Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осаждение металлов железо

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]


    СООСАЖДЕНИЕ — захват посторонних примесей осадком основного вещества. Например, при осаждении гидроксида железа или алюминия существующие в растворе примеси редких металлов захватываются и выпадают в осадок вместе с гидроксидом железа или алюминия. С. обусловливается адсорбцией, окклюзией, изоморфизмом и другими процессами. С. может вызвать ошибки в количественном химическом анализе и, наоборот, является очень полезным для очистки растворов от посторонних примесей (напр., при подготовке электролитов для проведения электролиза). С. используют для определения примесей. [c.233]

    Применение олова, его сплавов и соединений. Такие свойства металлического олова, как его большая ковкость и пластичность, низкая температура плавления, небольшая твердость, устойчивость к атмосферной коррозии, очень малая токсичность обусловили его широкое применение. Металлическое олово идет главным образом iUi получение белой жести, т. е. луженого железа, устойчивого к коррозии. Из луженой жести изготовляют консервные банки и листы для кровли.зданий. Лудят жесть погружением в расплавленное олово нли гальваническим осаждением металла из щелочных ванн. Из олова производят оловянную фольгу (станиоль), используемую для конденсаторов, а также для упаковки пищевых продуктов и фармацевтических препаратов. [c.191]

    Контактное осаждение металлов (железа, никеля) из растворов их солей с целью создания тончайшего подслоя на алюминии перед гальваническим покрытием. [c.259]

    В процессе электролиза получают чистый металл, в щлам выделяется ряд ценных составляющих анода. Первые исследования по электролитическому осаждению металлов группы железа в нащей стране были проведены под руководством П. П. Федотьева. В результате дальнейших многочисленных работ по электролитическому осаждению этих металлов установлены те оптимальные условия, которые лежат в основе современного процесса их рафинирования. [c.295]

    Из хлоридного электролита осаждаются малорастворимые гидраты, которые в дальнейшем могут быть растворены в кислом анолите электролизеров для экстракции кобальта. Процесс электролиза незначительно отличается от описанных процессов катодного осаждения металлов группы железа.  [c.298]

    Другой метод переведения одного или нескольких компонентов в жидкую фазу, не смешивающуюся с водой, связан с электролитическим осаждением. При электролитическом осаждении на твердых электродах многие металлы (железо, хром и др.) выделяются медленно или неполностью. При осаждении на ртутном катоде, сопровождающемся растворением металлов в ртути, т. е. образованием амальгам, выделение большинства ме- [c.30]


    Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]

    При электрол итическом осаждении металлов пр.уппы железа, проводимом в присутствии муравьиной, лимонной, щавелевой или других органических кислот, содержание углерода в осадке может подняться до 0Л /о. Включение углерода может быть вызвано либо адсорбцией соединений, либо восстановлением их до углерода, либо захватом раствора. [c.80]

    Электролиз — процесс, обратный процессу в гальваническом элементе с металлическим электродом. Минимальное напряжение для электролиза раствора соли определяется по таблице электродных потенциалов. Для осуществления процесса электролиза на электроды следует подать напряжение, несколько большее, чем э. д. с. гальванического элемента. При разряде катионов на катоде в первую очередь будут разряжаться те ионы, у которых. .. (наименьшее, наибольшее) положительное и. .. отрицательное значение потенциала. В растворе находятся катионы (С=1 г-ион/л) натрия, калия, алюминия, золота, серебра, меди, железа, кадмия. На электролизер подано напряжение 3 в. Какова теоретически последовательность осаждения металлов (См. табл. 3.4) [c.126]

    Большинство металлов хорошо растворяется в ртути с образованием амальгам или коллоидных растворов. В связи с этим электролитическое выделение металлов значительно облегчается. Многие металлы (железо, хром, молибден и др.), которые на твердом катоде не выделяются вовсе или их электролитическое осаждение сильно затруднено, на ртутном катоде легко и количественно выделяются иг раствора. [c.233]

    Перенапряжение кислорода прн электролизе воды может быть снижено путем нанесения на катод никелевого покрытия из электролитов, в состав которых входят роданиды, нитриты и некоторые другие добавки. Однако стабильные результаты удается получить лишь в лабораторных условиях. В промышленном процессе подвергаемые электролизу растворы содержат ионы некоторых металлов, например ионы железа, попадающие из аппаратуры и трубопроводов. При осаждении металлического железа в результате разряда этих ионов происходит образование на катоде металлической губки и потеря активности. [c.30]

    Процесс электролиза. Первые исследования по электролитическому осаждению металлов группы железа в нашей стране были проведены под руководством П. П. Федотьева. В результате дальнейших многочисленных работ в этом направлении установлены те оптимальные условия, которые и положены в основу современного процесса рафинирования. Работы по рафинированию штейнов в СССР были проведены в конце 40-х [c.408]

    Очистка сорбитного раствора от тяжелых металлов . Метод осаждения. Получаемый раствор D-сорбита содержит примеси солей тяжелых металлов (железа, меди, никеля) и алюминия. Эти примеси оказывают отрицательное влияние на последующий процесс окисления сорбита в сорбозу. Проведенные анализы показали, что в исследованном сорбитном растворе (из автоклава) содержалось (в%) железа 0,041, алюминия 0,0163, никеля [c.250]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    Для изделий, полученных методом гальванопластики, важной характеристикой является содержание и распределение водорода по толщине осадка. Степень наводороживания определяется условиями электролиза, значениями pH, г , 4. природой добавок, природой металла. По степени наводороживания при электрическом осаждении металлы группы железа располагаются в такой последовательности Fe Со Ni. В работе [36] предполагается взаимосвязь напряжений и количества водорода в осадках. [c.119]


    При замене возвратно-поступательного движения катода его вращением с частотой 8,3 с содержание железа в сплаве возрастает от 20 до 48 %. Дальнейшее увеличение частоты вращения катода до 33,3 с" увеличивает содержание железа в сплаве на 3—4 %. В работах [25, 77] использовали частоту вращения 16,6 и 2,2 с . Потенциалы осаждения металлов и сплавов в оптимальных условиях и при подходящих плотностях тока составляли для никеля — 0,56 В, для железа — 0,68 В, для сплава — 0,62 В [77]. При увеличении концентрации ионов никеля поляризационные кривые сдвигаются в область более положительных значений потенциалов, а при увеличении pH и концентрации сахарина — в область более отрицательных значений потенциалов. [c.183]

    Исследована зависимость состава сплава, ВТ , ВТ,, содержания солей кобальта и железа в электролите от i . Для этого использован электролит следующего состава (г/л) кобальт сульфаминовокислый 29,5 (металл) железо сульфаминовокислое 27,9 (металл) натрия ацетат 16,2 ион железа (III) 0,6 сульфат-ион 2,2. При осаждении pH == 3,5 х = 0,174 См/м 4 = 25 °С анод — сплав Со—Fe (72 % Fe) объем электролита 500 мл = 0,5. [c.187]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Метод позволяет определять кобальт в присутствии щелочноземельных металлов. Железо и алюминий мешают, однако эти ионы можно удержать в растворе и элиминировать их мешающее действие связыванием в салицилатные или тартратные комплексы. Катионы меди, кадмия, никеля, марганца и цинка образуют аналогичные осадки и нх необходимо удалить перед осаждением кобальта. [c.96]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    С увеличением концентрации соли железа (Сме) в растворе перенапряжение осаждения металла уменьшается, а водорода— увеличивается (табл. И). [c.59]

    Образовавшиеся частицы оксида магния осаждаются на поверхности мелких капель металла и увлекают их в шлам. Попадание оксида магния на катод вызывает его пассивацию. На количестве осаждаемого металла сказывается состояние стальной поверхности катода. Чистая поверхность катода хорошо смачивается магнием и на ней образуются крупные капли осажденного металла. Образование пассивирующей пленки на катоде, состоящей в основном из оксида магния и дисперсного железа, способствует образованию мелких корольков металла. Покрытые оксидом магния корольки уносятся в анодную зону, где постепенно окисляются хлором. Добавки фторидов кальция и натрия благоприятствуют образованию более крупных капель магния за счет десорбции оксида магния с мелких частиц металла. Пассивную пленку очищают механически или посредством выделения щелочного металла на катоде при электролизе обедненного электролита. После очистки катода и добавки свежей порции хорошо обезвоженного электролита выделяющийся магний вновь смачивает поверхность катода. [c.146]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    В некоторых случаях комплексообразование улучшает разделение. Так, для осаждения гидроокисей железа, алюминия, хрома и т. д. широко используется аммиак, поскольку возможность соосаждения двухвалентных ионов металлов, таких, как медь, никель, кобальт, цинк и т. д., сведена к минимуму благодаря способности последних образовывать аммиачные комплексы. [c.303]

    В электролитическом никеле обычно содержится от 200 до 300 см водорода на 100 г металла. При нагревании твердый раствор водорода в электролитическом никеле распадается с выделением молекулярного Нг. Зависимость скорости распада твердого раствора от температуры подобна кривой потери водорода электролитическим железом (см. рис. 20). Максимальная скорость выделения водорода отвечает температуре 1100—1200° Твердый раствор водорода в никеле, полученный путем насыще ния никеля (отожженного предварительно в вакууме), электро литически выделяемым водородом, менее стабилен и распадает ся при 700—800°. В процессе осаждения электролитического ни келя водород в нем распределяется неравномерно по толщине это вызывает появление в осажденном металле внутренних на тяжений, деформирующих катод. [c.293]

    Водородные ионы спиртовых групп винной кислоты очень прочно связаны. Прибавляя щелочь, облегчают отрыв этих водородных ионов от аниона винной кислоты и таким образом облегчают образование виннокислых комплексов металлов. Поэтому комплексные соединения многих металлов с винной кислотой обычно образуются и становятся более прочными именно в щелочной среде. Таким образом, при введении гидроокиси аммония или щелочи в раствор, содержащий ионы железа и соль винной кислоты, не происходит осаждения гидроокиси железа, а образуется прочный виннокислый комплекс железа. Никель образует с винной кислотой непрочный комплекс, и поэтому присутствие виннокислых солей не мешает осаждению диметиглиоксимата никеля. [c.107]

    Старые способы рафинирования заключались в растворении золота в царской водке и его осаждении сульфатом железа (Рб504). Применялся также метод продувки хлора через расплавленное золото (способ Миллера, 1867 г., США). Первый способ дорог в эксплуатации. Применение обоих способов связано с заметными потерями драгоценных металлов. [c.245]

    Потенциал осаждения металла из комплекса отличается от потенциала выделения металла из простых солей. Координация аддендов ионами металлов-камплексообразователей приводит к изменению величины потенциала выделения металла. Причем потенциал выделения из однотипных комплексов для разных металлов сдвигается в различной степени в за висимости от прочности образующихся комплексов. Поэтому становится возможным электролитическое разделение этих металлов электролизом растворов их координационных соединений, С другой стороны потенциалы осаждения металлов в результате образования комплексов могут быть сближены. Электролиз растворов таких ком1плексов приводит к выделению сплавов. Например, в присутствии избытка цианид-иона удается электролитически отделить железо от цинка, тогда как при электролизе циаяидсодер-жащих растворов меди и цинка выделяется латунь. [c.15]

    Способы получения. Получение чистого кобальта довольно затруднительно. Для выделения чистого металлического кобальта обычно используются его мышьяковистые руды, которые обжигом при доступе воздуха сначала переводят в смесь оксидов и арсенатов. Полученную смесь растворяют в соляной кислоте, затем осаждают сероводородом сульфиды меди, висмута и других металлов, а остаток окисляют хлором. К окисленному остатку прибавляют карбонат кальция, который вызывает осаждение гидроксида железа и арсената кальция. Выпавший осадок отфильтровывают. К фильтрату прибавляют точно необходимое количество хлорной извести для образования осадка черного оксида С02О3 (НзО) . Большая часть никеля при этом остается в растворе. Во время процесса следят за тем, чтобы не было добавлено избытка хлорной извести. Полученный оксид кобальта (П1) восстанавливают водородом и растворяют в кислотах. Электролизом полученных при этом солей кобальта выделяют химически чистый металл. Особенно чистый кобальт получают электролизом раствора сульфата кобальта, к которому прибавляют сульфат аммония и аммиак. [c.370]

    Имеются два вида поляризационных явлений при осаждении металлов на катоде. Восстановление ионов железа, никеля и кадмия при-электролизе растворов их простых солей, а также процессы электроосаждения различных металлов из растворов комплексных солей протекают при наличии поляризации перехода, связанной с замедлен ностыо самого электрохимического процесса. Электроосаждение остальных металлов совершается в условиях перенапряжения диффузии. [c.170]

    Третья возможность связана с процессом контактного обмена между корродирующим металлом, например железом, и ионами более электроположительного металла, например серебра, и осаждением этого металла на поверхности основного металла. Опыт показывает [29], что при достаточно высокой концентрации ионов серебра железо за короткий промежуток времени контактирования его с раствором приобретает потенциал, незначительно отличающийся от обратимого потенциала серебряного электрода в данном растворе. Для перевода железа в состояние пассивности достаточно появления на его поверхности ничтожных следов металлического серебра. Здесь так же, как и в первом случае, металлические ионы представляют собой проингибиторы, а роль ингибитора играет контактно выделившийся металл, однако защита достигается благодаря навязыванию этим металлам положительного потенциала, лежащего в области пассивности корродирующего металла. Поддержание такого потенциала, т. е. сохранение пассивного состояния, обеспечивается током обмена осажденного металла значительно большим, чем ток обмена основного металла. [c.84]

    С этим барьером мы постоянно сталкиваемся и в повседневной жизни. На дне ванн и раковин умывальников мы замечаем постепенно появляющуюся ржавчину . Обычно она представляет собой смесь гетита и гидрогетита (лимонита), в составе которой около 90% приходится на долю оксида трехвалентного железа. Образование этих минералов в рассматриваемом случае также связано с осаждением металла на кислородном барьере. Только транспортировка растворимого двухвалентного железа идет техногенным путем по трубам. Из водного раствора в условиях присутствия свободного кислорода, т.е. на геохимическом барьере, железо переходит в минеральную форму и осаждается. Происходит это, когда вода вытекает из крана. Мощная струя воды смывает значительную часть осаждающихся минералов. Поэтому, если струя не столь мощна (просто протекает кран), осажденного железа остается больще. [c.9]

    Отделение урана осаждением перекисью водорода применяется главным образом для выделения основной его массы из растворов при определении следов других металлов (титан, никель), так как образующиеся осадки перураната уранила обладают очень небольшой способностью адсорбировать из раствора другие элементы. Только калий, щелочноземельные металлы, железо и ванадий адсорбируются осадком в заметных количествах. Сульфаты и фториды несколько снижают полноту осаждения урана. Железо и медь затрудняют осаждение вследствие каталитического разложения перекиси водорода [741]. Для устранения мешающего влияния железа и меди рекомендуется прибавление малоновой или молочной кислот, образующих с ними достаточно прочные комплексы [8], [c.266]

    Следует с самого начала подчеркнуть, что независимо от материала подложки, на которой осаждается мономерный кремнезем, после того как завершена адсорбция мономолекулярного слоя кремнезема, дальнейшее отложение всегда происходит на уже сформировавшейся кремнеземной поверхности. Следовательно, очевидно, что с самого начала подложка должна быть восприимчива к осаждению мономерного кремнезема при значениях pH 8—10, когда процесс осаждения становится возможным. Ясно, что гидрофобные поверхности не восприимчивы к осаждению мономерного кремнезема и их следует превратить в гидрофильные за счет адсорбции поверхностно-активного вещества катионного типа или соответствующего полимера или каким-либо иным способом. Отрицательно заряженные поверхности (например, ионообменных пленок анионного типа, карбо-ксиметилцеллюлозы или полимеров, имеющих окисленную — карбоксилированную — поверхность) не восприимчивы к осаждению. Однако с помощью хорошо известных методов, применяемых для подготовки поверхностей к осаждению металлов, например обработкой раствором дихлорида олова, могут быть приготовлены поверхности, восприимчивые к осаждению кремнезема. Можно также применить обработку протравами — многоосновными солями металлов, например железа или алюминия, которые, как известно, изменяют заряд отрицательно заряженных поверхностей на противоположный (положительный). [c.120]

    УРУШИБАРЫ ГИДРИРОВАНИЯ КАТАЛИЗАТОРЫ. Обзоры [1—3]. Эти катализаторы были разработаны главным образом Урушибарой. Их получают осаждением металла-катализатора (никеля, кобальта или железа) из водного раствора его соли (обычно хлорида) цинковой пылью или гранулированным алюминием, Осажденный металл затем обрабатывают щелочью илн кислотой (обычно гидроокисью натрия или уксусной кислотой), у, г. к, сравнимы с катализаторами Ренея, Их можно использовать для гидрирования алкинов и алкеиов до алканов, карбонильных соединений до спиртов, ароматических нитросоедииений до аминов, а также в качестве катализаторов дегидрогенизации. Так, например, стигмастерии дегидрируется до соответствующего Д -З-кетона, причем акцептором водорода служит циклогексанон. Кроме того. У, г. х. применялись для осуществления восстановительной десульфуризации. [c.586]

    Выделение стронция-9 0. В 10 л пробы вносят по 50 мг/л (в пересчете на металл) нитратных растворов носителей стронция, бария, лантана и церия и добавляют раствор хлорида кальция 20 мг/л (по кальцию). Перемешивают, нагревают до 80° С, прибавляют 10%-ный раствор карбоната натрия из расчета 580 мг/л для осаждения карбоната кальция. Воду с осадком отстаивают 2—3 ч, сливают, осадок растворяют в нескольких миллилитрах концентрированной азотной кислоты и разбавляют дистиллированной водой до объема 50—100 мл. Раствор переносят в стакан вместимостью 200—300 мл, добавляют 10 мл 0,5%-ного раствора хлорида железа (П1), нагревают до кипения и осаждают гидроксид железа (П1) аммиаком, не содержащим СО2. Осадок отделяют, промывают 2—3 раза слабым раствором аммиака и отбрасывают. Раствор и промывные воды нейтрализуют 6 н. раствором азотной кислоты, прибавляют 1 мл 6 н. раствора уксусной кислоты, 2 мл 6 н, раствора ацетата аммония, нагревают до 70—80° С и добавляют 1—2 мл 1,5 и. раствора хромата натрия. После осаждения хромата бария осадок отделяют, промывают разбавленным раствором ацетата аммония и отбрасывают. К оставшемуся раствору прибавляют хлорид железа (П1) и повторяют осаждение гидроксида железа. После этого добавляют аммиак до пожелтения раствора и насыщенный раствор карбоната аммония до полноты осаждения карбоната стронция. Выпавший осадок отстаивают 2—3 ч, проверяют полноту осаждения, центрифугируют, промывают водой, растворяют в концентрированной азотной кислоте и разбавляют дистиллированной водой до объема 50 мл. Затем замеряют объем азотнокислого раствора н отбирают 1 мл для определения химического выхода носителя стронция. После этого вносят 50 мг в пересчете на металл раствора носителя иттрия и оставляют на 6 дней для 75%-ного накопления иттрия-90. Затем осаждают свободным от углекислоты аммиаком гидроксид иттрия и отмечают время отделения иттрия-90 от стронция-90. Осадок гидроксида иттрия 2—3 раза промывают слабым раствором аммиака, подсушивают на фильтре и во взвешенном тигле прокаливают при 900° С. Осадок взвешивают, наносят на мишень и на малофоновой установке измеряют радиоактивность. [c.371]

    Переходящий в кристаллическую решетку металла водород занимает в ней узлы или располагается между ними и образует твердый раствор. При злектроосаждении металлов образование твердых растворов возможно также в результате непосредственного внедрения протонов в кристаллическую решетку. Ю. В. Баймакови М. И. Замоторин [42] убедительно показали это при исследовании растворения в электроосажденном и металлургическом железе водорода, выделяемого электролитическим путем. Одна ко в последнем случае этот твердый раствор, как отмечают указанные авторы, менее устойчив, чем твердый раствор, образующийся в электролитически осажденном металле (в данном случае железо), вследствие того, что протоны внедряются в уже готовую решетку железа. Большое влияние на процесс перехода водорода в металл оказывают концентрация ионов водорода в растворе и толщина двойного приэлектродного слоя. [c.82]


Библиография для Осаждение металлов железо: [c.174]   
Смотреть страницы где упоминается термин Осаждение металлов железо: [c.121]    [c.468]    [c.110]    [c.139]    [c.183]    [c.269]    [c.28]    [c.586]    [c.217]   
Современные аспекты электрохимии (1967) -- [ c.297 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы железо



© 2025 chem21.info Реклама на сайте