Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь, анализ кислорода

    В одном из приборов для определения углерода в стали анализ сводится к следующему. Навеску стали (в виде стружек) сжигают в токе горячего кислорода. Газ пропускают через раствор гидроокиси бария. Углекислый газ, образующийся из углерода образца, поглощаясь раствором, выделяется в виде нерастворимого карбоната бария. Электропроводность раствора измеряют до и после сжигания. Опишите метод калибровки упомянутого прибора посредством образцов химически чистого карбоната кальция, взятого в качестве исходного вещества. Начертите калибровочную кривую, обращая внимание на правильное обозначение осей координат. [c.32]


    Наиболее простое решение — это использование алюминия однако это решение не заметили в прошлом, когда анализ кислорода стал важным. Этот пример хорошо показывает, что при конструировании дозаторов внимание к мелочам очень важно. [c.127]

    Продувку ведут до достижения в металле заданного содержания углерода, определяемого результатами анализа стали, объемом израсходованного кислорода и временем продувки. [c.85]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]

    Если количество железа определяется в растворе, содержащем кроме Ее- -ионов также ионы Ее +, то последние предварительно восстанавливаются до железа (П). Так поступают, в частности, прн анализе чугуна, стали и железных руд после растворения их в серной кислоте. Все операции приготовления рабочих растворов, содержащих Ее-+-ионы, и сам процесс титрования следует проводить по возможности быстро, чтобы сократить время контакта растворов с кислородом воздуха. [c.106]


    Закон распределения имеет большое значение для анализа металлургических процессов. Чугун и шлак, сталь и шлак, шлак и штейн представляют собой пары несмешивающихся жидкостей, между которыми распределяются различные растворяющиеся в них элементы или соединения. Это явление используют для рафинирования расплавленных металлов от вредных примесей. Например, сталь очищают от серы, фосфора и кислорода при помощи жидкого шлака, в который переходят эти элементы. Распределение серы между железом и шлаком, состоящим только из окислов железа при 1600° С, характеризуется отношением [c.100]

    Мартеновскую сталь производят в отражательных печах, т. е. в таких печах, в которых пламя отражается от потолка камеры сгорания и нагревает загруженный материал. Чугун плавят со стальным скрапом и некоторым количеством гематита в печи, обогреваемой газообразным или жидким топливом. Горючее и воздух (иногда обогащенный кислородом) предварительно нагревают, пропуская через камеры с горячей насадкой из огнеупорного кирпича, расположенные по одну сторону печи аналогичные камеры, расположенные по другую сторону печи, обогреваются выходящими из печи газами. Время от времени направление потока газов изменяют на обратное. Углерод и другие примеси, содержащиеся в расплавленном железе, окисляются гематитом и избытком воздуха, поступающим в печь вместе с газом. В процессе плавки производят анализы (плавка занимает примерно 8 ч) и, когда почти весь углерод окисляется, добавляют необходимое для данной марки стали количество кокса, или высокоуглеродистого сплава, обычно ферромарганца, или зеркального чугуна. Затем расплавленную сталь разливают в изложницы, где она затвердевает в виде слитков (болванок). Мартеновскую сталь можно получить вполне определенного качества, благодаря тому что данный процесс подвергается строгому аналитическому контролю на протяжении нескольких часов плавки. [c.550]

    При использовании пламенно-ионизационного детектора в газовый поток, выходящий из колонки, добавляют водород в качестве газа-носителя при этом используют азот или гелий, причем водород и газ-носитель смешивают в отношении 1 1. Полученную смесь направляют в горелку и сжигают в воздухе или кислороде. Ионы, образующиеся при сгорании органических веществ, уменьшают электрическое сопротивление пламени пропорционально количеству сгоревшего вещества. К горелке и электроду, который расположен над пламенем или сбоку от него, прикладывают разность потенциалов (100—300 В). Величина возникающего при этом тока зависит от сопротивления пламени, и она после усиления непрерывно регистрируется самописцем. Этот детектор имеет прекрасную чувствительность, его характеристика линейна в широком диапазоне концентраций (10 ), он обладает малой инерционностью, замечательно стабилен, чувствителен ко всем органическим соединениям, нечувствителен к неорганическим соединениям, на его работу не влияют небольшие изменения температуры и скорости газового потока. Наряду со всеми этими качествами он прост в обращении и благодаря этому стал одним из наиболее популярных, если не самым популярным, из ГХ-детекторов. Для точного количественного анализа с применением этого детектора для каждого соединения необходимо определить соответствующие коэффициенты отклика. [c.430]

    Для определения углерода в титане и его сплавах углерод окисляют до двуокиси углерода, нагревая пробы при температуре приблизительно 1200 °С в атмосфере кислорода. В этом методе аппаратура аналогична используемой для определения углерода в стали, но анализ титансодержащих продуктов требует специальных мер предосторожности при окислении пробы в связи с высокой экзотермич-ностью реакции. [c.27]

    Все трубопроводы от баллонов с аргоном до входа в штативную часть должны быть выполнены из медных трубок диаметром 6—8 мм. После сборки установки все узлы испытывают на герметичность. Даже незначительное попадание воздуха в зону разряда может привести к грубым ошибкам в анализе. Для получения удовлетворительных результатов при анализе чугунов и сталей окончательное содержание кислорода в аргоне должно быть не более [c.75]

    В целях анализа полый катод впервые был применен Фришем в 1934 г. для определения содержания компоненты с высоким потенциалом возбуждения в смеси легковозбуждаемых газов, например аргона в воздухе . С конца 40-х годов полый катод находит применение для анализа галогенов, позднее — для изотопного спектрального анализа, определения примесей в тугоплавких основах, анализа сталей (определение кислорода и обычных примесей) [27—33]. [c.46]

    В настоящее время для удаления паразитов (гельминтов), в частности аскарид, довольно эффективно стал применяться кислород. Во многих случаях, несмотря на отрицательный результат ряда клинических анализов на яйца глистов, когда аскаридоз устанавливается только по ряду характерных признаков, наличие аскарид подтверждалось применением кислорода. На самом деле при наличии аокарид-самцов анализы на их присутствие беспредметны. [c.54]

    Сопоставление результатов анализа кислорода в стали спектральным методом и методом вакуумплавления (в весовых %) [c.403]


    Очевидно, что для успешного определения О2 II N2 этим методом необходимо перейти к высокотемпературному индукционному нагреву пробы, а в ряде случаев, вероятно, будет необходимо применение рас-кисляюш,их ванн, например платиновых, подобно тому как это делается при определении кислорода в титане и цирконии с по-ыош ыо дуги. Так как исследования пока ограничивались применением техники нагрева и уравновешивания, исиользовапной для определения водорода, то число металлов, подвергавшихся анализу, было очень ограничено. Содержание азота определялось только в железе и некоторых сталях, а кислорода — в сравнительно легко отдаюгдпх его металлах — кобальте и железе. [c.208]

    Для получения удовлетворительных результатов при анализе чугу-нов и сталей содержание кислорода в аргоне должно быть не более 5-10 %. Следует отметить, что требования к чистоте аргона различны в зависимости от композиции элементов в сплаве. Чем больше концентрация кремния в пробе, чем чище должен быть аргон. [c.224]

    О количестве поглощенной составной части судят по уменьшению объема газа. Газоволюмометрический метод анализа используют для определения того или иного элемента или вещества путем измерения объема газа, образующегося в результате химпческо11 реакции. Так, содержание углерода в чугунах и сталях определяют обычно по объему СО2, пол ,- ающе юя при сжигании навески образца в токе кислорода при 1000—1250°С в специальной электрической печи [c.13]

    За последние 150 лет параллельно с развитием основных теоретических представлений в области химии выяснялся общий состав нефти [14]. Однако замечательное постоянство химического состава сырых нефтей стало понятным лишь около 40 лет назад. Ш. Ф. Мабери на основании многочисленных и тщательно выполненных анализов нашел, что даже наиболее различающиеся между собой нефти содержат от 83 до 87 % углерода, от И до 14% водорода, а также кислород, азот и серу в количествах от 2 до 3% [28]. Он показал, что это постоянство может быть объяснено очень просто, если предположить, что каждая нефть представляет собой смесь небольшого числа гомологических рядов углеводородов, причем число индивидуальных членов каждого ряда может быть очень велико. Различие между двумя любыми нефтями заключается в вариациях содержания каждого ряда и содержания индивидуальных углеводородов, присутствующих в каждом ряду. Природа гомологических рядов, составляющих нефть, такова, что эти вариации но оказывают большого влияния на состав общей смеси. Таким образом, в результате, несмотря на некоторые различия, элементарный состав одной нефти весьма близок к элементарному составу другой нефти. Этот общий вывод имеет важное техническое значение, так как позволяет получать довольно однородные нефтяные продукты из нефтей различного состава. Вместе с тем методы переработки сырых нефтей должны быть весьма разнообразными и обеспечивать получение товарных продуктов в нужном количестве и необходимого качества. Например, небольшое содержание асфальтовых веществ не может заметно отразиться на элементарном составе всей нефти в целом, точно так же, как и увеличение содержания ароматических углеводородов в керосиновой фракции на 10% не может заметно изменить отношение содержания углерода и водорода. Однако каждое из этих изменений может значительно увеличить трудности переработки нефти и уменьшить выход чистых продуктов 2. [c.49]

    Анализ этих материалов выполняют из отдельных навесок. В зависимости от вида металла определяют различные компоненты. Так, в чугунах и углеродистых сталях обязательно определяют содержание углерода методом сожжения пробы в токе кислорода при 1400 °С с последующим измерением объема образовавшегося СО2. Соединения серы определяют сожжением пробы в токе кислорода при 1400 °С и последующим титрованием образовавшейся сернистой кислоты раствором иода. Марганец определяют персульфат-серебряным методом, а кремний — гравиметрическим или фотоколориметрическим методом. Соединения фосфора определяют фотоколориметрическим методом по синей окраске фосформолибденового комплекса. [c.204]

    Г. Лендель, Д. Гофман, Г. Брайт. Анализ черных металлов, Госхимтехнздат, 1934, (612 стр,). Авторы описывают арбитражные и экспрессные методы определения элементов, входящих в состав чугунов и сталей, методы определения кислорода, водорода и азота и включений окислов, методы анализа ферросплавов, а также руд, известгяков, шлаков, угля и других материалов, мета, 1лургнческого производства. [c.491]

    В этом случае использование кинофрагмента служит основой для более глубокого понимания сущности процессов и способствует уяснению вопросов промышленной переработки каменного угля. Кинофрагмент используют как источник новых знаний без предварительного изучения содержащихся в нем сведений на уроках, с последующим анализом и развитием полученных знаний. С таким назначением могут быть использованы фильмы Фтор и его соединения , Строение и свойства кристаллов , Стекло и цемент , Коррозия металлов (раздельно первая и вторая части), Применение кислорода в производстве стали телепередачи-экскурсии Водоочистительная станция , Производство серной кислоты , Производство алюминия и др. [c.143]

    По этому методу органическое вещество подвергают скоростному сожжению в кварцевой трубке без наполнения. Продукты сожжения попадают в раскаленную зону, богатую кислородом, и окисляются до двуокиси углерода и воды. Этот способ, получивший широкое применение в СССР, положен в основу целого ряда методов одновременного определения нескольких элементов из одной навески вещества. Азот в органических соединениях определяют микрометодом Кирсте-на. По этому методу навеску сжигают в кварцевой трубке при 1050° С. Вместо окиси меди и металлической меди используют окись никеля и никель. Метод отличается повышенной точностью и высокой полнотой сгорания органических соединений. В современных аналитических лабораториях стали внедряться и автоматические приборы Циммермана для определения элементного состава, отличающиеся простотой конструкции и большой скоростью анализа. [c.42]

    Биогенность. Наиболее характерные случаи ускорения коррозии железа под влиянием жизнедеятельности бактерий наблюдаются в анаэробных условиях, т.е. при отсутствии кислорода. Образование кислорода, необходимого для протекания катодного процесса при коррозии в нейтральных средах, в анаэробных условиях, происходит за счет жизнедеятельности сульфатредуцирующих бактерий, восстанавливающих содержащиеся в почве соли серной кислоты по реакции ЗО "- - 8 + а ион серы участвует во вторичной реакции образования продуктов коррозии железа по реакции Ре 8 -> Ре8. Это подтверждается результатами химического анализа продуктов анаэробной коррозии стали, в которых присутствует наряду с гидратами закиси и окиси железа также больщое количество сернистого железа. [c.46]

    Развитие коррозии под напрйжениём в зоне очага разрушения обусловливает наличие там специфических продуктов коррозии. Так, выполненный на установке УРС-60 в излучении железного анода рентгенофазовый анализ отложений на стенках трещин разрушений в ряде случаев выявил магнетит и сульфиды железа, являющиеся результатом коррозионного взаимодействия механически активированной трубной стали 17ГС с высокосернистой арлаи-ской нефтью. Наличие магнетита указывает на образование коррозионных трещин без доступа кислорода воздуха. Сульфиды железа на поверхности излома были выявлены при воздействии концентрированного раствора азотнокислого кадмия, подкисленного соляной кислотой. О их присутствии свидетельствует желтая окраска, обусловленная наличием сульфида кадмия. [c.228]

    В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонностъ стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49]. [c.39]

    Влияние концентрации растворенного кислорода на коррозию образцов из 181 металла и сплава в морской воде было исследовано в экспериментах, проведенных Строительной лабораторией ВМС США [132]. Был проведен линейный регрессионный анализ данных, полученных при экспозиции 12-мес на глубинах 1,5 760 и 1830 м (содержание кислорода 5,75, 0,4 и 1,35 мг/кг соответственно). Линейное возрастание скорости коррозии при повышении концентрации кислорода в морской воде наблюдалось для следующих металлов углеродистые и низколегированные стали, чугун, медные сплавы (за исключением Мунц-металла и марганцовистой латуни марки А), нержавеющая сталь 410, сплавы N1—200, Моннель 400, Инконель 600, Инконель. 750, №—ЗОМо—2Ре и свинец. Скорости коррозии многих других сплавов возрастали с температурой, но зависимость не была линейной. Многие сплавы не подвергались коррозии в течение года ни в одной из испытывавшихся партий образцов. К таким металлам относятся кремнистые чугуны, некоторые нержавеющие стали серии 18Сг—8М , некоторые сплавы систем N1—Сг—Ре и N1—Сг—Мо, титановые сплавы, ниобий и тантал. [c.176]

    Такую подготовку чашечки следует производить не позднее, чем за 1—2 часа до анализа с тем, чтобы весь эфир успел испариться. Перед взятием навески чашечку, покрытую коллодийной пленкой, взвешивают. Зная вес чашечки без пленки, определяют вес последней. Затем через тубус с помощью тонкой пипетки, которая должна свободно входить в тубус, оставляя при этом место для выхода вытесняемого жидкостью воздуха, наливают в чашечку исследуемую жидкость и взвешивают, закрыв тубус платиновой крышечкой. Чашечку с навеской ставят в кольцо внутренней арматуры бомбы и приводят запальную проволочку в соприкосновение с покрывающей чашечку пленкой. Пр Сжде чем закрыть бомбу, тонкой иглой делают в пленке 2—3 прокола, чтобы при наполнении бомбы кислородом пленка не была разорвана его давлением. За последнее время во ВТИ, по предложению Жуковской, вместо коллодия пленку для покрытия чашечки Зубова стали приготовлять из раствора кино- или фотопленки в ацетоне. Теплотворная способность такой пленки должна быть установлена отдельными опытами. Кроме чашечки Зубова для сжигания легко летучих веществ применяются же- [c.189]

    Большинство белков н<ивой клетки характеризуется значительно более сложным способом свертывания цепи по сравнению с фибриллярными белками . Первым белком, для которого методом рентгеноструктурного анализа была установлена полная трехмерная структура, стал миоглобин — небольшой (мол. вес 17 500) кислород-связывающий белок, присутствующий в мышцах. 153 аминокислотных остатка миоглобина распределено в основном по 8 а-спиральным участкам различной длины, содернощим от 7 до 26 остатков. Спиральные участки, имеющие вид прямолинейных стерн<ней, расположены в пространстве весьма нерегулярным образом, как это показано на рис. 2-8. Рисунок не дает полного представления о строении белка, поскольку пространство мен<- [c.94]

    Ход анализа. Пробу стали (0,1 г) поместить в маленькую пробирку и растворить в 3 д<л сериой кислоты (1 3). По растворении добавьте около 50 мг персульфата аммония и прокипятите раствор до разрушения персульфата (прекращение выделения пузырьков кислорода), К охлажденному раствору прибавьте 5 капель фосфорной кислоты (плотностью 1,7) и 10 капель 3%-ной перекиси водорода. В присутствии ванадия наблюдается появление четкого красновато-бурого кольца, что обусловлено образованием надванадиевой кислоты в месте соприкосновения слоев перекиси водорода н испытуемого раствора. При кипяченин и взбалтывании раствора кольцо разрушается. Если же в охлажденный раствор вновь прибавить перекись водорода, то кольцо опять появится. [c.160]

    Тетрапиррольные пигменты, представляющие собой группу соединений со столь жизненно важными биологическими функциями, изучались чрезвычайно интенсивно. Поэтому о механизмах их образования и функционирования известно больше, чем в случае какой-либо другой группы пигментов. Установление трехмерных структур миоглобина и гемоглобина и механизма, с помощью которого гемоглобин функционирует в транспорте кислорода, представляет собой один из классических образцов научного исследования. Во многом ясным стал также путь, по которому хлорофиллл используется как главный светособирающий пигмент в фотосинтезе (гл. 10). Основные аспекты биосинтеза порфиринов (и коррина), в том числе его детали и стереохимия, изучены в очень элегантных опытах с помощью классических радиоизотопных методов и усовершенствованных методов введения и анализа -метки. Желающий изучать биосинтез порфиринов не смог бы сделать ничего лучшего, чем прежде всего внимательно прочитать эти работы. Тем не менее даже при таком положении вещей ход некоторых биосинтетических превращений до сих пор полностью не установлен. Для изучения образования бактериохлорофиллов, необычных хлорофиллов с и d яз водорослей, модифицирован- [c.219]

    Анализ материалов металлургического производства описан в работе [517], анализ тугоплавких соединений — в [406]. Обзор работ за 1970—1971 гг. по анализу железа и стали дан в [1344]. Для разложения наиболее часто применяют сжигание образца в токе кислорода. В зависимости от типа сплава применяют различные плавни. Жаропрочные сплавы и ферросплавы сжигают в струе кислорода при 1380—1400° С с применением меди в качестве плавня, для феррохрома в качестве плавня применяют медь и окись меди, ферросилиций сжигают при 1400—1420° С (плавень — металлическая медь), силикохром — при 1400—1450° С (плавень — медь или окись меди) [517]. [c.202]

    Порядок работы. Навеску сплава 0,5 г с плавнем помещают в прокаленную фарфоровую лодочку. Крючком из жаропрочной стали устанавливают лодочку в фарфоровую трубку, нагретую до 1300 °С и закрывают трубку герметическим затвором. Расход кислорода во время сжигания автоматически устанавливается в 1,5—1,8 л/мин. Миллиамперметр усилителя рН-метра показывает понижение pH поглотительного раствора. Включается генераторный ток, и на цифровом табло идет непрерывный счет с постепенным замедлением в конце реакции. Продолжительность сжигания навески 2—3 мин. Анализ считается законченным, если цифровые показания на табло не изменяются в течение 1 мин или изменяются на величину хо лостого счета прибора. [c.331]

    Для определения низких концентраций пентахлорфенола в воде был предложен масс спектрометрический метод изотопного разбавления с использованием в качестве эталона меченного по кислороду пентахлорфенола [359] Известное количество меченого соединения добавляли к измеренному объему воды, затем экстрагировали меченое и немеченое соединения Эфирные про изводные анализируемых веществ получали, действуя на экстракт избытком эфирного раствора диазометана Количество пентахлорфенола определялось методом ХМС путем измерения интенсивностей пиков ионов в интервале масс 278—290 Пре дел обнаружения равен 2 10- г, относительное стандартное отклонение 8 % Авторы считают, что этот метод более надежен чем другие методы, в частности, известный метод определения пентахлорфенола в воде с помощью метода СИД по пику ионов с массой 280 Анализ проводили на хроматографе фирмы Va пап Aerograf, модель 2740 (колонка из нержавеющей стали, [c.149]

    Процесс растворения металлов и сплавов в кислых средах принято описывать формулой Ме - Ме (г+) + 1е. Однако электролитическое окисление металлов может принимать иные формы, когда при окислении материала образуется стойкий в данном электролите оксид. В этом случае окисляемый материал становится пассивным, т. е. покрывается слоем пассивирующей пленки. Если ДJ я такого материала построить анодную поляризационную кривую, то она примет вид, показанный на рис. 1.4.12. Когда плотность тока, приложенного извне, превысит порог критической плотности тока, произойдет скачок потенциала, и кислород начнет выделяться на поверхности материала. При потенциале, превышающем точку А (рис. 1.4.12), металл начнет покрываться слоем оксидной пленки — пассивироваться. В интервале потенциалов между точками А и В гальва-ностатический анализ, используемый при оценке коррозионной стойкости сталей и сплавов, становится неприменим, и для анализа состояния материалов принято использовать потенциостатический метод, т. е. при анализе в этой области принято задавать не ток, а потенциал и наблюдать изменение плотности тока в образце. [c.71]

    Общее содержание углерода определяли абсорбционно-газообъемным методом. Метод основан на сжигании навески стали в токе кислорода при 1200—1250 °С с последующим поглощением образовавшегося углекислого газа раствором NaOH. Содержание углерода определяется по разности между объемом газов и объемом, полученным после поглощения углекислого газа раствором щелочи. Так как точность зависит от полноты сгорания навески металла, стружка должна быть достаточно мелкой. Продолжительность газообъемного метода определения содержания углерода составляет 4—6 мин, точность полученных результатов удовлетворяет требованиям маркировочных анализов. [c.367]

    Различные варианты кулономегрического анализа используются для решения разнообразных частных задач аналитической химии, в том числе технического анализа. Известен ряд модификаций метода определения влаги, основанного не на применении реактива Фишера, а на количественном электрохимическом разложении воды, поглош,аемой различными сорбентами [289, 469— 474, 598—601]. Кроме того, описаны методы определения непредельных соединений путем гидрирования их электрогенерированным водородом [602—605], что можно с успехом применить для решения специфических задач органического синтеза. Разрабо таны также способы определения газообразных кислорода, водорода и других газов [606—612]. С помощью кулонометрии давно уже определяют толщину металлических покрытий [53, 613— 622], а также анализируют коррозионные и окисные пленки на различных металлах и сплавах, в том числе на олове [623—627], алюминии [628], меди [629—633], железе (сталях) [634] и других металлах [635]. [c.70]

    Сильное коротковолновое излучение водородных пламен впервые обнаружил Стокс еще, в 1852 г., а полосатый ультрафиолетовый спектр сфотографировали независимо друг от друга в- 1880 г. Лайви нг и Дюар, а также Югинс (1924 г.). Детальный анализ вращательной структуры полос, выполненный Уатсоном (1924 г.) и Джеком (1928 г.), показал, что полосы соответствуют электронному переходу в двухатомной молекуле с небольшим моментом инерции. Единственно возможной частицей, ответственной за это излучение, является гидроксильный радикал ОН. Бонгоффер обнаружил радикал 0Н при введении атомного водорода в кислород (1926 г.) и в парах воды, нагретых до 1000—1600°С (1928 г.). Полный анализ спектра радикала 0Н был проведен в 1948 г. Дике и Кроосуайтом, которые дали классификацию всех полос и ветвей и определили длины волн и интенсивности вращательных линий радикала 0Н, наблюдаемых в спектре водород-кислород-ного пламени в области от 281,1 до 354,6 нм. Позднее получили запись спектра радикала 0Н в области 260—352 м [37]. Полосы ОН могут быть легко получены в спектре поглощения. После того как Кондратьевым и Зискиным в 1936 г. был разработан чувствительный спектроскопический метод линейчатого поглощения, стало возможным экспериментальное определение концентрации гидроксильного радикала в пламени. Гидроксильный радикал был обнаружен в пламени водорода также масс-спектроскопическим методом [38] и методом ЭПР [39]. [c.123]


Смотреть страницы где упоминается термин Сталь, анализ кислорода: [c.338]    [c.556]    [c.113]    [c.49]    [c.56]    [c.57]    [c.84]    [c.56]    [c.233]    [c.72]    [c.69]    [c.86]    [c.930]    [c.931]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.401 , c.411 , c.415 , c.416 ]




ПОИСК





Смотрите так же термины и статьи:

Сталь кислорода

Сталь, анализ



© 2025 chem21.info Реклама на сайте