не имеет преимущества перед колориметрированием [299], он был успешно применен для анализа йодида натрия [37, 109]. После предварительного экстракционного отделения эфиром реакция с родамином С в 0,1 н. бромистоводородной кислоте использована при определении таллия в рудах [146]. Высокочувствительный метод его определения в минеральном сырье (тоже с предварительной эфирной экстракцией) основан на взаимодействии бромида одновалентного таллия с родамином 6Ж [44] (см. табл. 1У-17). Отмечена также реакция солянокислых растворов иона ТР+ с родамином ЗВ и с родамином Ж [84]. Как и для сурьмы, нет литературных указаний на флуоресцентные реактивы, содержащие р-дикетонную функционально-аналитическую группу для иона Т1+ [100]. [c.180]


    Метод с родамином С применен для анализа горных пород [256], с кристаллическим фиолетовым — руд и горных пород [59]. Для концентрирования золота в обоих случаях применяют осаждение его в элементарном состоянии на коллекторе-теллуре, в первом варианте — сернистой кислотой и гидразином из ЗН НС1, во втором — хлористым оловом и гидразином из соляно-азотнокислых растворов. Эта операция не обеспечивает отделения золота от ртути мешающее влияние последней при извлечении хлораурата кристаллического фиолетового толуолом может быть устранено посредством строгого нормирования кислотности раствора [57, 59]. Определению мешают микрограммовые количества сурьмы и таллия, адсорбируемые осадком при высоких содержаниях этих элементов в пробе. [c.153]

    Полярографическому определению висмута мешают многие элементы (железо, медь, свинец, олово, мышьяк, сурьма и др.), особенно в том случае, если их содержание больше содержания висмута, как это обычно бывает при анализе полиметаллических руд или других природных материалов. [c.19]

    В книге рассмотрены общие теоретические вопросы хи- мического фазового анализа, особенности исследования руд и продуктов их переработки, описаны способы установления форм нахождения рассеянных элементов в рудах. Излагаются методы определения соединений меди, свинца, цинка, олова, сурьмы, мышьяка, никеля, молибдена, вольфрама, кадмия, висмута, ртути, рения, селена, теллура, германия, железа, серы, а также свободной и связанной кремнекислоты. Даны теоретические обоснования методик и области их применения. [c.2]

    Определение индия в рудах наиболее часто производится из солянокислых растворов, значительно реже применяются тартратные [55] и бромидные растворы [1]. Определению нз солянокислых растворов более всего мешает Сс1, потенциал полуволны которого почти совпадает с потенциалом полуволны 1п. Кроме того, определению мешают элементы, восстанавливающиеся на ртутном катоде раньше 1п большие количества меди, железа (III), свинца, олова, сурьмы, мышьяка и некоторые другие элементы. Методы отделения мешающих элементов, применяемые при анализе руд, приведены в работах [1, 3, 12, 15, 19, 27, 29—31, 55] и в разд. VI. [c.115]

    С. Ю. Файнберг. Н. А. Филиппова. Анализ руд цветных металлов. Металлургиздат, 1963 (832 стр.). В руководстве описаны практические методы химического, полумикрохимического и физико-химического анализов руд цветных металлов и продуктов их обогащения. Первый раздел содержит краткие сведения о физико-химических и полумикрохимических методах анализа. Во втором разделе рассматриваются методы определения меди, свинца, цинка, олова, мышьяка, сурьмы, висмута, никеля, кобальта, молибдена, вольфрама, железа и серы в рудах и концентратах. Третий раздел содержит описание методов полного анализа полиметаллических руд, свинцовых, цинковых, медных, оловянных, молибденовых и вольфрамовых руд и концентратов, а также шлаков, получаемых при выплавке цветных металлов. В четвертом разделе описаны полярографические методы анализа цветных металлов. Последний раздел посвящен фазовому анализу соединений меди, цинка, сурьмы, никеля, молибдена и серы. [c.477]

    Иодомет ический метод определения меди основан на том, что прк обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и, обладает тем преимуществом, что при работе мало отражается присутствие Посторонних веществ это преимущество имеет особенно бЬльшое значение при анализе материалоа сложного состава, например медных руд. Иодометрическому определению, меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа fill), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмы (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные "количества ацетата аммония, если из кислот [c.287]

    Разложение сурьмяных руд для определения в них серы — очень сложная операция. Изложенный ниже метод выполнения этого разложения является видоизменением метода, предложенного для анализа пири-тов. Этот метод дал при анализе стибнитов хорошие результаты. Переносят 1,373 г (факторная масса) тонко измельченной пробы в чашку. Покрывают ее часовым стеклом и обрабатывают 10 мл 10%-ного раствора брома в чётыреххлористом углероде, вводя его осторожно через носик чашки. Затем медленно прибавляют 5 мл брома и оставляют стоять 1 ч, время )0Т времени перемешивания. Ох,лаждают чашку в ледяной воде, прибавляют ЛЬ мл азотной кислоты и оставляют стоять еш е 30 мин, изредка перемешивая. Прибавляют 15 мл концентрированной соляной кислоты, Оставляют стоять при комнатной температуре около 30 мин, затем медленно нагревают, чтобы удалить четыреххлористый углерод, и выпаривают до сиропообразной консистенции (не перегревать и не выпаривать досуха ). Прибавляют 10 соляной кислоты и снова выпаривают до сиропообразной консистенции. Затем цриливают 20 мл соляной кислоты, нагревают до растворения растворимых веществ и переносят в коническую колбу емкостью 500 мл. Объем полученного раствора не должен превышать 100 мл. Затем всыпают 5 г железных стружек и оставляют стоять около 1 ч, чтобы практически вся сурьма была выделена. Фильтруют и тщательно промывают осадок водой. Фильтрат разбавляют до 1600 мл и осаждают сульфат бария, прибавляя 125 мл 6%-ного раствора ВаОа -2НЗО из капельной воронки со скоростью Ъ млъ минуту. Оставляют стоять на ночь, фильтруют через тигель Гуча, умеренно промывают осадок холодной водой, высушивают и прокаливают . [c.320]


    Условия осаждения ионов уранила аммиаком аналогичны условиям для определения бериллия [75]. Комплексон не оказывает влияния на осаждение и количественное выделение диураната аммония. Аммиак не должен содержать карбоната аммония. Поэтому лучше получать раствор аммиака непосредственно в лаборатории пропусканием газа из баллона в дестиллированную прокипяченную воду и предохранять раствор по мере возможности от влияния углекислоты воздуха. Мешающее влияние комплексона, выражающееся в медленном выделении (МН4)2и20,, наблюдалось только при высоком содержании хлорида аммония. Сульфаты и нитраты не мешают. Определение урана можно проводить однократным или двукратным осаждением в присутствии почти всех элементов. Определению мешает присутствие титана и бериллия, затем ниобия, сурьмы и олова. Вольфраматы образуют с ионом уранила нерастворимый вольфрамат уранила иО.,Н4( У04)3-ЗВ. О. Однако небольшие количества вольфрама определению не мешают. Аналогично ведет себя и молибден. При повторном осаждении получаются удовлетворительные результаты. Из анионов мешают фосфат-, арсенит- и арсенат-ионы. При анализе руд и минералов большинство мешающих элементов удаляется в основных операциях хода анализа (олово, сурьма и вольфрам при выпаривании с кислотами, остальные выделяются сероводородом). Определение урана можно проводить в присутствии тория, лантана и остальных редкоземельных металлов. [c.96]

    Попов М. А. Применение метилвиолета при количественном определении сурьмы [в горно-рудных ископаемых]. Зав. лаб., 1948, 14, № 2, с. 178—181. Библ. 7 назв. 5251 Попов М. А. Новый метод анализа вольфргм-содержащих руд (при колориметрическом определении вольфрама). Зав. лаб., 1948, [c.203]

    Определение сурьмы в стибните. Анализ стибнита, обычной сурьмяной руды, служит иллюстрацией применения прямого ио-диметрического метода. Стибнит главным образом состоит из сульфида сурьмы, но содержит двуокись кремния и другие примеси. Если анализируемый материал не содержит железа и мышьяка, определение в нем сурьмы сложностей не представляет. Образец разлагают горячей концентрированной соляной кислотой для удаления сульфида в виде НгЗ. На этой стадии необходимо принять меры для предотвращения потери летучего трихлорида сурьмы. При добавлении хлорида калия увеличивается тенденция к образованию нелетучих хлоридных комплексов, вероятно, состава 5ЬС1 4 [c.400]

    Иодометрический метод опрэделения меди основан на том, что при обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и обладает тем преимуществом, что при работе мало отражается присутствие посторонних веществ это преимущество имеет особенно бояьшое значение при анализе материалов слол<ного состава, например медных руд. Иодометрическому определению меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа (III), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмгл (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные количества ацетата аммония, если из кислот присутствует только уксусная кислота. Определению не мешают цинк, мышьяк (V) и сурьма (V), висмут, свинец и серебро. Три последних элемента вступают, однако, в реакцию с иодидом калия, выделяя осадок, и требуют поэтому прибавления добавочного количества этого реактива. [c.262]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Преимз7пества спектрального анализа заключаются, как известно, п его высокой чувствительности (степень чувствительности зависит в значительной мере от техники эксперимента и качества аппаратуры), позволяющей успешно обнаруживать и полуколичественпо определять 0,001—0,1% висмута одновременно с другими элементами из минимальных навесок в свинце, меди, олове, сурьме, различных сплавах, минералах, рудах, горных породах, биологических материалах. Необычайная простота исследования обеспечивает быстроту определения при серийных анализах металлов. Спектральный анализ требует наличия сравнительно дорогой аппаратуры и специально подготовленных кадров. При помощи спектрального анализа в некоторых полиметаллических рудах был открыт висмут, произведены исследования громадного количества руд ц минералов на содержание висмута и других металлов, изучено распределение висмута в полупродуктах свинцовых заводов и др. [c.12]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Оловянные руды и концентраты часто содержат минералы, в состав, которых входят элементы, которые необходимо отделять перед восстановлением олова и иодометрическим его определением. При выполнении быстрых рядовых анализов мешающее влияние малых количеств меди,, мышьяка, сурьмы, висмута и германия устраняется или в значительной мере преодолевается обработкой растворов олова в соляной кислоте-чистым железом (Ferrum Redu tum). Осажденные железом металлы захватывают небольшие количества олова, которые можно извлечь растворением этих металлов и вторичным осаждением. [c.335]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются йодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связываются в комплексы и с йодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием комплексоном [26], и не осаждается йодидом. Подробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение йодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором йодида калия из микробюретки с делениями по 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда эти элементы присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой) не мешают определению. Не мешает также и таллий, если присутствует в не слишком большом количестве (Ag Т1 = 1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе руд. В свинцовой руде, содержавшей [c.179]

    Больщинство таллийсодержащих руд можно разложить смесью азотной, серной и фтористоводородной кислот. При анализе медных, цинковых и свинцовых руд применяют смесь азотной и соляной кислот в случае высокого содержания свинца большую часть его лучше осадить в виде хлорида [32]. При анализе оловянных руд их сплавляют со смесью едкого натра и перекиси натрия с последующим удалением большей части олова путем упаривания солянокислого раствора, содержащего пергидроль [2]. При определении таллия в рудах с высоким содержанием ртути, сурьмы и мышьяка основную массу их рекомендовано отделять нагреванием раствора с едким натром и сульфидом натрия, переводящим их в растворимые тиосоли [12]. [c.243]

    Определению мешают по механизму (б) галлий, медь (I) и при содержаниях менее 100—150жкг сурьма (III) и олово (II) присутствие двух последних элементов в количествах, превышающих указанные, приводит к уменьшению германия по механизму (в ). Для концентрирования германия рекомендовано экстрагирование HGe lg бензолом из 1Я НС1. Метод применен для анализа руд, горных пород и зол углей (Хмин = 1—2-10 %). [c.131]

    Свинец(П) образует мало растворимый осадок с ферроцианидом калия [3], что особенно удобно в тех случаях, когда наряду со свинцом в пробе присутствует барии (И), так как он не осаждается ферроцианидом. Сурьма (П1) также не образует осадков с ферроцианидом и потому не мешает определению свинца. Вис-мут(П1), железо(П), цинк, кадмий, медь(П) будут титроваться зместе со свинцом, поэтому при анализе полиметаллических руд необходимо прибегать к обычному выделению свинца в виде сульфата. Ферроцианидный метод позволяет определять свинец при разбавлениях до 100 мг/л (т. е. до 2 мг в объеме 20 мл). [c.244]

    Чувствительность рентгенофлуоресцентного метода анализа в большинстве случаев лежит в пределах 0,1—0,01%. Например, приводятся методы определения 0,01% урана и тория в породах и рудах определения в стекле 0,01% железа и кадмия, 0,02% серебра, 0,1% сурьмы и 0,002% мышьяка и селена . Большая чувствительность (1 10 %) достигнута при определении никеля в нефти . После предварительного выделения определяемых микропримесей из анализируемого вещества можно, естественно, определять значительно меньшие их количества. Например, после выделения из кислот железа, хрома и марганца удается определить до 110" % этих примесей .  [c.147]

    При определении малых количеств платины в металлической сурьме, а также в рудах и минералах, платину предварительно выделяют соосаждением с металлической ртут1 действием хлорида олова (II) и затем определяют в виде хлоро-платинита с извлечением этилацетатом. Метод позволяет определять содержание до 0,02 г/г в 10 г пробы и принят в качестве стандартного при анализе сурьмы ГОСТ 1367—42).  [c.388]


Смотреть страницы где упоминается термин Руды, анализ определение сурьмы: [c.181]    [c.20]    [c.491]    [c.56]    [c.158]    [c.185]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ определение

Руда, анализ



© 2025 chem21.info Реклама на сайте