Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен виды процессов

    В общем виде материальный баланс массообменных (диффузионных) процессов может быть составлен на основе следующих рас-суждений. Обозначим весовые скорости распределяющих фаз вдоль [c.251]

    Все указанные выше основные процессы (гидродинамические, тепловые, массообменные и др.) могут протекать только под действием некоторой движущей силы, которая для гидромеханических процессов определяется разностью давлений, для теплообменных — разностью температур, для массообменных — разностью концентраций вещества и т. д. Выражения движущей силы для различных видов процессов будут рассмотрены в соответствующих главах курса. [c.17]


    В последние годы появились новые типы тарельчатых и насадочных контактных устройств для аппаратов разделения, которые значительно повышают эффективность проводимых процессов и предельные нафузки. В частности известны многие виды насадочных элементов которые успешно работают в массообменных колоннах (процессы ректификации и абсорбции), а так же в сепараторах очистки газов от мелкодисперсных загрязнений. [c.46]

    Разработан метод кинетического расчета массообменных аппаратов для хемосорбционного разделения газов. Метод основан на использовании теоретического значения ускорения массопередачи за счет протекания химической реакции. Метод учитывает принципиальную особенность хемосорбционных процессов изменение кинетических закономерностей в жидкой фазе, движущей силы процесса, коэффициентов массопередачи, соотношения фазовых сопротивлений по высоте аппарата. Учтена специфика влияния реальной структуры потоков газа и жидкости на эффективность хемосорбционных процессов. По предложенной методике коэффициент извлечения передаваемого компонента, степень насыщения хемосорбента и характер распределения концентраций по высоте аппарата определяются при необратимой хемосорбции в зависимости от следующих безразмерных параметров кинетических, стехиометрического, диффузионного и гидродинамических (числа Боденштейна для жидкой и газовой фазы). В общем виде процесс описывается системой нелинейных дифференциальных уравнений второго порядка. [c.224]

    В общем виде материальный баланс массообменных (диффузионных) процессов может быть составлен на основе следующих рассуждений. Обозначим массовые скорости распределяющих фаз вдоль поверхности их раздела, выраженные в килограммах инертного вещества в час, через О и I, а концентрация распре- [c.232]

    Кристаллизация — это процесс выделения твердой фазы в виде кристаллов главным образом из растворов и расплавов. По своей природе кристаллизация является массообменным диффузионным процессом. [c.432]

    Вибрация в химикотехнологических процессах. Вибрационное воздействие успешно используется во всех основных видах процессов химической технологии в механических, гидромеханических, тепло- и массообменных, а также и для проведения химических реакций. [c.16]


    Теоретически существует другая возможность (кроме той, что указана в пунктах 3—5) использования экспериментальных результатов если ход Исследуемого явления удается описать в виде системы уравнений, то, решая ее для новых условий, можно определить ход явлений в этих условиях. В случае физико-химических процессов система уравнений, описывающих явление (например, кинетику реакции, тепло- и массообмен и т. д.), — это обычно система дифференциальных уравнений, которые не удается решить аналитически. Отсюда следует, что метод подобия имеет важное значение, хотя все чаще удается решать сложные системы уравнений благодаря использованию ЭВМ. [c.23]

    В работе [371] исследовался вклад в массообмен пристенных областей авторы дали качественное объяснение различного вида зависимости для эвольвентной и отражательной форсунок, являющегося следствием различного, по их мнению, протекания процессов дробления капель о стенки и коагуляции капель в объеме аппарата. Однако прямого подтверждения этот вьшод не имеет, так как исследования процессов коагуляции и дробления о стенки в полых скрубберах не проводилось. [c.251]

    Этот прием—разбивка колонки на тарелки—представляет по существу замену реальных процессов, непрерывно протекающих в хроматографической колонке, эквивалентным по результатам периодическим процессом, также приводящим к размыванию полосы компонента, введенного на первую ступень такой эквивалентной колонки он полезен тем, что позволяет легко получите уравнение, описывающее форму размываемой полосы. Уравнение такого же вида получается и из диффузионно-массообменной теории, что, как будет показано ниже, позволяет связать обе теории и выразить высоту эквивалентной теоретической тарелки в функции скорости потока газа-носителя. [c.576]

    Повышение температуры ведет к росту толщины незамерзающих прослоек и снижению развиваемого ими расклинивающего давления. Абсолютное значение толщины прослоек зависит от вида изотермы П(/г). Чем выше создаваемое прослойками положительное расклинивающее давление, тем больше и равновесная толщина прослоек при данной температуре. Так как коэффициент ац (при малом гидродинамическом сопротивлении коммуникаций) зависит от Л, то, следовательно, от вида изотермы П(/1) существенным образом зависит также и кинетика массообменных процессов в реальных мерзлых пористых телах. [c.108]

    При проектировании реакторов описываемого типа следует иметь в виду, что характер газового потока и размер пузырьков зависят от скорости потока, определяющей величину межфазной поверхности. Процессы, в которых большую роль играет массообмен, следует проводить при турбулентном режиме верхней границей служит скорость, при которой начинают образовываться газовые пробки. Размеры пузырьков зависят от свойств жидкости — ее вязкости, плотности, поверхностного натяжения и т. д. Высота столба жидкости, зависящая от степени насыщения ее пузырьками газа, также влияет на работу аппарата. [c.360]

    Осуществление термотехнологических процессов в рабочих камерах печей является печным способом получения целевых продуктов за счет превращения исходных материалов при тепловом воздействии на них. К ним относятся следующие виды целенаправленных процессов физические, химические, биохимические, микробиологические, коллоидные и массообменные. [c.16]

    Для сравнительно простых систем, таких, как гидравлические или тепловые с однофазным потоком, принцип подобия и физическое моделирование оправдывают себя, оперируя ограниченным числом критериев. Для сложных систем и процессов, описываемых сложной системой уравнений с большим набором критериев подобия, которые становятся, одновременно несовместимыми, использование принципов физического моделирования наталкивается на трудности принципиального характера. Они заключаются в том, что не существует уравнений движения двухфазных потоков общего вида, отсутствует возможность задать граничные условия на нестационарной поверхности раздела фаз. Тем более не представляется возможным написать уравнения общего вида для двухфазной системы, осложненные массообменом. [c.131]

    Общие кинетические уравнения (VII. 22) и (VII. 23) в каждом конкретном случае принимают определенный, иногда сложный, вид в соответствии с характером движущей силы АС, способами выражения поверхности контакта фаз Р, факторами, влияющими на коэффициент скорости процесса к. Эти уравнения служат основой расчета реакторов и массообменных аппаратов. Для этого необходимо в первую очередь знать численное значение коэффициента скорости процесса к — наиболее характерного показателя эффективности работы аппаратов. Основная сложность разнохарактерного влияния многих независимых переменных на скорость процесса учитывается именно параметром к. [c.158]

    Какие процессы называются гидромеханическими, тепловыми, массообменными Приведите примеры процессов каждого вида. [c.126]


    Влияние массообменных потерь в ступени на рабочий процесс. Влияние внешних утечек газа через уплотнения поршня или сальника. Внешние утечки газа уменьшают производительность ступени и в процессе сжатия снижают давление в цилиндре, отклоняя линию сжатия внутрь диаграммы, уменьшая ее площадь. Утечки в процессе нагнетания практически не изменяют вида диаграммы, так как безразлично, куда вытесняется газ через клапаны в полость нагнетания или через уплотнения в атмосферу. [c.72]

    Сущность процесса ректификации сводится к выделению из смеси двух или в общем случае нескольких жидкостей с различными температурами кипения одной или нескольких жидкостей в более или менее чистом виде. Это достигается нагреванием и испарением такой смеси с последующим многократным тепло- и массообменом между жидкой и паровой фазами в результате часть легколетучего компонента переходит из жидкой фазы в паровую, а часть менее летучего компонента—нз паровой фазы в жидкую. [c.298]

    Струйно-вихревое течение фаз в любых аппаратах всегда сопровождается ростом эффективности их работы. Если в прямоточных аппаратах, даже оснащенных специальными турбулизирую-щими элементами, как правило, рассматривается гидродинамика химических и тепло-массообменных процессов в одномерном пространстве, определяемом аксиальной скоростью, то вращательное движение потоков в виде сформированных струй дает уже трехмерное пространство скоростей — аксиальной, радиальной и тангенциальной. [c.323]

    В автогенных и топливных печах-теплогенераторах эффект теплогенерации зависит от того, в каком виде подводится окислитель в зону технологического процесса — в виде воздуха, кислорода или окислов. Таким образом, для реализации химической энергии сырьевых материалов или топлива в зоне технологического процесса в нее должна быть введена определенная масса окислителей, и поэтому определяющим процессом, обеспечивающим возникновение тепла в зоне, является процесс поступления определенной массы кислорода в том или ином виде. Такой режим работы печей естественно называть массообменным. Режим работы печей, в которых генерация тепла в зоне зависит от подвода или наведения электрического тока, будем называть электрическим. [c.44]

    Увеличение выхода масла достигается за счет внедрения новых прогрессивных технологий, к которым относятся подбор новых видов растворителей, использование ферментных систем, интенсификация тепло- и массообменных процессов. [c.233]

    Аналогия существует между электрическими, тепловыми и массообменными процессами, а также между гидродинамическими, тепловыми и массообменными процессами. Поэтому при исследовании тепловых, массообменных или гидродинамических процессов можно использовать более простые и в каком-либо отношении более удобные, чем натура, модели, в которых протекает совсем другой физический процесс. Единственное условие применимости такого способа исследования заключается в том, что оба процесса должны описываться одинаковыми по виду дифференциальными уравнениями. Так, например, электротепловая аналогия может быть применена путем использования описанного выше метода электролитической ванны для исследования полей температур в реакционных аппаратах. [c.75]

    Многие процессы химической технологии проводятся при движении через трубопроводы и аппараты двухфазных потоков. В этих потоках одна из фаз обычно является дисперсной, а другая — сплошной (дисперсионная среда), причем первая распределена в объеме второй в виде частиц, капель, пузырей, пленок и т. п. Взаимное направление обеих фаз в потоке может быть различным. Например, движение твердых частиц и потока газа при пневмотранспорте, пузырей пара и кипящей жидкости в вертикальных трубках выпарных аппаратов с естественной циркуляцией (см. главу IX) направлено в одну сторону, т. е. является прямоточным. Во многих других случаях фазы движутся в противоположных направлениях, т. е. их движение противоточное. При противотоке фаз осуществляется, в частности, взаимодействие пленок стекающей вниз жидкости с восходящими потоками газа или пара в пленочных или насадочных абсорбционных и ректификационных колоннах, взаимодействие капель с потоком другой жидкости (сплошной фазой) в полых или насадочных колонных экстракторах (см. главы XI и XII) и т. д. Картина взаимного движения фаз в аппарате в целом или на отдельных его участках часто более сложная, чем при прямотоке или противотоке, например в аппаратах с псевдоожиженным слоем или на тарелках массообменных аппаратов при барботаже (см. главу XI). [c.111]

    Высота адсорбера. Расчет требуемой высоты (объема) слоя адсорбента производят по аналогии с другими массообменными процессами (абсорбция, ректификация и др.) на основе общего уравнения массопередачи. Как следует из главы X, это уравнение в дифференциальной форме может быть представлено в виде [c.579]

    Таким образом, окончательно математическая модель массообменного процесса на тарелке ректификационной колонны принимает вид  [c.23]

    Допущение о полном перемешивании жидкости на тарелке и полном вытеснении по пару позволяет свести процесс массообмена к следующей схеме массообмен происходит при движении некоторого объема паровой фазы через слой жидкости с одинаковой концентрацией (рис. 11.12). Основное уравнение массопередачи — см. уравненне (7, а) в табл. 1.5 — для данного случая будет иметь вид  [c.57]

    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]

    Математическая модель ХТС, как правило, представляется в виде комплекса вычислительных программ, включающего математическое описание процессов, аппаратов и оборудования, количественное представление потоков и описание способа связи между совокупностью аппаратов н агрегатов схемы. Необходимые для этой цели алгоритмы материальных и тепловых балансов практически всех видов оборудования, а также алгоритмы расчета процессов в массообменных аппаратах применительно к газо-переработке были рассмотрены выще. Кроме того, математическая модель ХТС должна быть обеспечена банком данных и оперативной информационной системой физико-химических и термодинамических свойств чистых компонентов и их смесей, представляющих собой обрабатываемые потоки в аппаратуре и оборудовании схемы.  [c.313]

    Зависимость активной поверхности от вида массообменного процесса. Некоторые исследователи [59, 141, 156] считают, что активная поверхность определяется не только гидродинамическими факторами, но и видом протекающего в аппарате массообменного процесса. [c.451]

    Формула (1.28) нами была выведена в качестве примера для подсчета среднелогарифмической разности температур, т. е. средней движущей силы теплообменного процесса. Однако, если таким же образом вывести формулы для подсчета средней движущей силы ряда других процессов, вид формулы сохраняется. Поэтому формулу (1-28) надо рассматривать как общую формулу для подсчета среднелогарифмической движущей силы 0ср. различных процессов, которые могут осуществляться прямоточно или противоточно (теплообмен, массообмен, химическая обработка). - [c.23]

    Необходимые условия корректности Д. п. м. 1) значит, превышение концентрации атмосферного реагента над концентрацией реагента, вводимого в зону р-ции 2) достаточно малая линейная скорость потока вводимого реагента, обеспечивающая практически во всей зоне р-ции диффузионный массоперенос 3) для термометрич. варианта-отсутствие хим. и неконтролируемых физ. возмущений в зоне р-ции ти введении в нее датчика т-ры. ДИФФУЗИОФОРЕЗ, см. Электроповерхностные явления. ДИФФУЗИЯ (от лат. diffusio-распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотич. тепловым движением молекул (атомов) в одно-или многокомпонентных газовых либо конденсир. средах. Такой перенос осуществляется при иаличии градиента концентрации частиц или при его отсутствии в последнем случае процесс наз. самодиффузией (см. ниже). Различают Д. коллоидных частиц (т. наз. броуновская Д), в твердых телах, молекулярную, нейтронов, носителей заряда в полупроводниках и др. о переносе частиц в движущейся с определенной скоростью среде (конвективная Д ) см. Массообмен, Переноса процессы, о Д. частиц в турбулентных потоках см. Турбулентная диффузия. Все указанные виды Д. описываются одними и теми же феноменологич соотношениями. [c.102]

    Проведены эксперименты в условиях ректификации смеси эта ЭОЛ — вода при различных скоростях вращения ротора, различных конструкциях турбулизирующих решеток и конструктивных эле-v eнтoв аппарата. Результаты опытов представлены в виде графиков, позволяющих судить о влиянии различных параметров на массообмен в процессе ректификации. [c.73]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Результаты погранслойных и численных решений. Рассмотрим процесс хемосорбции при наличии конвекции в объеме сплошной фазы. В этом случае уравнения переноса имеют вид (6.42). Исследуем массообмен, сопровождаемый необратимой химической реакцией первого или второго порядка. [c.271]

    В печах при получении целевых продуктов из заданных исходных материалов осуществляются процессы следующих видов физические, химические, биохимуческие, микробиологические, коллоидные, массообменные, энергетические (теплообменные, теплогенерационные), гидромеханические, механические и т. д. Эти процессы протекают б рабочей камере печей параллельно, последовательно или накладываясь один на другой и имеют различные количественные и качественные характеристики в зависимости от координат рассматриваемой точки в рабочей камере печи, а также от времени с начала процесса. [c.15]

    По своей природе радиационно-химические процессы могут быть как гомогенными, так и гетерогенными. Для проведения гетерогенных прог ссов необходимо обеспечить эффективный контакт фаз, например Щ1спергированием одного реагента в другом. Таким образом, гетерогенные радиационно-химические процессы представляют собой массообменные процессы, осложненные химической реакцией, т.е. это хемосорбционные процессы, протекающие под воздействием ионизирующих излучений. На практике в различной степени встречаются все виды фазовых контактов газ-жидкость (51%), газ-твердое тело (38%), жидкость-твердое тело (8%) жидкость-жидкость (3%) [34]. [c.191]

    На основе предположения о том, что динамика процессов в реакторе с неподвижным слое катализатора описывается математической моделью, учитывающей теплопроводность слоя катализатора, конвективный поток газа, межфазный тепло- и массообмен и химическую реакцию, изучается явление распространения теплового фронта. При некоторых естественных предположениях относительно зависимости скорости химическй реакции от температуры и состава реакционной смеси доказывается существование я единственность решения соответствующих уравнений в виде бегущей волны. Определяются условия существования стоячей волны. Нрицодятся оценки основных характеристик теплового фронта максимальной температуры, скорости распространения и ширины реакционной зоны. [c.167]

    Сравнивая уравнение (1. 14) с уравнением (1. 5), находим, что в общем случае средняя движун1,ая сила массообменного процесса выражается как средняя интегральная в виде [c.21]

    В основу распределения материала по главам положена классификация машин и аппаратов по функциопально-конструктивному признаку. Учитывая весьма обширные сведения, излагаемые в курсе Процессы и аппараты химической технологии , по. некоторым видам оборудования, наиример, теплообменным и массообменным аппаратам, сушилкам и т. д., авторы сочли возможным уменьшить соответствующие главы пособия и остановиться лишь на особенностях их конструкции, эксплуатации и специфических расчетах. [c.3]

    Большой вклад в разработку новых технологий очистки выбросных газов внесла группа исследователей под руководством Р.Х. Мухутдинова из Уфимского нефтяного института (Технического университета). В нем более тридцати лет ведутся научно-ис-следовательские и опытно-конструкторские работы по интенсификации тепло-массообменных процессов за счет использования свойств закрученного течения расширяющихся газовых потоков и процесса каталитического окисления углеводородов. Созданы и внедрены в производство десятки новых вихревых и термокаталитических аппаратов [2]. Наиболее значимые результаты были достигнуты по очистке газовых выбросов производства фенол-ацето-на на Уфимском и Казанском заводах органического синтеза. Разработанные аппараты позволяют решать проблемы улавливания и возврата в производство ценного углеводородного сырья, а также очистки до санитарных норм технологического газа, предназначенного к выбросу в атмосферу. Комплексные установки обеспечивают возврат в производство технологического выбросного газа в виде инертного газа, используемого для различных технологических нужд. [c.6]

    Зависимость между рабочими концентрациями распределяемого вещества в фазах у = f (х) изображается линией, которая носит название рабочей линии процесса. Вид функции у — I (х), или уравнение рабочей линии в его общем виде, является одинаковым для всех массообменных процессов и получается из их материальных балансов. [c.387]

    Уравнения, описывающие перенос массы в насадочном абсорбере при постоянном расходе фаз, имеют вид (1.2.30), (1.2.31). В данном случае под концентрацией 0/. следует понимать концентрацию индикатора, введенного в жидкую фазу. Поскольку индикатор не участвует ни в каких массобменных процессах, движущая сила 0д —0д(0 ) массообменного процесса и концентрация 00 индикатора равны 0. Вследствие этого уравнения (2.1.30), (2.1.31) сводятся к уравнению вида [c.289]


Смотреть страницы где упоминается термин Массообмен виды процессов: [c.149]    [c.2]    [c.23]    [c.171]    [c.64]    [c.81]    [c.448]   
Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.573 , c.581 , c.582 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен



© 2025 chem21.info Реклама на сайте