Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо сернистое, получение

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]


    В опытах данной серии применялся сернистый цинк, полученный по упрощенной методике путем взаимодействия цинковых белил марки А с сернистым аммонием в присутствии катализатора ацетата аммония [ > ]. Степень осаждения примеси железа сернистым цинком высока (табл. 7). Однако применять сернистый цинк для очистки сернистого натрия не всегда выгодно, так как он относительно дорог и дефицитен. [c.87]

    В настоящее время его получают из руд, содержащих окислы, при восстановлении их углем в тигля или пламенных печах (способ восстановления). Сернистые руды либо предварительно окисляют обжигом, либо сплавляют непосредственно с железом для получения висмута (способ вытеснения). [c.727]

    Сначала вынимают резиновую пробку из тубуса 3 и через него в среднюю расширенную часть 2 аппарата вводят вещество, служащее для получения газа (мрамор— для получения двуокиси углерода, сернистое железо—для получения сероводорода, цинк—для получения водорода и т. д.). Куски насыпаемого твердого вещества должны быть не менее 1 см , но и не очень большими. [c.71]

    Диоксид марганца МпОг. Применяется при получении хлора из соляной кислоты, в стекольной промышленности —для окисления различных сернистых соединении и производных железа, при изготовлении гальванических элементов и т. д. [c.107]

    Соединения железа (II). Получение закиси железа разложением в токе углекислого газа щавелевокислого железа. Получение и свойства гидрата закиси железа. Приготовление железного купороса и соли Мора. Отношение солей закиси железа к сероводороду и сернистому аммонию, восстановительные свойства солей закиси железа. [c.76]

    Сначала вынимают резиновую пробку из тубуса 3 и через пего в среднюю расширенную часть 2 аппарата вводят вещество, служащее для получения газа (мрамор — для получения двуокиси углерода, сернистое железо — для получения сероводорода, цинк — для получения водорода и т. д.). Куски насыпаемого твердого вещества должны быть не менее 1 слг , ной не очень большими. (Пользоваться порошком не рекомендуется, так как при этом слишком [c.82]

    Технологический процесс получения метанола из окиси углерода и водорода включает ряд операций, обязательных для любой технологической схемы синтеза метанола, которые различаются в основном аппаратурным оформлением. Газ предварительно очищается от карбонилов железа, сернистых соединений, частиц масла, попадающих в него при использовании поршневых компрессоров, затем подогревается до температуры начала реакции и поступает на контактирование. По выходе из зоны катализа из газов выделяется [c.78]


    Рассмотрен ряд исследований, описанных в литературе, по кинетике термического разложения сульфатов железа с получением сернистого газа. [c.25]

    Степень чистоты продукта. Кристаллизация — один из распространенных и наиболее эффективных методов получения веществ в чистом виде. Допустимая величина примесей определяется назначением продукта. Степень его чистоты зависит как от условий самой кристаллизации, так и от дальнейших технологических операций (фильтрование, промывка и др.). Основные загрязнения кристаллов обусловлены наличием в исходном растворе нежелательных примесей. Они могут попасть внутрь кристалла с маточным раствором в виде включений (в трещинах, дефектных полостях и др.) или адсорбироваться гранями кристалла. Изоморфные примеси могут образовывать смешанные кристаллы. Борьбу с загрязнениями кристаллов ведут механической (отстаивание, фильтрование) и химической обработкой исходного раствора, например, осаждают растворенные соли железа, сернистые соединения, хлориды и пр. [c.675]

    Через тубус в шар реактора загружают кусочками вещество, которое при реакции с кислотой образует нужный газ (например, сернистое железо для получения сероводорода). Закрыв тубус пробкой с газоотводной трубкой и закрыв кран, заполняют шарообразную воронку на Уз кислотой. [c.108]

    Восстановление кислородных соединений углем, окисью углерода или водородом (получение железа, цинка, титана, мышьяка, сурьмы, хрома, марганца, молибдена и др.). Восстановителем может быть алюминий (алюминотермия — при добывании марганца, хрома) и даже сернистые металлы (например, при получении меди, никеля, свинца). [c.228]

    Для получения двуокиси углерода применяют мрамор и соляную кислоту, для получения сероводорода—сернистое железо и соляную кислоту, для получения водорода—зерненый металлический цинк и соляную кислоту. [c.40]

Рис. 43. Изменение общей зольности, а также содержания окислов железа и ванадия при прокалке кокса, полученного из гудрона сернистой и высокосернистой нефтей Рис. 43. <a href="/info/26021">Изменение общей</a> зольности, а <a href="/info/154839">также содержания</a> <a href="/info/62995">окислов железа</a> и ванадия при прокалке кокса, полученного из гудрона сернистой и высокосернистой нефтей
    Сколько сернистого железа необходимо для получения сероводорода при взаимодействии с 20 мл кислоты  [c.80]

    В руднотермических электропечах осуществляют многие восстановительные процессы, в ходе которых загружаемые в печь руды, представляющие собой окислы различных элементов, в присутствии восстановителя (обычно углерода) при высокой температуре восстанавливаются и сплавляются с железом, содержащимся в шихте, давая в виде конечного продукта сплав данного элемента с железом. К ним также относятся получение карбида кальция СаСг при восстановлении кальция из СаО (обожженного известняка) е условиях избытка углерода в шихте получение так называемого роштейна при плавке медно-никелевых сернистых руд получение электрокорунда плавка муллита получение карборунда графитирование прессованных электродов получение карбида серы, карбида бора, титановых шлаков, конденсационного цинка и свинца и некоторые другие. К таким процессам следует также отнести возгонку фосфора, получе- 1ие черного цианида и электроплавку чугуна. В настоящее время разрабатываются в промышленном масштабе процессы получения руднотермическим путем (плавкой в электропечи) силикоалюминия и других продуктов, осуществление которых будет значительно рентабельнее, например, применяющегося ныне для получения алю.чи-ния процесса электролиза. [c.116]

    Для переработки бедных алюминием отработанных анодных сплавов, получаемых в последнее время, пригодны только кислотные методы. Применявшиеся раньше [3] щелочные методы разложения анодных сплавов (выщелачивание раствором едкого натра) дают удовлетворительное извлечение только в применении к сплавам, содержащим 25—30% алюминия. Разлагать сплав можно как выщелачиванием измельченного сплава серной или соляной кислотой, так и анодным растворением [3]. В раствор наряду с галлием и алюминием переходят также железо и частично (за счет окисления кислородом воздуха) медь. Так как железо осаждается купферроном, в этом случае применять для выделения галлия купферрон невыгодно, и перерабатывают растворы экстракционным путем, используя бутилацетат или трибутилфосфат. Если разложение велось серной кислотой, к раствору добавляется соответствующее количество хлорида натрия. Чтобы отделить железо, раствор перед экстракцией обрабатывают каким-либо восстановителем, например железной стружкой. Для реэкстракции галлия из органического слоя последний промывают водой. После экстракции следует очистка от примесей молибдена и олова осаждением сернистым натрием и, наконец, электролиз щелочного раствора галлата с целью получения металлического галлия. [c.257]


    Сернистые соединения железа встречаются во многих странах, в том числе и в СССР. Они служат сырьем для получения серной и сернистой кислот и других соединений, содержащих серу. [c.358]

    Получение простых веществ, например, железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д. и ценных химических продуктов, например, аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. [c.3]

    Для работы требуется Колба емк. 50 мл с пробкой, воронкой и газоотводной трубкой. — Аппарат Киппа для получения сероводорода. — Штатив с пробирками. — Стакан емк. 500 мл. — Стакан емк. 100 мл. — Трубка стеклянная 0 см с пробкой. —Ступка фарфоровая. —Тигель фарфоровый с крышкой. — Щипцы тигельные. — Цилиндр мерный емк. 100 мл. — Воронка. — Нож. — Трубка паяльная. — Держатель для пробирок. — Асбест. — Бумага фильтровальная. — Бумага свинцовая. — Сульфат натрия безводный. — Уголь в порошке. — Уголь (кокс) кусковой. — Сера в кусках. — Сера в порошке. — Железные пластинки. — Сернистое железо.—Смесь цинковой пыли с серой. — Азотная кислота концентрированная. — Серная кислота, 2 н. и 4 н. растворы. — Аммиак, 10%-ный раствор. — Соляная кислота, 2 н. раствор. — Едкое кали, 2 н. раствор. — Хлорид олова (П), 0,5 н. раствор. — Сульфид аммония, 2 н. раствор. — Сульфид натрия, 2 н. раствор. — Хлорид сурьмы, 0,5 и. раствор. — Хлорид меди, 0,5 н. раствор. — Хлорид цинка. — Хлорид марганца, 0,5 и. раствор. — Хлорид бария, 2 н. раствор. — Теллурит калия, 2%-ный раствор. — Сернистая кислота, насыщенный раствор. — Селенистая кислота, 10%-ный раствор.— Раствор лакмуса нейтральный. — Спирт этиловый. — Ксилол. — Сероводородная вода. [c.278]

    Прибор Дементьева. Этот прибор удобен для получения сероводорода. Устройство его изображено на рис. 41, конструкция предложена А. Н. Дементьевым в 1946 г. Как видно из рисунка, прибор состоит из и-образной трубки с суженной частью в левом колене. В узкую часть 3 вставляют фарфоровую пластинку с мелкими отверстиями или медную сетку, на которую помещают мелкие кусочки сернистого железа. Через горло трубки / наливают разбавленную соляную (1 4) или серную (1 8) кислоту в таком количестве, чтобы при ус- [c.28]

    Обычное сернистое железо (пригодное для лабораторного получения НаЗ) можно получать синтезом из железа и серы. [c.102]

    Обычный лабораторный способ получения НаЗ основан на действии 20%-ной соляной или 25%-ной серной кислоты на сернистое железо  [c.338]

    По способу Британской Цланидной Компании, являющемуся представителем второй группы, неочищенный га проходит через слой отработавшей окиси, которую поддерживают4 влажной при помощи пульверизирования водой. Цшн превращается в роданид и извлекается из скруббера в виде раствора роданистого аммония.-Этот процесс проще, чем ферроцианидный, но при нем циан получается в виде менее желательного соединения. Для утилизации этого роданистого раствора его прежде всего обрабатывают углекислым натрием и освобождающийся аммиак улавливают. Получающийся раствор роданистого натрия концентрируют, смешивают с тонко размельченным железом, выпаривают до полной сухости и сплавляют. Конечной реакцией является образование цианистого аатрия и сернистого железа. Прокипятив полученную смесь с водой, фильтруют и получают раствор железистосинеродистого натрия. [c.61]

    Несколько граммов вещества раздагают при умеренном нагревании в токе хлора, причем хлористый ванадий вместе с Мо и Fe растворяется в воде [являющейся поглотителем]. Из полученного раствора Мо выделяют HgS, железо — сернистым аммонием, ванадий же осаждают из раствора тиосоли в виде сернистою ванадия подкислением уксусной кислотой. Сернистый ванадий прокаливанием переводят в Y O . [c.509]

    По этому методу тонкоизмельченную руду смешивают с водой, в пульпу вводят коллекторы (натриевые соли жирных кислот, уменьшающие смачиваемость минеральных частиц), вспенивателп (крезол,, сосновое масло) и некоторые другие добавки. Пульпу энергично перемешивают до образования обильной пены, которая увлекает с собой на поверхность частицы урановых минералов, после чего пена легко разрушается водой. С помощью флотации содержание урана в рудничном сырье может быть повышено в три—пять раз. После механической обработки урановых руд их обжигают или прокаливают. Если добываемые породы содержат углистые вещества (0,5%), то их подвергают окислительному обжигу, чтобы вскрыть урановые минералы, связанные с органическим веществом. При наличии в руде значительного количества ванадия проводят обжиг в присутствии хлористого натрия с целью перевести соединения ванадия в растворимое состояние. Так как в горных породах часто содержатся сернистые и мышьяковистые соединения свинца и железа, то полученные из них концентраты подвергают прокаливанию для удаления мышьяка и серы. [c.261]

    Мышьяк может содержаться в сере в форме сернистого мышьяка, AsgSg, и в форме мышьяковистого ангидрида, AS2O3. В исключительных случаях возможно присутствие в сере арсенитов кальция или железа. Сера, полученная из содовых остатков по методу hane е-С 1 а и s a, мышьяка не содержит. [c.2]

    Железо определяют из отдельной навески 1—2 г, которую сплавляют в золотом тигле с едким калием и селитрой. Сплав извлекают горячей водой, кипятят со спиртом, осадок гидроокиси собирают на фильтр н затем растворяют в соляной кислоте в присутствии сернистой. Полученный раствор хлороиридиата окисляют азотной кислотой и осторожно осаждают иридий хлористым аммонием (см. разд. П1, А, г) в фильтрате небольаиш избытком аммиака осаждают гидроокись железа, которую растворяют в соляной кислоте и затем отде-.ляют следы платиновых металлов по нитритному методу. Выделенный осадок растворяют в соляной кислоте, переосаждают аммиаком и прокаливают до окиси железа. [c.427]

    Восстановление в щелочной среде посредством формальдегида и станнита на-трия1 1 также позволяет гладко заменить диазогруппу на водород в бензолдиазоние и его гомологах. Для получения нитросоединений эти восстановители не пригодны. В отдельных случаях восстановление диазогруппы в щелочной среде может быть осуществлено также действием гидрата закиси железа, сернистого натрия мышьяковистокислого натрия, солей муравьиной кислоты . Хорошим восстановителем для получения [c.450]

    Сырье химической промышленности классифицируют по различным признакам. По происхол<дению его делят на минеральное, растительное и животное. Преобладает минеральное сырье, т. е. полезные ископаемые, добываемые из земной коры. По агрегатному состоянию различают твердое, жидкое (нефть, рассолы) и газообразное (воздух, природный газ) сырье. По составу оно подразделяется на органическое и неорганическое. Минеральное сырье в свою очередь делится на рудное, нерудное и горючее (органическое). Рудным минеральным сырьем называют горные породы или минеральные агрегаты, содержащие металлы, которые могут быть экономически выгодно извлечены в технически чистом виде. Так, например, железо содержится в магнитном железняке в виде Рез04, в красном железняке РеаОз, буром железняке Ре(ОН)з и др. Медные руды обычно содержат сернистые соединения меди СнгЗ, Сн5, РеСиЗг и т. п. Кроме минералов, включающих основной металл, руды всегда имеют примеси. Те примеси, которые не используются в производстве для получения продуктов, называются пустой породой. [c.6]

    Для очистки газа от НаЗ в европейских странах и в США разработаны процессы (Буркгейзера, Феррокса, Глууда, Манчестерский), основанные на применении взвесей гидроокиси железа в водных щелочных растворах с последующей регенерацией циркулирующих поглотительных растворов кислородом воздуха [12]. Процессы основаны на абсорбции НгЗ щелочным соединением (гидрат окиси натрия или аммиак) с последующим взаимодействием бисульфида с гидроокисью железа. Регенерацию проводят окислением сернистого железа с получением элементарной серы и гидроокиси железа. Механизм реакции может быть описан следующими уравнениями  [c.153]

    Наиболее широкое распространение процессы аминнрования получили в производстве промежуточных продуктов и органических красителей, при этом аминосоединения чаще всего образуются в результате восстановления нитросоёдинений. Для восстановления последних применяют железо в присутствии растворов электролитов, цинк, сернистую кислоту, иодистый водород, сульфиды, водород и др. Широкое распространение нашел способ получения аминопроизводных с применением аммиака, [c.119]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    Износоустойчивый окисножелезный катализатор [13, 27, 28, 38] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30 объемн. % ЗОз перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки питрозной системы. При переработке газов от сжигания колчедана ванадиевый катализатор отравляется мышьяком, в результате чего его активность снижается примерно в 2 раза. Железный катализатор мышьяком не отравляется, однако он все же менее активен, чем отравленный ванадиевый катализатор. Окись железа в виде крупных кусков огарка, получаемого при обжиге колчедана, применялась ранее в промышленных аппаратах для окисления сернистого газа. Активность ее достаточно исследована [2, 39—41]. Во взвешенном слое огарок в качестве катализатора не пригоден, так как его истираемость составляет 95% в месяц. Исследованиями [28, 38] было установлено, что можно резко повысить механическую прочность колчеданного огарка за счет введения цементирующих добавок (жидкое натриевое стекло или фосфорная кислота). При этом каталитическая активность огарка практически не снижается. Истираемость такого катализатора составляет 2—3% в месяц. В качестве порообразующего компонента в смесь вводится технический глицерин или другая органическая примесь, выгорающая при прокаливании катализатора. [c.148]

    Процесс Варга. В ВНР в 1951—1956 гг. был разработан процесс Варга, который позволяет из сернистого мазута в две ступени получить бензин, дизельное и малосернистое котельное топливо [16, 178]. Чтобы избежать сильного коксообразования при термическом разложении, исходное сырье разбавляют керосино-га-зойлевыми фракциями, полученными после гидроочисткн во второй ступени процесса. Схема переработки по методу Варга по существу не отличается от обычной схемы переработки остаточных продуктов под высоким давлением водорода. Технологический режим процесса Варга следующий I ступень — жидкофазная гидрогенизация сырья в смеси с разбавителем под давлением 3—10 МПа при 420—450 °С, катализатор — суспендированный, обычно окись железа на буроугольном полукоксовом контакте II ступень — гидрирование в паровой фазе дистиллятных продуктов I ступени в стационарном слое катализатора. [c.281]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    Следовательно, полученные и приведенные в настоящем исследовании данные по дисперсному составу механических примесей соответствуют условиям подготовки нефти и, в частности, применению в качестве реагента для деэмуль-сацип нейтрализованного черного контакта, который способствует коагуляции частиц сернистого железа. [c.66]

    В. Д. Тюрин с соавторами [170] сообщили о разработке процесса обессеривания топлив с применением карбонилов железа, особенно додекарбонила Рез(СО)12, которые восстанавливают меркаптаны, сульфиды и дисульфиды до элементной серы, образуя прочные комплексы, в которые в качестве лигандов входят остатки КЗ (комплексные меркаптиды). Последние отделяются фильтрованием и адсорбцией и могут использоваться для получения концентрированных смесей сернистых соединений либо сульфоновых кислот. Благодаря высокой прочности комплексов удаляются не только низшие, но и высокомолекулярные соединения, содержа-Щ иеся как в легких светлых, так и в тяжелых нефтепродуктах — вплоть до мазута. Так, при очистке мазута содержание серы снижается с 0,56 до 0,23% (масс.). Наряду с уменьшением содержания серы понижается содержание азотистых и кислородных соединений (а в легких продуктах и диенов), так как эти соединения также образуют комплексы с карбонилами жел-еза. [c.268]

    Приборы и реактивы. Пробирки цилиндрические. Тигель фарфоровый. Чашка фарфоровая. Стакан вместимостью 200 мл. Фарфоровый треугольник. Держатель для микропробирок. Прибор для получения сероводорода. Прибор для получения сернистого газа. Асбестированная сетка. Пинцет. Микростаканчик. Фильтр1> вальная бумага. Сера. Медь (проволока и стружка). Сульфид железа. Сульфст йатрия. Цинк (гранулированный и порошок). Железо (проволока и стружка). [c.139]

    Нахождение в природе и получение в свободном виде. Железо — один из наиболее распространенных металлов. Его содержание в земной коре 4—5% (мае.). В природе встречается в виде минералов — руд магнетит, или магнитный железняк Есз04 гематит, или красный железняк ЕсаОз гетит, или бурый железняк ЕсзОз-НгО сидерит, или шпатовый железняк РеСОз пирит, или железный колчедан РеЗз, входяш,ий также в сернистые руды других металлов. В СССР имеются крупные месторождения железных руд — Керчь, Урал, Кривой Рог, Курская магнитная аномалия и др. [c.362]


Смотреть страницы где упоминается термин Железо сернистое, получение: [c.27]    [c.65]    [c.245]    [c.344]    [c.315]    [c.126]    [c.383]    [c.397]   
Лабораторные работы по неорганической химии (1948) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Железо получение

Сернистый газ получение



© 2024 chem21.info Реклама на сайте