Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень растворителя

    Реакции нейтрализации были исследованы разными методами, нанример кондуктометрическим и потенциометрическим [49, 50]. Однако трудно определить, в какой степени растворитель действительно принимает участие в реакциях и в какой степени он действует лишь как разбавитель. [c.92]

    Жирные кислоты, пригодные для производства синтетических пищевых жиров, должны подвергаться особой очистке. В настоящее время длительными опытами точно установлено, что присутствующие в этих жирах кислоты с нечетным числом атомов углерода усваиваются человеческим организмом так же, как кислоты с четным числом поэтому нет никаких оснований удалять жирные кислоты с нечетным числом углеродных атомов из смеси синтетических жирных кислот. С технической точки зрения нет смысла осуществлять такое разделение кислот, поскольку оба типа кислот присутствуют почти в одинаковых количествах. Напротив, кислоты изостроения должны быть удалены, насколько это возможно, так как они являются причиной появления в моче кислых соединений, растворимых в эфире. Установлено также, что крысы, которых кормили жирами, синтезированными из жирных кислот, полученных на основе синтетического парафинового гача, испытывали задержку в росте. Известно, что эти кислоты имеют довольно разветвленное строение. Жирные кислоты изостроения можно в достаточной степени отделить экстракцией растворителями, например метанолом, метилэтилкетоном, ацетоном, бензином и низкомолекулярными карбоновыми кислотами, в которых они легче растворимы, чем кислоты с прямой цепью [101]. [c.474]


    Нефтяные и газойлевые фракции окисляют в США в газовой фазе по методу Джемса [111]. Процесс проводят при 350—400°, пропуская пары углеводорода и воздух над катализаторами — окисями молибдена или урана. Степень превращения достигает 40%, и окисленные продукты состоят из альдегидов (30—40%), спиртов (40—45%,) и свободных кислот (5%). Таким способом получают растворители для лаков, а после дополнительного сульфирования — эмульгаторы и т. п. [c.477]

    Степень экстракции зависит от выбора растворителя для экстрагируемого вещества и от его состояния в водной фазе. Некоторые вещества можно полностью извлечь из водной фазы однократным экстрагированием. Если же вещество экстрагируется не полностью, то прибегают к двукратной экстракции. Для этого экстракт после первого экстрагирования отделяют с помощью делительной воронки, а водную фазу обрабатывают новой порцией органического растворителя при необходимости процесс повторяют (многократная экстракция). [c.129]

    Спектрофотометрическому анализу обычно подвергают растворы различных окрашенных веществ. Поглощение излучений связано с изменением энергии электронов, на которые в значительной степени влияет среда (соседние молекулы данного вещества, а также растворителя), поэтому большинство веществ в растворах имеют в спектрах широкие полосы поглощения. [c.460]

    Перхлорэтилен применяется для сухой химической чистки. Для этих целей в США и Англии потребляется 75% перхлорэтилена, причем он все в большей степени заменяет трихлорэтилен, который используется только для обезжиривания металла. Перхлорэтилен служит для очистки алюминия, а также для самых разнообразных целей в качестве растворителя и экстрагирующего агента. Кроме того, его применяют в медицине как эффективное средство против глистов. Перхлорэтилен является исходным материалом для получения гексахлорэтана. [c.207]

    Для проведения полимеризации (рис. 69) чистый пропилен, суспензию катализатора и разбавитель подают в реактор. Смесь при перемешивании нагревается до 50—100 °С, при этом давление поднимается максимум до 5 кгс/см . Добавляемое количество катализатора (0,25—0,50 вес. % от взятого растворителя) зависит в известной мере от степени чистоты мономера и растворителя. К катализатору добавляется примерно равное количество активатора. [c.299]

    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]


    По растворяющей способности фенол значительно превосходит фурфурол, поэтому очистка масел фенолом производится при меньшем расходе растворителя и при более низких температурах. При очистке масел фенолом достаточно полно извлекаются полициклические углеводороды с короткими боковыми цепями. В. значительно меньшей степени извлекаются фенолом смолистые соединения. Практически совсем не раст воримы в феноле асфаль — [c.238]

    Отношение отрезка НЕ к отрезку НЕ характеризует величину коэффициента активности 71 и позволяет оценить степень отклонения раствора от идеальности на различных участках концентраций. Так, при больших концентрациях НКК, когда растворитель следует закону Рауля, его коэффициент активности становится равным единице. На участке же малых концентраций НКК, где выдерживается закон Генри, фугитивность равна К х, а коэффициент активности оказывается постоянным и равным [c.43]

    Для аналитического определения парциальных давлений обоих компонентов системы используются законы Рауля и Генри, причем в каждом случае первый из этих законов используется для определения парциальной упругости паров растворителя, за который условно принимается преобладающий в растворе компонент, а второй закон—для определения парциальной упругости паров растворенного вещества, за которое, также условно, принимается компонент, представленный в системе в незначительной степени. [c.156]

    В теории переходного состояния к, — частота колебания или даже средняя частота колебания (см. разд. ХП.5), и с хорошей степенью приближения можно ожидать, что взаимодействие с растворителем не сильно влияет на ее величину, так что к,. 8) kr g). Различие в скоростях реакции, таким образом, сводится к различию термодинамических констант равновесия для двух фаз [c.432]

    При рассмотрении силы растворителя именно отношение U r)/kT указывает степень, в которой диэлектрическая среда влияет на взаимодействие ионов. [c.444]

    В этом случае пара [А-В]с, заключенная внутри клетки растворителя, находится в термодинамическом равновесии с молекулой А — В и наиболее медленной стадией становится диффузия (стадия 3). В такой системе лимитирующей стадией является диффузия, несмотря на то что химическая реакция 1 идет гораздо более медленно. Скорость реакции будет зависеть от относительной константы скорости диффузии i) в в данном растворителе, и общая скорость реакции должна быть меньше, чем скорость реакции в газовой фазе. (Это сравнение в значительной степени академично,так как априори невоз- [c.465]

    В то время как во всех предыдущих случаях довольно ясно, что реакция окисления — восстановления происходит путем переноса атома или иона между частицами, имеются случаи, в которых реакция протекает очень быстро без каких-либо изменений в оболочках растворителя вокруг восстановленных или окисленных частиц. Так, Ре(СМ)5 и Ре(СК),[ быстро обменивают меченый Ре, хотя никакого обмена N в заметной степени не происходит [105]. То же самое происходит при обмене между MnO II МпО " [106, 107] и между Оз (Ь1р)з" и Оз (Ь1р)з", где Ь1р — дипиридил [108]. Хотя и были попытки рассматривать некоторые из этих реакций как [c.506]

    В этом заключается сущность очистки масел и других иефтя-ных продуктов методом избирательного растворения. Необходимо, однако, учитывать, что на практике таких идеальных, в полной мере селективных, растворителей по существует. Кроме того, в некоторой степени растворитель всегда сам растворяется в очищаемом продукте. Поэтому строго количественное разделение компонентов в рассматриваемой двухфазной системе практически не достигается. [c.387]

    Гидролиз хлоридов металлов является одним из методов получения металлических порошков. В частности, он применяется для получения железного порошка из стальной стружки При гидролизе хлористого бора образуется борная кислота Хлориды являются в некоторой степени растворителями металлов (РЬ в расплавленном РЬСЬ, Сё в СёСЬ и др.) Представляет интерес хлорирование различных сульфатов с получением хлоридов и сернистого газа в частности с осуществлением процесса в среде расплавленных хлоридов . При хлорировании апатита в расплаве СаС1г при 850—900° образуется РС з и товарный хлорид кальция Заслуживает внимания хлорирование сульфидных руд хлором в жидкой хлористой сере, вследствие низкой температуры процесса (130—150°), высокой скорости его и отсутствия взаимодействия с пустой породой. Процесс исследован применительно к извлечению меди, свинца и цинка из бедных и богатых руд >8. [c.1480]

    Отношение к /к было найдено равным 0,25 при 110°. Этот механизм может объяснить ряд явлений, таких, как эффект растворителя и добавляемых анионов на скорости и кинетический порядок реакции. Так, протон и ион металла будут стабилизироваться в разной степени растворителем или. анионами. Конкуренция этих стабилизированных форм за СиН+ определяет наблюдаемые явления. Эффекты различных колшлексующих агентов в водном растворе представлены в табл. 7.18. [c.528]


    Гидролиз хлоридов металлов является одним из методов получения металлических порошков. В частности, он применяется для получения железного порошка из стальной стружки . При гидролизе хлористого бора образуется борная кислота Хлориды являются в некоторой степени растворителями металлов (РЬ в расплавленном РЬСЬ, Сс1 в СсЮЬ и др.) Представляет интерес хлорирование различных сульфатов с получением хлоридов и сернистого газа 2. [c.961]

    Средством, способным существенно улучшить качество углеводородов нефти в йтношении ее способности к сульфохлорированию и в некоторой степени выравнять резкое различие в поведении углеводородного сырья, полученного из отдельных нефтей, является очистка углеводородов перед гидрированием селективными растворителями (нанример, по Эделеану). [c.397]

    Под степенью экстракции понимают отношение количества вещества А во всех его формах, извлеченное органическим растворителем, к общему количеству вещества А, которое подверглось экстракци . [c.129]

    В кислотно-основных реакциях растворитель, например вода, может проявлять кислотные и основные свойства, т. ё. отщеплять или присоединять протон точно так же вода в окислительно-восстановительных реакциях может терять электрон (быть восстановителем) или присоединять его (быть окислителем). Подобным же свойством обладают и такие ионы, которые могут существовать в нескольких степенях, окисления. Так, известны соединения ванадия в степенях окисления два — три—четыре — пять—В Э1ИХ соединениях V и находящиеся в промежуточных степенях окисления, способны как терять электроны (быть восстановителями), превращаясь в ионы с более высокой [c.343]

    Установка состоит из нескольких параллельно работающих аг-[ егатов. Производительность одного агрегата составляет 57 ООО м ч степень очистки растворителя 92—94%, циклического олигоме])а — —97%, а линейного олигомера — 99%- [c.212]

    Степень электролитической диссоциации вещества, растворенного в данном растворителе, зависит (при постоянных температуре и давлении) от природы этого вещества и от его концентрации. Если вещество прн растворении не диссоциирует ( = 0, а = Л/, а = 0), оно не является электролитом. Если а близка к единице, то и соединение является сильным электролитом. Для многих химических соединетшй 0<ы<С1, а следовательно, п< М они относятся к слабым электролитам. [c.35]

    При переходе от воды к другим растворителям изменяются электропроводность, подвижность ионов и, в меньшей степени, число переноса. Основными свойствами растворителя, обусловливающими характер изменения электропроводности, являются его вязкость н диэлектрическая проницаемость. Повышение вязкости снижает элсктропронодиость. Количественное выражение этого эффекта было сформулировано Вальденом и Писаржевским в виде правила Вальдсиа — Писаржевского [c.111]

    Совпадение уравнений (11.65) и (11.73), полученных с использованием различных исходных величин, вряд ли может рассматриваться как случайность. Из табл, 11.5 следует, что расхождение между расчетными и опытными значениями нулевых точек лежит в пределах ошибок экспериментального определения S и ы Независимость разностей нулег.ых точек от природы растворителя наблюдается для водных растворов и расплавов солей, в то же время этот вывод не находит полного подтверждения при сопротивлении ряда водных и неводных (органических сред). Точно так же некоторые металлы, папример галлий, резко выпадают из общей закономерности. Такой резул],тат представляется естественным, поскольку расчетные уравнения были выведены на основе упрощающих допущений и отвечают, в лучшем случае, лищь первому приближению теории нулевых точек, не учитывающему многие усложняющие факторы. Одним из наиболее важных факторов является различная адсорбируемость воды (или другого растворителя) на разных металлах, т. е. различная гидрофильность металлов. Это приводит к тому, что в нулевой точке на поверхности разных металлов образуются в неодинаковой степени ориентированные слои молекул воды, создающие добавочный скачок потенциала и смещающие положение нулевой точки. Помимо эффекта такой ориентированной адсорбции воды, подробно рассмотренного Фрумкиным и Дамаскииым, следует, по-вндимому, считаться и с более глу- [c.258]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа молей ионизированного вещества к оби ему числу молей растворенного. Степешз ионизации в основном определяется электронно-донорными и электронно-акцепторными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи Н2О. .. H I в донорно-акцепторную [Н гО—Н]+  [c.128]

    Без изменения степени (состояния) окисления элементов обычно протекает гий/юлид. В общем случае под гидролизом понимают реакции обменного разложения между водой и соответствующим соединением. идролиз является частным случаем сольволиза — обменного разло- кения растворенного вещества и растворителя. Механизм гидролиза для разных типов соединений весьма различен. Так, гидролиз соединеиий, распадающихся в растворе на ионы, можно рассматривать как [c.208]

    Смолы образуют истинные растворы в маслах и топливных дне гиллятах, а асфальтены в ТНО находятся в коллоидном состоя — НИИ. Растворителем для асфальтенов в нефтях являются ароматические углеводороды и смолы. Благодаря межмолекулярным взаи — мо/ ействиям асфальтены могут образовывать ассоциаты — надмо — лек/лярные структуры. На степень их ассоциации сильно влияет среда. Так, при низких концентрациях в бензоле и нафталине (менее [c.77]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]

    По степени влияE ия химической структуры основной цепи молекул на избирательную способность растворителей с одинаковой функциональной группой установлена следующая последова — тедь 1ость тиофеновое кольцо > бензольное кольцо > фурановое кольцо > алифатическая цепь. [c.224]

    Различие в температурных условиях экстракции предопределяется плотностью применяемости растворителя. При фенольной очистке из-за низкой разности плотностей растворителя и исходного сырья градиент экстракции снижают до минимума, так как при смешении вторичных потоков с близкими удельными массами сепарация фаз происходит гораздо медленнее и даже при сравнительно невысоких скоростях в экстракционных колоннах приходится принимать конкретные меры к снижению степени внутренней циркуляции промежуточных масляных фракций. ПовышеЕтие градиента экстракции приводит к заметному повышению относительных скоростей контактирующихся фаз, в результате на отдельных участках по высоте экстракционной колонны не достигает фазовое равновесие. Крометого, эмульгируемость системы фенол —углеводороды еще более ухудшает фазовое равновесие в потоках. Более высокая плотность фурфурола позволяет вести процесс очистки с высоким градиентом экстракции. [c.242]

    Предварительно нагретое сырье встречается в секции питания колонны с потоком перегретого водяного пара, идущего с низа колонны, и подвергается здесь однократному выкипанию. При этом основная масса С<. легкого растворителя выделяется из сырья. Согласно правилу фаз, двухфазная трехкомнонентная равновесная система на верху колонны обладает тремя степенями свободы, в качестве которых обычно фиксируются общее давление паров системы р, ее температура и относительное содержание /О перегретого водяного пара в паровой фазе. [c.241]

    Диспропорционирование смесей Се—Сю и С20, полученных при высокотемпературной олигомеризации этилена, позволяет повысить выход детергентных фракций олефинов С12—Сц. Вначале осуществляют изомеризацию двойной связи при 30— 50 °С, объемной скорости до 2 ч над калием и натрием, нанесенными на активный оксид алюминия, а затем проводят дис-иропорционирование над алюмомолибденовым катализатором (12% МоОз) прн 150°С, давлении 0,5—0,7 МПа, в растворителе— гексане. Степень превращения олефинов 60—70%, селективность 65—90%. [c.161]

    Выделение ароматических углеводородов включает собст-веппо экстракцию ароматических углеводородов из стабильного катализата риформинга растворителем, регенерацию растворителя, ректификацию экстракта с целью получения товарных продуктов высокой степени чистоты. [c.168]

    В концентрированной НМОд в качестве растворителя [93] при (HNOз) > > (АгН) скорость зависит только от первой степени концентрации АгН. В менее кислых растворителях, таких, как нитрометан и уксусная кислота, при постоянном избытке НМОд над АгН скорость реакции для очень реакционноспособных ароматических соединений [93] становится нулевого порядка по АгН. Это выполняется в случае бензола, толуола, ксилолов, п-хлорани-зола и алкилбензолов, все эти соединения нитруются с одинаковой скоростью. Предложенный механизм предполагает, что медленной стадией является разрыв связи в азотной кислоте [c.503]

    Подобные результаты были получены на таких полимерах, как акрилаты [153], которые относительно плохо растворимы в мономере. При очень низкой степени превращения (нанример, 2% для бутилакрилата) полимер может начать осаждаться из раствора в виде коллоидных гелей. Можно ожидать, что строение образующегося в этом случае полимера будет сильно-препятствовать диффузии больших радикалов. Эти полимеры имеют не простую прямую цепочку полимерные цепи связаны между собой в нескольких точках. Диены, например изопрен и бутадиен, наиболее склонны к образованию таких перекрестных связей, так как образующийся полимер содержит двойные связи. Сравнительно недавно Бенсон и Норс [154] показали, что, используя смешанные растворители и меняя таким образом вязкость в значительном интервале, можно наблюдать соответствующее изменение величины А)(, в то же время кр не изменяется. Нозаки [155] показал, что если достаточно долгое время подвергать фотолизу водную эмульсию винилового мономера для образования стабильных частиц, то этп последние будут содержать долгоживущие радикалы полимера, которые могут продолжать реагировать с мономером в течение 24 час и более . Гелеобразные частицы этилендиметилакрилата дают спектры парамагнитного резонанса, показывающие, что концентрация частиц с неспаренными спинами [157] достигает 10 — Эти образцы полностью стабильны в отсутствие Ог. [c.520]

    Все эти предварительные замечания в равной степени относятся к исследованию влияния высокого давления на константы скорости реакций ферментов [114] и белков] [115]. Величины и АУм, которые могут быть получены из зависимости констант скорости от давления, нельзя интерпретировать только с точки зрения изменения объема фермента или белка без тщательной оценки других параметров системы и их изменения с давлением. Ионизация различных групп, например, обычно сопровождается уменьшением парциального молярного объема за счет электрострикции растворителя. Влияние давления на ионизацию может в значительной степени. чатруднить изучение других процессов, связанных с влиянием давления на константу скорости. [c.565]

    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    Располагая данными по групповому составу различных остатков нефтей, относяшихся к различным типам, можно также оценить ожидаемую эффективность выделения асфальтенов в процессе деасфальтизации низкомолекулярными алканами. Например, установлено, что в зависимости от типа нефти для деасфальтизации их остатков требуется различное отношение растворитель сырье [29]. При прочих равных условиях степень удаления асфальтенов тем выше, чем ниже отношение суммы аренов и смол к асфальтенам (рис. 1.9). Это свидетельствуете о разнице в строении структурных единиц остатков, выделенных из нефтей различных типов, и подтверждает вьццеуказанные данные о том, что чем выше [c.34]


Смотреть страницы где упоминается термин Степень растворителя: [c.731]    [c.270]    [c.390]    [c.216]    [c.354]    [c.390]    [c.415]    [c.178]    [c.53]    [c.215]   
Инженерные методы расчета процессов получения и переработки эластомеров (1982) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость направления и степени диссоциации от характера химических связей, строения молекул и растворителя

Зависимость степени электролитической диссоциации от природы растворителя, температуры и посторонних электролитов

Определение молекулярного веса, степени диссоциации и осмотического коэфициента растворенного вещества по понижению температуры замерзания растворителя

Полидисперсный полимер-гомолог в одном растворителе с учетом членов, содержащих концентрацию в третьей и более высоких степенях

Растворители степень ионизации

Роль растворителя. Зависимость направления и степени диссоциации от характера химических связей и строения молекул. Энергия гидратации ионов



© 2025 chem21.info Реклама на сайте