Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты, анализ глицин

    Этот метод обычно используется для количественного определения аминокислот методом жидкостной хроматографии. Вместе с тем полученные из аминокислот альдегиды могут быть определены и методом ГЖХ [110—113]. Однако имеются сведения о том, что глицин окисляется нингидрином до формальдегида, который в условиях газохроматографического анализа полимеризуется 1114], а альдегиды, полученные из фенилаланина и метионина, обладают низкой летучестью [115]. При окислении нингидрином валина, лейцина, изо лейцина, аланина были получены соответственно изомасляный альдегид, 3-метилбутанол, 2-метилбутанол и ацетальдегид [110 . [c.41]


    Для определения содержания свободных аминокислот применяли главным образом осаждение пептидного материала из проб пикриновой кислотой. После фильтрации и нейтрализации (смола дауэкс 2-Х10 в ОН -форме) пробы подвергали количественному анализу. Данные о наличии свободных аминокислот в суммарном продукте показаны на рис. 11—13. Идентифицированы три аминокислоты серин, глицин, аланин. В табл. 9 представлены полученные данные о связанных и сво- [c.45]

    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Прежде всего об общих принципах эксперимента. Меченый предшественник должен более или менее свободно входить в систему и становиться метаболически эквивалентным эндогенному субстрату, в который требуется ввести метку. Эти требования в общем соблюдаются, например, для ацетат-иона, в меньшей степени—для малонат-иона и часто совершенно не соблюдаются для введенного мевалонат-иона. Конечно, во время эксперимента организм должен продуцировать требуемое соединение из эндогенного субстрата (а не, например, из некоторого накапливаемого позднее промежуточного вещества). Эксперимент должен также обеспечивать возможность отличать проверяемый прямой путь включения от любых других неожиданных и часто в высшей степени косвенных путей. Например, структуры многих поликетидов таковы, что меченый поликетид в результате простых реакций расщепления может стать источником специфически меченного аце-тил-КоА, который затем может включаться в совершенно иное соединение. Еще один пример такие совершенно различные по структуре аминокислоты, как глицин, серии и триптофан, могут являться эффективными предшественниками С-метильных групп количественное сравнение с меченым метионином показывает, что последний представляет собой гораздо лучший предшественник, но результаты с другими аминокислотами могут быть правильно интерпретированы только при наличии определенных данных о промежуточном метаболизме. Соблюдение соответствующих биологических принципов может также оказаться выгодным при выборе наиболее экономичной или наиболее чувствительной методики. Как будет показано ниже, различные применяющиеся в настоящее время изотопы следует вводить в различных количествах этот факт следует учитывать, например, при проведении предварительных опытов с целью оптимизации условий включения предшественника. Кинетика включения предшественника может быть чрезвычайно сложной. Эта тема достаточно хорошо осЕ-г-щена в обзорах [1,96,97] описано и применение математического анализа кинетических данных, который имеет, по-видимому, ограниченное применение, но тем не менее важен как инструмент фундаментального исследования [98,99]. [c.467]


    Карта аланинового дипептида является наиболее подходящей для анализа двугранных углов ф и г з в известных белках (таблицы значений ф и я) для миозина и лизоцима приведены в обзоре [19]), поскольку все аминокислоты, за исключением глицина ( и занимающего особое положение пролина) содержат атом, ограничивающий конформационную свободу аланинового дипептида. В работах [91, 19] был проведен такой анализ точки, соответствующие конформациям отдельных звеньев лизоцима и миоглобина были нанесены на карты — и при этом оказалось, что действительно громадное большинство точек попадает в разрешенные или частично разрешенные области. Для карты рис. 7 почти все точки заключены внутри контура 3 ккал моль, для карты рис. 8 — [c.122]

    При анализе гидантоинов большую колонку (95 см) промывают вначале (13 ч) буфером I, а затем в течение 17 ч буфером П на короткой колонке (15 см) используют буфер ПГ. Сопротивление длинной колонки 1 атм, короткой — 0,1 атм. Следует иметь в виду, что при скорости подачи более 10 мл/ч разрешение резко падает. Поэтому на таких колонках работают при низком давлении. Порядок выхода гидантоинов на длинной колонке следующий аргинин, треонин, серин, глицин, аланин, аспарагиновая кислота, глутамин, гистидин, лизин, валин, пролин, изолейцин, метионин и лейцин. На выходе короткой колонки вначале появляется сумма аминокислот (в виде двух пиков), а затем фенилаланин и тирозин. [c.382]

    Анализ пептида показал, что в качестве составляющих аминокислот в него входят глицин, аланин и фенил- [c.173]

    Кислые и нейтральные аминокислоты, смола иЦ-ЗО, литий-цитратные буферы. В общем по мере увеличения концентрации ионов лития время анализа сокращается. При увеличении концентрации Ы+ с 0,20 до 0,35 н. глутаминовая кислота элюируется значительно раньше, вплоть до совпадения ее пика с пиком аспарагина. Пролин и глицин не разделяются, а цистин элюируется вместе с валином. Не разделяются также метионин и цистатионин, а р-аланин элюируется вместе с фенилаланином. [c.44]

    Обсуждение. Порядок выхода аминокислот на этой колонке такой же, как и на длинной колонке, заполненной смолой иК-ЗО (см. рис. 6), с той лишь разницей, что содержащиеся в пробе цистеиновая кислота, таурин и мочевина будут элюироваться несколько раньше. При использовании колонки (26 см), заполненной смолой иН-40, величина отношения высоты впадины между пиками к высоте большего пика пары разделяемых аминокислот равна для пары треонин-серин 0,40, серин — глутаминовая кислота 0,23, глицин —аланин 0,10 и тирозин — фенилаланин 0,16. В условиях данного анализа цистин выходит между пролином и глицином, а гистидин — до лизина. После лизина вымываются аммиак и аргинин. Состав буферов приведен в табл. 2. [c.72]

    В отличие от белков к-т-е- -группы фибриллярные белки группы коллагена растяжимы не более чем на 10%. Рентгенограммы белков этих двух групп также различны. Коллаген не встречается в растениях, но составляет около 7з всех белков организма животных, являясь составной частью хрящей, сухожилий, костей и кожи. Анализ аминокислотного состава коллагена показывает, что на 7з он состоит из глицина. Цистеин и триптофан в нем не встречаются, а количество серусодержащих и ароматических аминокислот очень невелико. Около 20% аминокислот в коллагене составляют пролин и оксипролин. Последняя аминокислота, так же как и оксилизин, встречается только в коллагене и родственных ему белках. Есть основания считать, что гидроксильные группы этих аминокислотных остатков появляются в белке уже после синтеза всей полипептидной цепочки. [c.249]

    Результаты. Данный метод был испытан в анализах глицина, глутаминовой кислоты, тирозина, лизина и валина. Количество азота, полученного в анализе первичных аминов, отличалось от теоретического не более чем на 0,5%. Для того чтобы не допустить быстрой реакции кислых аминокислот с нитритом натрия и связанных с этим потерь азота, аминокислоты предварительно растворяли в 0,5 н. раствора едкого натра. [c.293]

    Для всех определений, основанных на выделении азота, характерны три типа трудностей. Первая трудность связана с тем, что окислительно-восстановительные реакции протекают неоднозначно и возможны побочные реакции. Следовательно, процесс протекает не стехиометрически даже для таких соединений, как аминокислоты, которые быстро реагируют при комнатной температуре. Поэтому, например при анализе глицина, возможна ошибка от 3 до 9%, в зависимости от условий реакции. Вторая трудность, характерная для анализа амино-групп, связана с тем, что не все эти группы реагируют с одинаковой скоростью, так как радикал при аминб-группе оказывает глубокое влияние на окислительно-восстановительную реакцию. Многие аминокислоты полностью реагируют за 5 мин при комнатной температуре, для алкил-аминов требуется от 0,5 до 1 ч, некоторые ариламины реагируют лишь при повышенной температуре, тогда как другие вообще не реагируют до конца. Наконец, ряд органических соединений ок- [c.62]

    За 1940—1950 гг. рентгеноструктурному исследованию были подвергнуты не только различные аминокислоты и кристаллические пептиды, но и многочисленные белки. Молекулярные веса веществ, изученных при помощи рентгеноструктурного анализа, начиная с аминокислот типа глицина и аланина, кончая белком вируса карликовой кустистости томатов, охватывали че-тыре-пять порядков. Но дальнейшее увеличение числа подвергнутых анализу веществ уже, по-видимому, не могло дать новых сведений о строении белковой молекулы. В результате, в 1950 г. усилия большинства рентгенологов были направлены не столько на расширение числа объектов исследования, сколько на углубленный анализ уже имеющихся данных , так говорила на симпозиуме в Колд Спринг Харбор Д. Кроуфут-Ходжкин [27]. [c.144]


    Методом газовой хроматографии удалось также разделить триметилси-лиловые производные аминокислот [43]. Эти производные готовят, обрабатывая соли аминокислот триметилхлорсиланом или воздействуя Ы-триметил-силилдиалкиламинами на свободные аминокислоты. При этом карбоксильные и аминогруппы взаимодействуют, и в результате получаются триметилсили-ловые эфиры Ы-замещенных аминокислот. Производные глицина, аланина, лейцина, изолейцина, валина, глутаминовой кислоты и фенилаланина можно разделить при 165° на колонке (280 см), заполненной силиконовым маслом на стерхамоле (30 70). Производные фенилаланина элюируются через 28—30 мин. Результаты воспроизводятся с точностью до 0,5% при использовании метода измерения площадей под пиками и применении ТК-ячейки в качестве детектора. Авторы указывают, что эту реакцию можно провести почти количественно со всеми доступными аминокислотами, но не приводят данных по хроматографическому анализу высокомолекулярных соединений, таких, как производные триптофана и гистидина. [c.535]

    Аминокислоты существуют на нашей планете более трех миллиардов лет. Это доказано исследованием ископаемых микроорганизмов углеродсЬдержащих кремниевых остатков из докембрийского геологического периода с помощью рубидиево-цезиевого метода датирования. Существуют они и вне Земли, что показано хроматографическим анализом органических частей метеоритов. В водных экстрактах лунных пород найдены следы глицина и аланина. [c.9]

    Аминокислотные анализы водных экстрактов образцов лунного грунта, проведенные в рамках американской программы Аполлон , показали присутствие глицина и аланина. Еще четыре аминокислоты были обнаружены с помощью газовой хроматографии в кислотном гидролизате экстракта. Это Glu, Ser, Asp, Туг. Спектроскопические данные одиозиачио показывают присутствие NH3, НСНО и H N в космическом пространстве. В луниых пробах также обнаружены исходные продукты для абиогенного образования внеземных аминокислот СН , Nj, СО, СО2, H N (20 — 70 нг/г). Возможно, правда, что часть предшественников аминокислот происходит от газов земных ракет. [c.48]

    Проведен анализ некоторых субъединиц (табл. 6Б.14). Результаты, полученные Данно и др. [76], подтверждают различие субъединиц глютеинов по составу. По содержанию глицина, пролина, тирозина, фенилаланина и основных аминокислот субъединицы с молекулярной массой свыше 90 000 Да можно отличить от других. Среди субъединиц с более высокой молекулярной массой субъединица 95 000 Да превосходит другие по содержанию основных аминокислот. [c.206]

    Анализы высокоочищенных субъединиц [79, 111] подтверждают, что субъединицы с высокими молекулярными массами (90 000, 132 000, 144 000 Да) имеют повышенное содержание глицина, но количество его у разных белков может варьировать. Кроме того, содержание лизина у них выше, чем у других глютенинов или глиадинов, но общее содержание основных аминокислот изменчиво. Имеются также многочисленные мелкие различия между этими тремя субъединицами. Кроме этого, их состав не-идентичен тому, который установили Данно и др. [57] для субъединиц эквивалентной молекулярной массы. Но эти авторы разделяли фракции по их молекулярной массе таким образом, была выявлена гетерогенность этих фракций [57, 98, 111], особенно субъединиц с высокой молекулярной массой [92]. [c.206]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]

    В методе анализа аминокислот и пептидов, предложенном Бови и Тайерсом [78], в качестве растворителя используется трифтор-уксусная кислота. Преимущества этого растворителя по сравнению с водой или 020 в том, что он позволяет точно определить значения химических сдвигов. Трифторуксусную кислоту можно использовать и в качестве стандарта. Для этого приготавливают ее растворы с концентрацией 207о (вес/объем). Глицин, цистеин и цистин менее растворимы в этой кислоте, однако можно получить и их спектры. В анализе, описанном в работе [78], спектры были получены при частоте 40 МГц. Анализируемые растворы приготавливали, растворяя 100 мг анализируемого соединения в [c.306]

    Полярографический анализ аминокислот (глицина, аланина) может быть проведен также после их реакции с пировиноград-ной кислотой или ацетоном [66, 67]. Можно также использовать реакцию аминокислот с фталевым альдегидом о концент-.рации аминокислоты судят по снижению высоты волны фтале-вого альдегида (Нортон, Фурман см. [66, с. 7]). [c.64]

    Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа. Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсины ботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого — проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка. Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом. [c.426]

    Аминокислоты белковых гидролизатов разделяют на колонке 0,9x150 см в две стадии. Вначале 0,2 н. буферным раствором с pH 3,25 элюируют кислые и часть нейтральных аминокислот, а после выхода глицина (250 мл 8 ч 20 мин) насос переключают на подачу второго 0,2 н. буферного раствора с pH 4,25, которым элюируют остальные нейтральные и ароматические аминокислоты (тирозин и фенилаланин). В соответствии с константами диссоциации тирозин и фенилаланин должны элюироваться в меньших объемах их задержка объясняется адсорбцией на матрице ионита. Основные аминокислоты элюируются с большой задержкой, ускорить их выход можно лишь существенным увеличением концентрации буфера. Однако это в свою очередь вызывает дрейф нулевой линии, изменение объема смолы и ряд других отрицательных последствий. Поэтому элюирование заканчивают, а оставшиеся аминокислоты вымывают разбавленным раствором гидроокиси натрия. Вторую половину образца хроматографируют на короткой колонке (15 см) в 0,38 н. буфере с pH 5,28. При этом вначале получают суммарный пик кислых и нейтральных аминокислот, а затем в области между триптофаном и аргинином элюируют основные аминокислоты. При скорости подачи 30 мл/ч и 50 °С общее время анализа составляет 21 ч 30 мин (16 ч 30 мин и 5 ч). Хроматограмма стандартной смеси аминокислот приведена на рис. 32.12. [c.343]

    Установлено, что действующими веществами каланхое является комплекс веществ кислотного характера (органические кислоты), в том числе аминокислоты, полисахариды, флавоноиды, катехипы, микроэлементы и др.). Наличием этих соединений в значительной мере обусловлено нротивовоснолительное и усиливающее регенерацию тканей действие. Проведен аминокислотный анализ и подтверждено наличие 12 аминокислот аспарагиновая кислота, треопип, серии, глутаминовая кислота, глицин, аланин, валин, лейцин, фенилаланин, гистидин, изолейцин, аргинин основные органические кислоты - яблочная, лимонная, щавелевая. [c.48]

    В настояш ее время некоторыми авторами высказывается идея о том, что распределение полярных и неполярных аминокислот вдоль полипептидной цепи является одним из важных элементов кодирования пространственной структуры глобулярных белков. Еще Фишером [55] было показано, что соотношение суммарных объемов полярных и неполярных аминокислотных остатков может обусловливать форму белковой молекулы (сферическую или вытянутую), а также способность образовывать четвертичные структуры. Анализ, проведенный Перутцем, Кендрью и Уотсоном [66] на примере восемнадцати аминокислотных последовательностей в различных миоглобинах и гемоглобинах, показал, что из 150 остатков, входящих в эти молекулы, 33 находятся в местах, экранированных от контакта с водой, т. е. во внутреннем ядре белковой глобулы, причем 30 из 33 являются неполярными аминокислотами (глицин, аланин, валин, лейцин, изолейцин, фенилаланин, иро-лин, цистеин, метионин, тирозоин и триптофан). Это наводит [c.16]

    Анализ таблицы показывает, что в первом растворителе (За) плохо разделяются валин и метионин, не разделяются глицин и аспарагиновая кислота, а во втором (46) вместе движутся аргинин и аспарагиновая кислота и близко друг к другу — глицин и серии. Для разделения аминокислот, дающих одно пятно в бутанольно-водном растворителе, применяли смесь фенола с фосфатным буфером с рН=12. Кроме того, для увеличения разрешающей способности растворителя для веществ с близкими Rf на пятно аминокислот на стартовой линии несколько раз наносили порции растворителя. При этом аминокислоты перемещаются на периферию пятен и проявляются в виде колец. Удовлетворительное разделение аминокислот при использовании бутанольно-водных растворителей достигается через 36 ч. Увеличение времени протекания растворителя не улучшает разделения, но пятна аминокислот получаются диффузными, особенно у веществ с большой величиной Ег (валин, метионин, лейцин). [c.214]

    Точную аналогию с определением соответствующих элементов с помощью изотопного разбавления представляет использование меченых атомов для определения соответствующих соединений, присутствующих в смеси. Количественное определение содержания данного вещества в смеси обычными методами требует реагента, специфичного для этого вещества. Если такого реагента не существует, то необходимо количественно выделить индивидуал)эНое соединение из смеси. Применение предположительно специфического реагента опасно при наличии в смеси соединений со сходной структурой. Выделение индивидуального соединения обычно ставит нас перед альтернативой выделение малого количества рассматриваемого соединения без примесей либо полное его выделение с примесями чистота и полнота выделения взаимно исключают друг друга. В качестве примера можно привести исследование [1701] гидролизатов белков, содержащих около 24 а-аминокислот, количественное содержание которых должно быть определено для установления структуры белка. При использовании метода изотопного разбавления, представляющего единственный метод полного анализа, необходимо синтезировать каждую из имеющихся а-аминокислот в изотонически обогащенной форме. Например, глицин, содержащий обогащенный азот, образует неразделимую смесь с необогащенным глицином. Выделение малых количеств чистого глицина с последующим измерением отношения в нем позволит точно оценить содержание глицина в смеси. [c.114]

    Двухчасовой метод анализа, смола иК-ЗО для кислых и нейтральных аминокислот. При увеличении pH первого буфера (pH 3,488 0,20 н. раствор) ухудшается разрешение сдвоенных пиков аминокислот треонина и серина. Кроме того, ухудшается разделение между пиками серина и глутаминовой кислоты, глицина и аланина. Цистин в этом случае элюируется быстрее и лучше отделяется от глицина. [c.41]

    Кислые и нейтральные аминокислоты, смола иЯ-40. Повышение концентрации цитрата с 0,066 до 0,133 М не изменяет положения глутаминовой кислоты относительно пролина или цитруллина при следующих условиях анализа pH буфера 3,175, концентрация ионов натрия 0,18 н., температура колонки 32,5 °С, скорость течения буфера 60 мл/ч. При увеличении концентрации цитрата улучшается разделение аспарагина и треонина до 0,40 (соотношение вы от впадины и пика). При более высокой концентрации цитрата большинство аминокислот элюируются быстрее. Значительно улучшается разделение глицина и аланина сжимаются пики пролина, глутаминовой кислоты и цитруллина. [c.45]

    Кислые и нейтральные аминокислоты. Эти аминокислоты анализируются в тех же условиях, что и основные аминокислоты, за исключением элюирующих буферов. Вначале аминокислоты элюируют 0,2 н. натрийцитратным буфером pH 3,488+0,005, который через 30 мин после начала анализа заменяют на 0,2 и. натрийцитратный буфер pH 4,404 0,010. Продолжительность анализа 115 мин. Следует отметить, что в таких условиях в отличие от четырехчасового анализа цистин элюируется до глицина, между пиками пролина и глицина. (Состав буферных растворов см. в табл. 2.) [c.60]

    Нингидриновый метод применим не ко всем аминокислотам и не используется больше, по-видимому, с 1960 года. В результате этого метода глицин образует полимеризующийся формальдегид, тогда как гистидин, аргинин, триптофан, цистеин, аспарагиновая и глутаминовая кислоты, очевидно, не пригодны для анализа этим методом [7]. В качестве жидкой фазы использовали и силиконы [7, 164, 158], и полиэфиры [4, 149]. Предпринимались попытки [121] декарбоксилирования в присутствии N-бромсукцинимида (БСИ), однако образующиеся нитрилы и альдегиды, содержащие на один углеродный атом меньше, имели различные количественные соотношения в зависимости от характера аминокислоты. [c.89]

    Гурд и др. [193] подтвердили такой механизм, установив, что (ГлиГли — СиОгН) катализирует гидролиз /г-нитрофенилацетата. Ли с сотр. [197] показал, что скорость гидролиза эфиров аминокислот возрастает при увеличении константы комнлексо-образования. Анализ спектров протонного магнитного резонанса эфиров аминокислот (этилового эфира глицина, метилового эфира оксипролнна и метилового эфира фенилаланина) позволяет сделать вывод, что металлы [С( (11) и Сп(П)] связываются как с аминогруппами, так и с эфирными карбонильными группами. В случае этилового эфира цистеина ионы металла образуют связи как с аминогруппами, так и с сульфгидрильными группами. В последнем случае константа скорости щелочного гидролиза комплекса кадмия с эфиром цистеина (1 1) в 11 раз больше скорости гидролиза эфира цистеина без образования комплекса. [c.129]

    У глицина отношение числа биполярных молекул к числу незаряженных молекул очень велико. Ионизация карбоксильной группы глицин-катиона начинается практически до того, как происходит отщепление протона от группы МН .Это характерно и для других аминокислот. Но если радикал К аминокислот содержит какие-либо дополнительные кислотные и основные группы, ионизация приобретает более сложный, конкурентный характер. Одновременную ионизацию двух карбоксильных групп глутаминовой кислоты можно дифференцированно определить путем сравнения констант ионизации ее обоих моноэфиров с константой ионизации самой кислоты. Такой метод применим и при анализе одновременной ионизации аминной и сульфгидрильной групп цистеина, а также аминной и фенольной групп тирозина. Ионизация карбоксильных групп этих соединений начинается до того, как она проявляется в заметной степени в остальных [c.91]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Джонсону с сотрудниками [38] удалось хроматографически проанализировать 33 аминокислоты в виде амиловых эфиров К-ацетилпроизводных, включая 17 протеиновых, применяя низкие отношения стационарной фазы к твердому носителю и осуществляя хроматографическое разделение смеси аминокислот на сдвоенных колонках при различных температурах. Первая колонка длиной 2,4 м содержала 1% Карбовакса 1540, нанесенного на хромосорб W (60 —80 меш). С этой колонки при 125° за 25 мин элюировались производные аланина, валина, изолейцина и лейцина. После этого температуру колонки быстро повышали до 148° для анализа производных глицина, -аланина, пролина, треонина, серина, цистеина, метионина, фенилаланина, оксипролина и аспарагиновой кислоты, которые элюировались из колонки в порядке перечисления (рис. 6). [c.263]

    Вследствие относительно высокой упругости паров соединений, содержащих фтор [50], газо-жидкостная хроматография применяется для разделения К-ТФА-эфиров ди-, три- и тетрапептидов, Газо-хроматографический анализ различных летучих производных коротких пептидов проводился рядом автором [51—56]. Бименом и Веттером, например, осуществлено хроматографическое разделение N-aцeтилиpoвaнныx аминоспиртов и полиаминов, полученных из лейцил-аланина, глицил-фенилаланина, фе-нилаланил-глицина, лейцил-аланил-пролина и лейцил-аланил-глицил-лейцина с последующим масс-спектрометрическим определением последовательности аминокислот в пептидных цепях [53]. Однако наибольшего успеха удалось достигнуть при применении, как и в случае разделения аминокислот, К-трифторацетилирован-ных метиловых эфиров (рис. 9). Указанный метод, по-видимому, имеет ограниченное применение при исследовании структуры пептидов [64] и степени рацемизации при их синтезе [55]. [c.267]

    С высоким сродством к электронам устраняет необходимость калибровки при детектировании и сводит к минимуму очистку образцов перед их хроматографическим определением, что особенно важно при анализе природных продуктов. ]У1етиловые эфиры ДНФ-производных были использованы для идентификации аминокислот, образующихся при гидролизе полипептида грамицидина А [58] (рис. 10). Аланин, валин, глицин, лейций и изолейцин определялись количественно с точностью до 2 % при хроматографическом разделении на двухметровой колонке с силиконовой жидкой фазой ЗЕ-ЗО. Наиболее полное разделение некоторых нейтральных алифатических и дикарбоновых аминокислот в виде фенилтиоги-дантоинов и метиловых эфиров ДНФ-производных получено при анализе на колонке с фторированным силиконовым полимером РР-1 и низким содержанием стационарной жидкой фазы [59]. [c.268]

    Исследуя реакцию взаимодействия метилизотиоцианата с белками, авторы показали, что при большом избытке реагента (60 мкл) образуется продукт, затрудняюпщй газохроматографическое определение. При анализе бычьего инсулина после первого цикла его расщепления по методу Эдмана на хроматограмме были идентифицированы пики производных глицина и фенилаланина, после второго цикла — пики производных второй пары аминокислот изолейцина и валина. Пик производного глицина может быть экранирован пиком производного валина. [c.34]


Смотреть страницы где упоминается термин Аминокислоты, анализ глицин: [c.357]    [c.137]    [c.532]    [c.64]    [c.479]    [c.24]    [c.148]    [c.235]    [c.98]    [c.261]   
Методы химии белков (1965) -- [ c.26 , c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния

Глициния аминокислот



© 2025 chem21.info Реклама на сайте