Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий определение хрома

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Определение хрома с применением дифенилкарбазида проводят при анализе алюминия (предел обнаружения Сг 1-10 %, относительная ошибка 20%) [151, 828], бериллия высокой чистоты [965], никеля [251, германия и его соединений (предел обнаружения Сг 3-10 % при навеске 2 г) [298], титана особой чистоты [301], иодидов и хлоридов щелочных металлов [281], соединений молибдена [1120], тантала (предел обнаружения Сг 1 -10 %) [299], олова [347], сурьмы (предел обнаружения Сг 1-10 %) [300], редкоземельных элементов повышенной чистоты [108], рения и его соединений [384], металлической ртути (предел обнаружения 5- [c.45]

    Для определения алюминия обычно используют дуговое возбуждение. Проба интенсивно испаряется и спектральные линии хорошо возбуждаются. Искру применяют сравнительно редко (при анализе растворов и брикетов). У алюминия невысокие энергия ионизации (5,98 эв), а также энергия возбуждения чувствительных линий. Поэтому с введением в пробу щелочных элементов чувствительность анализа резко повышается. В качестве внутреннего стандарта при определении алюминия хорошие результаты дают соединения магния, кремния и кальция. Однако эти элементы широко распространены в природе и их использование затруднительно. Удовлетворительные результаты получают, используя бериллий, барий, хром, кобальт и никель. [c.194]

    Работы по хроматографированию металлов в виде их комплексов с трифторацетилацетоном, напечатанные до 1965 года, подробно комментируются в монографии [2]. В последние годы большая часть работ по хроматографическому анализу этих хелатов посвящена в основном определению ультрамалых количеств (10- —10- з г) бериллия и хрома в воздухе и различных биологических материалах, что связано с чисто практическими задачами. [c.162]

    Для четверных сплавов с молибденом олово не могло быть определено. Анализ четверных сплавов, содержащих хром, не производился из-за отсутствия методики определения циркония, олова, бериллия и хрома в совместном присутствии. [c.73]

    Определение микроколичеств циркония возможно в присутствии следующих ионов — более 100 мг алюминия, до 20 мг олова (И, IV), до 10 мг бериллия, никеля, титана, до 5 мг хрома, редкоземельных элементов и ниобия, до 50 мг тартратов, до 100 мг сульфатов. При введении хлорида олова (II) определение возможно в присутствии 15 мг железа и 5 жг меди. [c.375]

    В США запатентована система рентгеновского анализа с регистрацией рассеянного излучения и флуоресцентного излучения трех компонентов пробы . Е Великобритании запатентованы устройство рентгеновского флуоресцентного анализа с применением промежуточной мишени для увеличения выхода флуоресценции способ флуоресцентного анализа с использованием трубки, бериллиевый анод которой покрыт слоем германия или хрома, и фильтра для выделения флуоресцентного излучения, детектируемого счетчиком Гейгера способ определения сернистости угля по корреляции с железом, где использован Ри и регистрируется рассеянное излучение и флуоресцентное излучение Ре способ флуоресцентного анализа с установкой друг за другом источника, мишени, пробы и детектора. В ФРГ запатентованы" устройство флуоресцентного анализа, в котором излучение источника направляется на пробу двумя рефлекторами (мишенями) способ и устройство для определения зольности с регистрацией рассеянного излучения и флуоресцентного излучения Ре способ и устройство для анализа состава проб с коллимацией и мишенями. Во Франции запатентованы способ и устройство флуоресцентного анализа с трубкой из бериллия и равновесным фильтром перед счетчиком .  [c.38]


    Соли кальция почти не влияют на определение калия или влияют очень мало [2004, 2446, 2494, 2879] иногда они только немного повышают результаты в присутствии 200—100 000-кратных количеств кальция по сравнению с количеством калия [409, 410]. Следует, однако, отметить и указание о снижении определяемых количеств калия, если одновременно присутствуют соли кальция [2183]. Для устранения влияния кальция вводили его соль в эталонные растворы [2050]. Добавление ЫС1 устраняет влияние солей кальция [144]. Метод фотометрии пламени позволяет определять до 10% калия в СаСЬ [588]. Мы ограничимся только ссылками на работы, посвященные влиянию солей аммония 842, 843, 2004, 2183, 2796, 2814], бериллия [2084], стронция 144, 2555, 2770], бария [144, 2183, 2284, 2555], марганца [2183, 2237], алюминия [1495, 2004, 2814], железа [1495, 2183, 2185, 2746], хрома, кобальта, никеля, меди, цинка, молибдена [2185], вольфрама [1485], рения [1992]. [c.116]

    Определению плутония не мешают уран, молибден, алюминий, бериллий, галлий и, естественно, железо. Мешают марганец и хром, так как перманганат и бихромат, получающиеся в результате окисления двуокисью свинца, прекрасно титруются ионами Fe +. Перманганат может быть предварительно восстановлен щавелевой кислотой до обесцвечивания раствора. Хромат может быть восстановлен до трехвалентного хрома мышьяковистой кислотой, которая не восстанавливает плутоний. [c.239]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    При цериметрическом окончании анализа можно определить около 3 мг кобальта в присутствии преобладающих количеств ионов трехвалентного железа, никеля, кадмия, цинка, меди, молибдена, ванадия и вольфрама (от 20 до 110 мг) с ошибкой менее 1%. Не мешают также катионы бериллия, свинца, марганца, хрома, алюминия, титана, циркония и других элементов, не образующих комплексов с 1,10-фенантролином, анионы хлора, азотной и серной кислот. Методика определения сводится к следующему. [c.118]

    Определение кальция в амфотерных металлах, их соединениях п сплавах. Метод [126] позволяет определять (2—4) 10" % Са в А1, Sn, Сг, Zn, бронзе, латуни, баббите и (1—2,5)-10 % Са в солях алюминия, свинца, цинка, олова, хрома и бериллия. [c.199]

    Мешающее влияние хрома заключается в том, что он усиливает интенсивность окраски раствора, но при содержании алюминия в пределах 0,02—0,15% можно ввести поправку на присутствие до 0,05% хрома добавлением эквивалентного количества хрома к холостому раствору. Большие количества хрома могут быть отделены, например, электролизом с ртутным катодом в разбавленном сернокислом растворе с последующим осаждением купфероном и разложением органических продуктов. При электролизе происходит одновременно отделение примесей меди, цинка, кобальта и никеля. В определенных условиях бериллий также образует красный комплекс с алюминоном. [c.18]


    Так, например, метод количественного определения алюминия в при- утствии ионов железа и других элементов, основанный на выделении железа электролизом на ртутном катоде, состоит в следующем. Сначала выделяют железо из сернокислого раствора на ртутном катоде вместе с, железом выделяются другие элементы цинк, хром, никель, кобальт т. д. В растворе остаются ионы алюминия, бериллия, титана, фосфора и т. п. Затем определяют обычным путем ионы алюминия. Титан осаждают [c.358]

    Пристли [7, с. 194] успешно титровал растворы (1/60-м.), содержащие один из следующих металлов кальций, никель, медь, кадмий, цинк, барий, серебро, кобальт (III), хром ОН), алюминий, магний, бериллий и растворы церия (IV) и олова (IV) концентрацией (1/120-м.). За исключением результатов анализа серебра, магния и бериллия точность определения содержания элементов составила 1% от теоретического. Кривые титрования имели обычную для экзотермических и эндотермических реакций форму. Теплота образования большинства хелатов относительно низкая (только. хе-лат свинец— ЕОТА имеет теплоту образования, приближающуюся к теплоте нейтрализации сильной кисло- [c.82]

    Особенно важны морфологические исследования для определения канцерогенного действия химических факторов (действие радиоактивных изотопов, окиси никеля, бериллия, хрома). В этих случаях только морфологические исследования могут показать ранние изменения начало бластомогенного роста у животных. [c.141]

    Подобным же путем можно отделить железо и хром от урана, бериллия, циркония и тория молибден от ванадия кадмий от магния медь от алюминия и т. д. При электролизе нейтральных растворов их солей на ртутном катоде могут быть выделены щелочные и щелочноземельные металлы. При этом образуются амальгамы, которые легко разлагаются водой с образованием гидроокисей этих металлов. Выделение этих наиболее электроотрицательных металлов было бы невозможно, если бы перенапряжение выделения водорода на ртути не было бы столь велико. Легкость, с которой эти металлы образуют амальгаму, используется при электроаналитических определениях для отделения их от других катионов. [c.280]

    Иногда для получения диффузионного пламени и защиты графитовой кюветы от окисления к инертному газу добавляют водород. Так, в работе [260] при расходе инертного газа (азота) 4 л/мин добавляли 1 л/мин водорода. Но при этом чувствительность определения марганца резко ухудшилась. Аналогичные результаты получены при определении в нефтепродуктах хрома и бериллия с азотом и водородом. Но при добавлении водорода к аргону сигнал хрома усилился [100]. Общая тенденция ослабления сигнала при добавлении к инертному газу водорода, по-видимому, объясняется увеличением потерь из зоны наблюдения в результате диффузии. [c.147]

    Газовая хроматография — один из самых быстрых и простых аналитических методов, обладает высокой чувствительностью и избирательностью [13, 14, 200, 293, 410]. Хром является одним из немногих элементов, который образует летучие хелаты, свойства которых удовлетворяют всем требованиям проведения количественного газохроматографического анализа. Начало этому быстро развиваюш,ему методу положили опыты по разделению ацети-лацетонатов хрома(НГ), алюминия, бериллия [614, 778]. С целью отыскания точного количественного метода определения хрома было проведено детальное газохроматографическое изучение ацетилацетоиата хрома(1П) проверка метода осуш,ествлялась на сплаве Бюро стандартов США полученные значения отличались от принятых значений на 3,3 отн. % [293, с. 13]. [c.65]

    Методы определения хрома путем измерения интенсивности флуоресценции по линии СтКа, вызванной рентгеновскими лучами, применяют при анализах руд, горных пород, минералов, биологических объектов, металлов, сплавов. Интенсивность аналитической рентгеновской линии обусловлена концентрацией элемента, природой основы, в которой находится элемент, природой и концентрацией других элементов, присутствующих в пробе, и толпщной пробы [41. Измеренная критическая толщина слоя металлического хрома равна 0,003 мм для порошков она значительно выше [534, с. 2301. Теоретические значения предела обнаружения хрома по критерию Зст равны при определении в металлическом железе — 4,0-10 %, в бериллии— 1.0-10 % [4, с. 232]. Пределы обнаружения хрома в растворах 5 мкг/мл [534]. При определении хрома используют различные типы спектрометров с кристаллом Ъ1р, рентгеновской трубкой с У-анодом (50 кв, 30 ма) в качестве приемника излучения используют сцинтилля-ционный счетчик с кристаллом КаТ(Т1) или проточные пропорциональные счетчики. [c.97]

    Метод нашел очень широкое применение для анализа нефти и нефтепродуктов, углеводородных смесей, растворителей, фармацевтических и парфюмерных продуктов и полупродуктов, гербици- дов и пестицидов, в биохимическом анализе, при исследовании различных природных продуктов растительного и минерального происхождения и др. Он может использоваться и для определения неорганических компонентов после переведения их в форму подходящих газообразных или легколетучих соединений. Таковыми являются, например, некоторые хлориды типа ТЮЦ и ЗЬСГз, ацетил-ацетонаты бериллия, алюминия, хрома, тетраметиловые производные кремния, германия, олова и свинца. [c.424]

    Применение атмосферы аргона и кислорода дает хорошие результаты также в сочетании с дугой переменного тока. Сравнивались результаты определения ряда элементов в графите при испарении в атмосфере воздуха и смеси 75% аргона с 25% кислорода. Использовали дугу переменного тока силой 8—16 А. Пределы обнаружения бора, бериллия, германия, кальция, магния, титана и цинка в графитовой основе и бериллия, кадмия, железа, германия, марганца, ниобия и титана в основе графит-Ь -Ькарбонат лития в 2—10 раз ниже в атмосфере аргона с кислородом, чем в воздухе. В основе графит + фторид лития (3 1) пределы обнаружения бора, бериллия, германия, кадмия, марганца, ниобия и цинка в 2—5 раз ниже в атмосфере аргона с кислородом, чем в воздухе. Зато предел обнаружения олова во всех матрицах при анализе в воздухе в 5 раз ниже, чем в смеси аргона с кислородом. Точность анализа в атмосфере аргона и кислорода несколько лучше, чем в воздухе. Но не для всех элементов оптимальное соотношение аргон кислород было 75 25. Так, максимальное значение /л//ф при определении магния и хрома в графите получено в атмосфере 40% аргон-ЬбО% кислорода, а при определении хрома и железа в основе графит + -[-карбокат лития — в атмосфере чистого аргона. Таким образом, состав 75% аргона-f 25% кислорода является компромиссным. Авторами исследованы также смеси гелия с кислородом (70—100% Не+ЗО—0% Ог). При этом столкнулись со следую-шими трудностями. Большое различие в плотности гелия и кислорода затрудняет смешение их в контролируемых условиях. Кроме того, при содержании, в смеси 30% кислорода электроды горели очень интенсивно, как будто кислорода было гораздо больше. Поэтому от гелия отказались, хотя характеристики у гелия и аргона близкие [236]. [c.128]

    Исследована возможность повышения чувствительности определения бериллия, марганца, хрома и алюминия в нефтепродуктах путем обработки графитовой трубки карбидообразующими элементами [267]. Работа выполнена на СФМ Перкин-Элмер , модель 403 с ЭТА НСА-70. Для обработки печи применяли лантан, цирконий, кремний, ванадий, бор, молибден и барий в виде водных растворов неорганических соединений и масляных растворов сульфонатов. В атомизатор вводили раствор с заданным количеством обрабатываюшего элемента и проводили три стадии термообработки сушку при 100 °С, озоление при 600 °С и атомизацию при 1950 °С. При этом образовывались термостойкие карбиды, которые покрывали внутреннюю поверхность графитовой печи и устраняли помехи при анализе. Температура плавления карбидов этих семи элементов 2550—3530 °С. Механизм устранения помехи, по-видимому, заключается в предотвращении образования карбида определяемого элемента. Печь можно обработать одним или несколькими элементами одновременно или последовательно, с повторением каждый раз всех трех циклов нагрева. Во всех случаях после обработки абсорбция значительно повышается (в 2,2— [c.154]

    Графитовые атомизаторы позволяют анализировать нефтепродукты, при этом достигается предел обнаружения никеля, равный [203]. Непламенные методы анализа рекомендуются [3] для определения следов 13 элементов (сурьмы, мышьяка, бериллия, кадмия, хрома, кобальта, свинца, марганца, ртутн, молибдена, ванадия, никеля и селена) в нефти и различных неф- [c.59]

    С тех пор как в пятидесятых годах было положено начало применению газовой хроматографии к хелатам металлов р-дикетонов, она развивалась быстрыми темпами. Первые опыты были проведены Гессером и др. [55—58], выполнившими успешное газохроматографическое разделение ацетилацетонатов бериллия, алюминия и хрома, и Брандтом и др. [59—63], изучившими несколько р-дикетонатов мета.плов. С целью отыскания точного количественного метода определения хрома было проведено детальное газохроматографическое изучение ацетилацетопата трехвалентного хрома [62, 63]. Проверка метода осуществлялась на сплаве Бюро стандартов, полученные результаты отличались от принятых значений на 3,3 отн. %. [c.13]

    Исчезновение малых проб хелатов металлов в колонке. К настоящему времени получены летучие комплексы практически всех существующих металлов. Благодаря широкому ассортименту высокочувствительных газохроматографических детекторов любой хелат в принципе может быть обнаружен в газовой фазе с порогом чувствительности не нижеЮ — 10 г. Однако на практике для работы со столь малыми количествами газовая хроматография пока может быть использована для определения всего лишь нескольких металлов (бериллия, алюминия, хрома, кобальта, ванадия и немногих других). Причина этого заключается еще в одном аномальном эффекте, наблюдающемся при хроматографировании малых количеств летучих комплексов. Этот эффект состоит в том, что при уменьшении количества хроматографируемого хелата линейность калибровочного графика нарушается, кривая отклоняется вниз и пересекает ось абсцисс в точке, соответствующей определенному, отличному от нуля, количеству хелата (рис. VI.13). Практически это означает, что при вводе в колонку этого или любых меньших количеств определяемого хелата соответствующий пик па хроматограмме не появляется вообще, независимо от числа введенных проб, хотя чувствительность детектора (при условии линейности калибровочного графика) вполне достаточна для обнарун ения этих количеств комплекса. В ре- [c.62]

    К настоящему времени синтезированы летучие соединения почти всех элементов периодической системы. На примере существующих методик газохроматографического определения бериллия, алюминия, хрома, ванадия, никеля, цинка и ряда других металлов видно, что газовая хроматография по чувствительности и точности уже теперь вполне способна конкурировать с такими традиционными аналитическими методами, как спектроскопия, нейтронно-активационный анализ и масс-спектрометрия. Однако из-за аномального поведения летучих соединений в хроматографических колонках пока еще нельзя определять газохроматографически следовые количества щелочных, щелочноземельных и редкоземельных металлов, актинидов, титана, молибдена, вольфрама и некоторых других. [c.118]

    Экстракция трибути л фосфатом [25]. Скандий извлекается ТБФ из pa TBOipoB в концентрированной соляной кислоте в виде прочного хлористоводородного комплекса и таким путем может быть отделен от лантанидов, бериллия, алюминия, хрома (III) и (в присутствии перекиси водорода) от титана следы ип рия, по-видимому, переходят в органическую фазу. При последующем взбалтывании с водой скандий извлекается последней из раствора ТБФ. Присутствие небольших количеств циркония препятствует полному извлечению скандия водой. В методике определения следов скандия, по Эберлю и Лернеру (см. разд. IX, Г), экстракция ТБФ является важной стадией в ходе анализа. [c.83]

    За рубежом для улавливания аэрозольных часгиц большое распространение получили многослойные фильтры из стекловолокна фирм Сарториус и Ватман , керамики, фторопласта, полиамида, полисуль-фонов, полиакрилонитрила и других материалов [16]. Они практически полностью задерживают частицы с размерами от 0,1 до 0,2 мкм. В нашей стране для этих целей в основном применяются фильтры Петрянова (ФПП) из ультратонких волокон поливинилхлорида, устойчивые в агрессивных средах и хорошо растворяющиеся в органических растворителях [17]. Они гидрофобны, имеют малое сопротивление и даже при высоких скоростях фильтрации (более 1 м/с) улавливают 90% аэрозолей с размером частиц 0,3 мкм и вьш1е Кроме того, фильтры Петрянова позволяют эффективно извлекать аэрозоли металлов (бериллий, хром, алюминий, свинец и др.) 118]. Для улавливания свинца удобны также трубки с тенак-сом ОС 19 Высокая эффективность улавливания (даже в нанофаммо-вых количествах) характерна для пробоотборных устройств, рабочим элементом которых является стеклоткань, покрытая полиэтиленгликолем [20]. Ниже приведена методика отбора проб воздуха для определения концентраций бенз(а)пирена в атмосфере, в том числе на промышленных площадках и рабочих местах ]21 ] [c.171]

    В условиях определения алюминия Ре (III), 2г, Н/, Оа, Тп, Рс1, ТЬ и Т образуют окрашенные соединения с арсеназо и, следовательно, мешают определению алюминия. Влияние железа устраняют аскорбиновой кислотой. Медь (до 10-кратного избытка) можносвязать вбесцветный комплекс с тиомочевиной [214]. 25-кратный избыток цинканемешает [214]. Бериллий сильно мешает (0,7 мкг его эквивалентны 1 ж/сг алюминия) [656]. Не мешают до 10 мкг хрома [656], 40 мкг вольфрама [503]. Не мешают значительные количества щелочных и щелочноземельных металлов, магний и марганец. Фториды, фосфаты, оксикислоты и другие вещества, связывающие алюминий в комплекс, мешают. Сульфаты оказывают слабое влияние. [c.127]

    При pH 6—7 ацетилацетонат алюминия полностью экстрагируется диэтиловым эфиром. После реэкстрагирования алюминия 6N НС его определяли весовым оксихинолиновым методом с относительной ошибкой 0,4%. При pH 6—7 не экстрагируются многие составные компоненты силикатов. Экстрагируется 3% кобальта и хрома, однако эти элементы в силикатах содержатся в небольших количествах и не мешают определению. Бериллий сопровождает алюминий. Алимарину и Гибало [141 удалось отделить бериллий от алюминия экстракцией ацетилацетоната бериллия при pH 9 [c.179]

    Исследования, проведенные в ряде стран, показали, что металлы, широко применяемые в промышленности и распространенные в окружающей среде, могут оказывать на организм человека не только токсикологическое, но и канцерогенное воздействие [935, 987]. К химическим канцерогенам относят такие металлы, как бериллий, хром, никель потенциальными канцерогенами являются кобальт, кадмий, свинец и некоторые другие металлы [931]. Понятие канцерогенность металла относится не к элементу как таковому, а к его определенному физико-химическому состоянию. Например, канцерогенность хрома может быть объяснена следующим образом. Этот элемент в виде хромат-аниона с помощью сульфатной транспортной системы проникает через клеточную мембрану, тогда как катион хром(П1) сквозь нее не проходит. Клеточная метаболическая система восстанавливает хромат до хрома(П1), который в отличие от оксоаниона хрома(VI) образует прочные комплексы внутри клетки с нуклеиновыми кислотами, протеинами и нуклеозидами, вызывая повреждения ДНК, которые в свою очередь ведут к мутации, а следовательно, и к развитию рака [931]. Согласно концепции Мартелла канцерогенность металла связана со степенью его электроположительности. Ионы электроположительных металлов образуют лабильные комплексы и большей частью не канцерогенны. Ионы же металлов с низкой электроположительностью образуют высококовалентные связи с донорными группами биолигандов и способны подвергаться только очень медленным обменным реакциям с другими лигандами, находящимися в биологических системах, что в конечном счете обусловливает канцерогенное действие этих катионов [931]. [c.500]

    При обычном анализе трудно смешать линии индия с линиями других элементов [215]. Однако при определении индия по линии 1п 4511, 3 А можно обкидать помех за счет близлежащей линии алюминия (особенно при возбуждении в искре), хрома, платины и рутения, а также от более слабых линий ванадия и очень слабых линий марганца и магния (особенно при возбуждении в искре). При небольшой дисперсии спектрографа следует принять во внимание также линии меди и свинца (главным образом при возбуждении в дуге), молибдена, титана, вольфрама, а также более слабые линии кальция и осмия. Алюминий и бериллий вызывают на месте этой линии сильный фон. Яркие мешающие линии Ве 4513,3 А и Т1 4512,7 А. [c.203]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Кузнецовым [228, 278] синтезированы и изучены азокрасители, даюигие с бериллием цветные реакции. Производные хромо-троповой кислоты (арсеназо, бериллон II, Н-резорцин, торон) обладают высокой чувствительностью и образуют с бериллием устойчивые соединения. 8-Оксинафталин-3,6-дисульфокисло-та- < 1-азо-1 > -2-окси-4-диэтиламинобензол (бериллон III) и бензол-2-арсоновая кислота-< 1-азо-2>-1-оксинафталин-6-имино-диуксусная кислота (бериллон IV) рассматриваются как особенно пригодные для фотометрического определения бериллия [278]. Сравнение свойств ряда реагентов показало (табл. 14), что бериллон III и бериллон IV по чувствительности и другим показателям превосходят бериллон II (возможность работы в широком [c.68]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    В. А. Хадеев и Ф. Ф. Квашнина определяют цирконий прямым комплексонометрическим титрованием по анодному току комплексона III с танталовым электродом при +1,2 в (Нас. КЭ). Фоном служит 0,5—1,0 и. серная кислота, причем, по данным авторов этой работы, титрованию в таких условиях не мешают даже большие количества бериллия, урана, тория, цинка, кобальта, кадмия, молибдена, свинца и небольшие количества хрома, никеля, титана, церия (III) и ванадия (V). Алюминий мешает, но его связывают во фторидный комплекс. Однако следует помнить, что цирконий тоже образует прочные фторидные комплексы, почему и рекомендуется добавлять алюминий в присутствии фторида при определении циркония купфероновым методом. [c.355]

    Наряду с этими основными компонентами в некоторых случаях определяют и другие компоненты, присутствующие в концентрации порядка сотых и тысячных долей процента, такие, как СО2, SO3, Zr02, фтор, хлор, серу, оксиды редкоземельных металлов, хрома, ванадия, никеля, кобальта, бария, стронция, бериллия, бора, меди, цинка и др. Так как их определение более или менее эпизодично и связано с конкретными свойствами анализируемого объекта или [c.462]

    Определение энергий связи с окисными катализаторами оказалось особенно плодотворным. В докладах А. А. Толстопятовой и автора (см. стр. 351 наст, сб.) дается краткий обзор выполненного под их руководством обширного круга исследований. Применялся кинетический метод, основанный на мультиплетной теории, в его первом варианте. Исследовалась кинетика более 20 реакций, в особенности дегидрогенизации циклических углеводородов и параллельной дегидрогенизации и дегидратации спиртов на окислах бериллия, алюминия, церия, титана, циркония, тория, хрома, молибдена и вольфрама. Многие из этих процессов были ранее неизвестны. Было показано, что для катализаторов дегидратации энергии связи катализаторов с водородом (38—50 ккал) лежат значительно ниже, чем для катализаторов смешанного действия (53—66 ккал), а для связи катализатора с углеродом — выше (соответственно 22—23 и 9—11 ккал). В согласии с теорией, способ приготовления и природа носителей влияют на энергии связей. Как и в аналитической химии, зависимость энергий связей от положения элемента в Менделеевской системе ясно заметна, но она осложнена закономерным влиянием различной степени валентности. [c.326]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]


Смотреть страницы где упоминается термин Бериллий определение хрома: [c.81]    [c.262]    [c.70]    [c.55]    [c.204]    [c.70]    [c.6]    [c.258]    [c.445]   
Анализ минералов и руд редких элементов (перевод с дополнениями с третьего английского издания) (1962) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Активационное определение хрома бериллии и его соединениях

Бериллий определение



© 2025 chem21.info Реклама на сайте