Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция зависимость от растворимости

    Исследуя адсорбцию на жидких поверхностях, измеряют поверхностное давление —а в зависимости от площади со, приходящейся на молекулу (нерастворимые монослои), или поверхностное натяжение в зависимости от концентрации поверхностноактивного вещества в объемной фазе (монослои растворимых или летучих веществ). В первом случае величину адсорбции на поверхности жидкости можно определить, зная количество нанесенного на поверхность нелетучего и нерастворимого вещества, образующего монослой, и занимаемую монослоем на поверхности жидкости площадь. Во втором случае величина адсорбции на поверхности жидкости непосредственно не измеряется. Она может быть вычислена из зависимости а от Са с помощью уравнения Гиббса (ХУП, 37а). Наоборот, в случае адсорбции на поверхности достаточно высокодисперсных твердых тел измеряется (в зависимости от парциального давления или концентрации адсорбируемого вещества в объемной фазе) именно величина адсорбции. Для определения поверхностного давления ти в этом случае также может быть применено уравнение Гиббса, поскольку оно связывает три величины поверхностное натяжение, адсорбцию и давление адсорбата в газовой фазе. [c.476]


Таблица 10.1. Степень адсорбции радиоактивного изотопа свинца в зависимости от растворимости соответствующих солей свинца Таблица 10.1. Степень <a href="/info/1671689">адсорбции радиоактивного изотопа</a> <a href="/info/352900">свинца</a> в зависимости от <a href="/info/1022132">растворимости соответствующих</a> солей свинца
    Уравнение материального баланса в равновесной теории. Абсолютная и относительная скорости перемещения вещества вдоль слоя адсорбента или растворителя в хроматографической колонке связь этих скоростей с константой и с изотермой распределения адсорбции или растворимости. Идеальная равновесная хроматография. Влияние формы изотермы адсорбции или растворимости на форму задней и передней границ хроматографической полосы в рамках равновесной теории. Время удерживания и удерживаемый объем, их связь с константой равновесия, зависимость от температуры колонки, связь с теплотой и энтропией адсорбции или растворения. Приведение удерживаемого объема к нулевому перепаду давления в колонке и к малой величине пробы. [c.296]

    Для глубокой очистки сточных вод от растворимых органических соединений (фенолов, пестицидов, ароматических нитросоединений, ПАВ, красителей и т. д.) используют метод адсорбции, эффективность которого колеблется от 80 до 95 % в зависимости от химической природы адсорбента, величины адсорбирующей поверхности, а также от структуры и свойств улавливаемых примесей. [c.258]

    Кривые концентрационной и температурной зависимостей прочности наполненных растворов показывают существование критических температуры и концентрации, выше или ниже которых прочность не зависит от этих величин. Наличие критических температур связано только со свойствами полимерного раствора и обусловлено температурной зависимостью растворимости. Существенно, что в областях Г < Гкр и с > Скр, в которых прочность с понижением температуры или ростом концентрации возрастает, выделяется полимерная фаза, тогда как при Т > Гкр и с -< Скр происходит только адсорбция на поверхности частиц. [c.263]

    Зависимость адсорбции от растворимости [c.136]

    Кислород образует окислы, особенно с щелочными и щелочноземельными металлами, в меньшей степени — с медью и железом. Водяной пар поглощается металлами в результате физической адсорбции. Азот поглощается только теми металлами, которые образуют нитриды (Ре, Та, Мо, Ш, N1), причем зависимость растворимости азота в железе от температуры имеет немонотонный характер со сложными аномалиями. [c.42]


    Описанные закономерности характерны для адсорбции растворимых органических веществ. Для нерастворимых соединений (например, цетилового спирта) наблюдается более сложная зависимость АЕ от Г, которую можно объяснить изменением ориентации диполей органического вещества с ростом заполнения поверхности. [c.93]

    В области концентраций, более высоких, чем отвечающие предельно разбавленным растворам, простейшее уравнение изотермы растворимости Генри уже не соблюдается. Для нахождения зависимости величины 7 от мольной доли л . в этой области значений концентраций надо определить изотерму равновесия Сд==/1(с) или х =[ р) из формы хроматографической кривой так же, как это было показано выше в случае определения изотермы адсорбции из газо-хроматографических данных, т, е. графическим интегрированием (см. стр. 589 сл.). В этом случае значения парциального давления р находят из соответствующих значений концентрации с выходящего из колонки газа. Величину растворимости а определяют интегрированием хроматографической кривой до соответствующего значения с. По найденному значению растворимости а вычисляют соответствующую величину мольной доли л и находят коэффициент активности пользуясь формулой (118)  [c.594]

    Анализ полученных результатов (рис. 95) позволяет утверждать, что в зависимости от вида подготовки образца к опыту изменяется его проницаемость при фильтрации нефти. Характерно, что во всех случаях, если образец экстрагировали керосином, затухания фильтрации нефти практически не происходит. Наибольшее затухание фильтрации нефти наблюдается в тех случаях, когда образец предварительно экстрагировали, а затем кипятили в спиртобензольной смеси. Очевидно в первом случае поверхность зерен, слагающих образец, не была освобождена от адсорбировавшихся ранее на ней асфальтенов. Это видно из результатов опытов по растворимости выделенных асфальтенов в керосине (см. табл. 14). Как показали опыты (см. главу И), адсорбция асфальтенов на кварцевом песке, бывшем в контакте с нефтью и экстрагированном в одном случае керосином, а во втором случае спиртобензолом, различна. Следовательно, величины адсорбционных и граничных слоев для одной и той же нефти отличны. [c.155]

    Способностью поглощать водород обладают все металлы. Количество поглощенного водорода и характер связи водорода с металлом значительно отличаются для разных групп металла. Для таких металлов, как железо, никель, кобальт, серебро, медь, алюминий, платина, часто придшняют термин растворение пли окклюзия водорода в металле. Растворению или окклюзии, как уже было сказано, обязательно предшествует процесс активированной адсорбции и диссоциации молекул водорода на атомы. Зависимость окклюзии водорода различными металлами от температуры сложная. В одних металлах растворимость водорода с увеличением температуры возрастает, тогда как в других — снижается. Для ряда металлов (лтр-ганец, молибден) наблюдаются экстремальные точки па кривой растворимости водорода от температуры. Поэтод1у можно полагать, что знак температурного коэффициента растворимости в том или инод металле зависит от определенного интервала температур. [c.248]

    На адсорбцию из растворов существенно может влиять изменение температуры. Так как энтальпия смачивания отрицательна, то в соответствии с уравнением Вант-Гоффа сродство адсорбата к адсорбенту должно уменьшаться с повышением температуры, причем в бинарных растворах оно сильнее уменьшается для компонента, у которого больше отрицательная энтальпия смачивания (чистой адсорбции). Таким образом, с повышением температуры происходит выравнивание констант адсорбции компонентов и приближение константы обмена к единице, а величины гиббсовской адсорбции — к нулю. Закономерности адсорбции из растворов существенно меняются при изменении растворимости в зависимости от температуры. С увеличением растворимости уменьшается константа распределения (благодаря усилению взаимодействия с растворителем). Однако если с повышением температуры растворимость растет, то появляется возможность увеличения концентрации в равновесном растворе и соответственно на поверхности адсорбента. Изменение растворимости при изменении температуры может привести к расслаиванию в порах адсорбента — к капиллярному расслаиванию. [c.155]

    Таким образом, при малых давлениях газа адсорбция а, приходящаяся на единицу поверхности жидкости, пропорциональна концентрации раствора или парциальному давлению адсорбирующегося газа. Эта зависимость аналогична уравнению Генри для растворимости газов, поэтому уравнение (18) называется у р а вн ен ием Генри для изотермы адсорбции, а константа Г — константой Генри. [c.39]

    Следует, однако, отметить, что возможности метода поляризационных кривы ограничены определенными рамками. Одно из ограничений состоит в том, что часто имеет место искажение получаемых на опыте зависимостей вследствие адсорбции на электроде компонентов раствора, включая исходное вещество и конечный продукт реакции. Невысокая растворимость большинства органических соединений в водных растворах иногда может приводить к очень сильному влиянию адсорбции на параметры поляризационных кривых, искажая. тем самым истинные кинетические параметры реакции, предсказываемые теорией для того или иного ее механизма. [c.196]


    Подобно растворимым электролитам в зависимости от свойств растворителя, высокомолекулярные полиэлектролиты могут приобретать свойства кислот, оснований или солей, быть сильными и слабыми электролитами. Это позволяет, пользуясь рационально выбранным растворителем, достигать необходимой селективности как при адсорбции, так и при десорбции. [c.377]

    Величины V,, Уц и п изменяются в зависимости от использованной методики, в большинстве случаев определяется свойствами пробы, однако можно также состав фазы I приспосабливать к поставленной задаче. Таким образом, вероятность нахождения данной частицы вещества в фазе II определяется силами взаимодействия частицы вещества с фазой I. Их можно оценить при помощи той или иной функции разделения, и именно они положены в основу классификации методов разделения. Для разделений, применяемых в аналитической химии, соответственными функциями, например, являются произведение растворимости, закон распределения Нернста, изотермы обмена и адсорбции. В каждом отдельном случае силы взаимодействия различного рода, а следовательно, и функции разделения накладываются друг на друга. Поэтому конкретный метод разделения лишь отчасти может быть выражен какой-то одной функцией разделения. Следовательно, в практике разделения в большинстве случаев не может быть отброшен эмпирический подход. Это относится особенно к хроматографическим методам. Не существует в настоящее время математического выражения для функции разделе- [c.327]

    Для растворимых ПАВ такие измерения дают зависимость поверхностного натяжения от концентрации (изотерму поверхностного натяжения) уравнение Гиббса позволяет при этом перейти к изотерме адсорбции Г (с), которую в данном случае непосредственно получить можно лишь с большим трудом. [c.51]

    Рассмотрим последовательно характерные свойства поверхности раздела фаз и адсорбционных слоев, сопоставляя поведение растворимых и нерастворимых в воде поверхностно-активных веществ и постепенно переходя от простейшей картины к более сложным проявлениям межмолекулярных взаимодействий в адсорбционных слоях. Будем при этом анализировать наиболее характерные зависимости между параметрами, описывающими свойства адсорбционных слоев изотерму поверхностного натяжения а (с), изотерму адсорбции Г (с), изотерму двухмерного давления я(Г) и др. [c.53]

    Рассмотренные выше закономерности, отражающие связь между величииа ш с, Г (или тг и сг/6с, относились к растворимым в воде ПАВ. Однако растворимость сама по себе не входила в приведенные соотношения, поэтому естественно полагать, что эти выводы могут быть распространены и на нерастворимые ПАВ. Действительно, непосредственное изучение зависимости двухмерного давления от адсорбции, проведенное Ленгмюром и его последователями, подтвердило это предположение. [c.68]

    Часто наблюдается зависимость между адсорбцией вещества из раствора и растворимостью этого вещества в данном растворителе. Чем больше растворимость вещества, тем меньше адсорбция. На величину адсорбции оказывают влияние давление и температура. С повышением температуры адсорбция уменьшается. То же наблюдается в некоторых случаях и с ростом давления. [c.18]

    Известно, что на поверхности раздела между жидкостью и газом или несмешивающимися жидкостями происходит адсорбция благодаря тому, что ПАВ состоит из водо- и нефтерастворимой групп. Так как гидрофильная группа характеризуется большей растворимостью в воде, чем гидрофобная, молекулы ПАВ ориентируются на поверхности воздух — вода на нефтерастворимую группу в воздухе и водорастворимую в воде. В зависимости от эффективности ПАВ межфазовая поверхность превращается в контакт воздух — вода и нефть. При этом уменьшаются силы молекулярного притяжения и в итоге поверхностное натяжение. [c.74]

    Адсорбцию газов или растворимых веществ можно наглядно представить при помощи так называемых изотерм адсорбции, т. е. графического изображения зависимости удельного количества вещества, адсорбированного данным адсорбентом, от концентрации при условии установления равновесия. Данные, необходимые для построения изотерм адсорбции, получают опытным путем. Концентрацию газов измеряют, как правило, в единицах давления, а в случае растворов — в граммах на 1 уг, в молях на 1 л, в мольных долях и т. п. Измерения проводят при постоянной температуре (откуда и возникло название изотерма адсорбции). Отдельные точки кривой при изучении адсорбции из растворов получают обычно определением разницы между концентрацией раствора до контакта с адсорбентом и после установления равновесия в контакте с адсорбентом. [c.322]

    Закономерности адсорбции ПАУ как неполярных гидрофобных соединений различными минеральными и органическими частицами полностью не изучены. Многие авторы показали, что для различных ПАУ адсорбция может быть описана уравнением Фрейндлиха, причем коэффициент 1/й 1, т. е. это линейная зависимость между количеством адсорбированного вещества и его равновесной концентрацией. Сорбционная способность в значительной мере зависит от уровня растворимости ароматического соединения. [c.103]

    Для понимания механизма адсорбции и других поверхностных явлений полезно иметь в виду, что адсорбция является по существу формой выделения вещества из раствора (и из газовой фазы). При отсутствии межфазных границ вьщеление растворенного вещества в виде новой фазы требует определенного перенасыщения раствора, тогда как при наличии межфазной границы (как и зародышей кристаллизации) выделение растворенного вещества сильно облегчается и происходит в виде адсорбционного слоя на межфазной границе при любой концентрации раствора. По этой причине чем слабее растворимость вещества (летучесть для газов), тем сильнее оно адсорбируется. Для водных растворов эта зависимость в ряде случаев известна количественно (см. ниже правило Траубе). [c.578]

    Говард и Конелл [841 при изучении адсорбции полиоксиэтилена на аэросиле, угле и найлоне также установили слож-нуюзависимостьадсорбции от молекулярного веса (рис. 48), При адсорбции этого же полимера на угле получена другая зависимость от молекулярного веса (рис. 49), В последнем случае адсорбция практически не зависит от молекулярного веса в интервале молекулярных весов 10 — 2 10 . Исключение составляет адсорбция из метанола. Говард считает, что это обусловлено сильной зависимостью растворимости полиоксиэтилена в метаноле от молекулярного веса Еще более резкая зависимость адсорбции этого полимера в метаноле от молекулярного веса наблюдается на аэросиле (см. рис. 34). [c.58]

    Ермоленко подробно изучил зависимость адсорбируемости различных веществ от их растворимости и полярных свойств среды (Колл. Ж. 2, 179, 1936 3, 831, 1937 6, 561, 1940 7, 227, 1941, и др.) и показал, что обратная зависимость адсорбируемости и растворимости наблюдается в случае смешанных растворителей, если оба компонента растворителя близки по полярности. Если же опи сильно отличны, то адсорбируемость при увеличении полярного компонента в смеси проходит через минимум. Наличие антибат-ности между адсорбцией и растворимостью пикриновой кислоты при разной природе адсорбентов (уголь и силикагель) Ермоленко приписывает разной ориентации молекул пикриновой кислоты на поверхности разных адсорбентов к силикагелю обращены группы — ОН, к углю — группы NOj. При растворителях разной химической природы трудно установить какую либо равномерную зависимость между адсорбцией и полярными свойствами растворителя, но в случае ряда гомологов, например спиртов, оказывается, что степень адсорбции различных органических веществ иа минеральных адсорбентах и на угле находится в прямой зависимости от диэлектрической постоянной спиртов и в обратной зависимости от их молекулярной поляризации и молекулярной рефракции.—Прим. рп . [c.102]

    При этом процессе, разработанном фирмой Лурги (ФРГ), удаление двуокиси углерода, сероводорода, органических сернистых соединений, цианистого водорода, бензола и смо.лообразующих углеводородов из синтез-газов осуществляется методом физической адсорбции метанолом при сравнительно низкой температуре. Процесс основывается на том, что перечисленные примеси, особенно двуокись уг.терода и сероводород, весьма хорошо растворяются в метаноле нри низких температурах и повышенных давлениях и легко выделяются из растворителя при снижении давления. Зависимость растворимости двуокиси углерода в метаноле от температуры изображена графически на рис. 14. И [36]. Расход тепла на процесс ректизол весьма невелик, так как поглотительный растворитель охлаждается вследствие снижения давления на ступени регенерации, а поступающий газ охлаждается с широким использованием теплообмена с отходящими потоками очищенного газа и извлекаемых кислотных компонентов газа. [c.376]

    Что касается зависимости адсорбции от вида газа, то можно указать здесь одно приближенное правило, относящееся к области адсорбции при сравнительно высоких концентрациях газа. По этому правилу, при прочих равных условиях сильнее адсорбириются те газы, которые легче конденсируются в жидкость и которые, следовательно, обладают более высокой температурой кипения в сжиженном состоянии. Для адсорбции из растворов существует закономерность, аналогичная этому правилу. Сопоставляя растворы различных веществ при одинаковой концентрации, можно установить, что из раствора сильнее адсорбируются обычно те вешества, которые обладают меньшей растворимостью в данном растворителе. [c.370]

    При образовании монослоев хорошо растворимых и летучих веществ изучают поверхностное натяжение в зависимости от концентрации С2 поверхностно-активного вещества в объемной фазе. При этом величина адсорбции на поверхности непосредственно не измеряется, а рассчитывается с помощью уравнения Гиббса, записанного в форме (XIII.123), (XIII.124). В случае же адсорбции на поверхности высокодисперсных твердых тел изучают зависимость величины адсорбции от парциального давления или концентрации адсорбата в объемной фазе. В этом случае с помощью уравнения Гиббса можно определить поверхностное давление я, поскольку уравнения Гиббса характеризуют взаимосвязь между поверхностным натяжением, адсорбцией и давлением адсорбируемого вещества в газовой фазе. Из уравнения (XIII.153) следует, что [c.355]

    В соответстнии с уравнением Гиббса, постоянству двухмерного давления в процессе конденсацин при изменяющемся значении адсорбции отвечает постоянное значение химического потенциала вещества, — аналогично тому, как при объемной конденсации химический потенциал не зависит от соотношения количеств жидкости и пара. Следовательно, для растворимых ПАВ, способных к конденсации в поверхностном слое, процесс поверхностной конденсации должен осуществляться при некотором постоянном значении объемной концентрации Ск, т. е. конденсация проявляется в скачкообразном изменении адсорбции от некоторой величины Гк=1/5кКа до значения, приблизительно равного предельной адсорбции Гтат. Вид зависимости адсорбции от концентрации в этом случае представлен на рнс. II— 25 ломаными кривыми 3 и 4. [c.71]

    Менее заметно двухмерная конденсация растворимых ПАВ сказывается на изотерме поверхностного натяжения в соответствии с уравнением Гиббса, скачку адсорбции при постоянной концентрации Ск должен отвечать скачок производной da/d , т. е. изло-м кривой а (с) (ом. рис. 11—25). При образовании жчдко растянутых пленок, когда нарастание адсорбции происходит постепенно, на кривой зависимости а (с) вместо излома появляется перегиб (кривая 2 ). Подобные явления обнаружи- [c.71]

    Менее заметно двухмерная конденсация растворимых ПАВ сказывается на изотерме поверхностного натяжения в соответствии с уравнением Г иббса скачку адсорбции при постоянной концентрацин должен отвечать скачок производной dtr/d , т. е. излом кривой а(с) (рис. П-25). При образовании жидкорастянутых пленок, когда нарастание адсорбции происходит постепенно, на кривой зависимости а с) вместо излома появляется перегиб (кривая 2). Подобные явления обнаруживаются для карбоновьлх кислот с относительно длинной цепью, но таких, которые еще сохраняют ощутимую растворимость в воде, в частности для изученной Фруьжиным лауриновой кислоты. [c.87]

    В процессе осаждения на поверхности осадка всегда адсорбируются различные ионы. Адсорбируются главным образом те ионы, которые находятся в избытке в растворе. Так, если осаждать ионы серебра хлорид-ионами, то на поверхности осадка Ag l адсорбируются главным образом ионы серебра, которые имеются в избытке. Наоборот, при осаждении хлорида прибавлением нитрата серебра на поверхности адсорбируются главным образом ионы хлорида, так как в этом случае они будут в избытке. Рстественно, что осадок будет адсорбировать и другие ионы, имеющиеся в растворе, например ионы натрия или нитрата, однако в первую очередь, как правило, адсорбируются ионы, входящие в состав малорастворимого соединения. Адсорбированньге ионы кристаллической решетки называют первично адсорбированными ионами. Вследствие адсорбции ионов поверхность осадка приобретает положительный пли отрицательный заряд в зависимости от того, какой ион, входящий в состав осадка имеется в избытке. Под действием этого заряда в зоны раствора, непосредственно примыкающие к частицам осадка, притягиваются противоположно заряженные ионы, которые называют про-тивоионами. Эти противоионы удерживаются слабее по сравнению с первично адсорбированными ионами. Слой противоионов содержит также некоторое количество других катионов и анионов. Адсорбированными ионами на осадке будут преимущественно те ионы, которые имеют наибольший заряд. Если же заряды ионов одинаковы, то в первую очередь адсорбируются те ионы, которые образуют менее растворимые соединения с первично адсорбированными ионами. [c.188]

    Точные значения A j,p для стабилизаторов углеводородных пленок определить весьма сложно, так как растворимость их в водной фазе очень мала. Так, для ксилана-0 (в системе вода— бензол) величина —ж 13 ккал молъ, а ГОС 0,5. Для таких веществ в области ГОС 0,5—0,6 прослеживается хорошее соответствие между f, и работой адсорбции —Ац нри изменении природы органической фазы. Устойчивость пленок резко снижается при использовании масел, которые уменьшают работу адсорбции до 6 ккалЫолъ и менее. Еще более четко зависимость от энергии адсорбции наблюдается в гомологическом ряду ПАВ. [c.165]

    Гидрофильность и адсорбционные свойства находятся в прямой зависимости от дисперсности. Р. Бредфилд показал, что тонко-дисперспый барит, несмотря па крайне малую растворимость (1 X X 10 моль/л), способен в суспензии натриевой глины замещать до обменных позиций. Интенсивное диспергирование приводит к деформации кристаллической решетки и аморфизации поверхности [56]. При увеличении удельной поверхности карагайлинского баритового концентрата с 3240 до 5400 см7г теплота смачивания возрастает с 0,1 до 0,45 кал/г, а количество связанной воды с 0,1 до 0,4%. Аналогично возрастает адсорбция метиленовой сини и гуматов. [c.50]

    Добавка растворимого вещества может значительно понизить поверхностное натяжение растворителя но если вещество вызывает повышение поверхностного натяжения, этот эффект невелик, потому что растворенное вещество вытесняется из поверхностного слоя, как будет объяснено ниже. В зависимости от их влияния на поверхностное натяжение растворенные вещества называют поверхностно-активными и поверх-ностно-неактивными. В случае поверхности раздела водный раствор — воздух поверхностно-неактивными являются неорганические электролиты, соли органических кислот и оснований с низким молекулярным весом и некоторые нелетучие неэлектролиты, например сахар и глицерин. Поверхностно-активными считаются органические кислоты, спирты, простые и сложные эфиры, амины, кетоны и т. п. Влияние поверхностно-активных веществ на поверхностное натялсение воды может быть велико, как это видно из рис. 8.5. Особенно эффективно понижают поверхностное или межфазное натяжение мыла и другие моющие средства. Они образуют поверхностные пленки на частицах грязи при стирке. Поскольку добавка некоторых веществ, например жирной кислоты, понижает поверхностное натяжение (изобарный потенциал поверхности), эти вещества стремятся самопроизвольно концентрироваться в поверхностном слое. Гиббс вывел уравнение, связывающее адсорбцию на поверхности и изменение поверхностного натяжения. [c.246]

    При выборе подходящего растворителя следует учитывать, что нет единой зависимости между свойствами растворителя (диэлектрической проницаемостью, дипольным моментом и т.д.) и его элюирующей способнос гью, а также между растворимостью соединения и его способностью к адсорбции. Элюирующая способность зависит не только от типа адсорбента, но и от природы разделяемых компонентов. В виде табличных данных обычно приводят экспериментально определенные соответствующие каждому из адсорбентов серии растворителей в порядке возрастания их элюирующей способности. [c.85]


Смотреть страницы где упоминается термин Адсорбция зависимость от растворимости: [c.86]    [c.86]    [c.4]    [c.177]    [c.63]    [c.86]    [c.137]    [c.138]    [c.140]    [c.34]   
Лабораторные работы по неорганической химии (1948) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость зависимость



© 2024 chem21.info Реклама на сайте