Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворителя влияние энтропию активации

    ЮТСЯ молекулы растворителя и энтропия активации становится более положительной. Как из теории, так и из эксперимента следует, что влияние сольватации на энтропию для неполярных растворителей больше, чем для воды. [c.119]

    Элементы теории катализа. Для объяснения механизма действия катализаторов обратимся к теории переходного состояния. Специфические свойства активированного комплекса определяют скорость процесса, состав продуктов, степень влияния на процесс различных факторов. Активированный комплекс находится в равновесии как с реагентами, так и с продуктами реакции. В общем случае в его состав могут входить и посторонние вещества, например растворитель при взаимодействиях в растворах. (Этим и объясняется влияние растворителя на скорость реакций). Катализаторы также могут участвовать в формировании промежуточных соединений, при распаде которых происходит образование продуктов реакции и регенерация катализатора, хотя его физическое состояние может измениться. Активированный комплекс, образовавшийся при участии катализатора, естественно, отличается по строению и свойствам от комплекса, образованного только молекулами реагентов. Вследствие различия в структуре и свойствах этих комплексов изменяется энергия и энтропия активации. Это, в свою очередь, может стать причиной того, что в присутствии катализатора образуются одни продукты, а без него другие. В-третьих, из одних и тех же реагентов могут получиться разные продукты, так как различные катализаторы с одними и теми же реагентами образуют неодинаковые активированные комплексы. [c.156]


    Формально - кинетические закономерности (первый порядок по спирту и по окислителю) позволяют сделать вывод о том, что в лимитирующей стадии участвует одна молекула диоксида хлора низкое значение энтропии активации (Л5 = -211.2 -93.7 Дж-моль -К ) предполагает высокоупорядоченное переходное состояние отсутствие влияния растворителя на кинетику реакции свидетельствует о том, что переходное состояние малополярно полное расходование спирта наблюдается при соотношении реагентов спирт СЮ2 = [c.10]

    Значительно меньший рост скорости этой реакции прн повышении полярности растворителя, большая отрицательная энтропия активации, а также электронные и пространственные эффекты заместителей и ее стереоспецифичность свидетельствуют о согласованном, а не синхронном одностадийном механизме. Неодновременное образование связей в активированном комплексе является причиной появления частичных зарядов, стабилизирующихся в более полярных растворителях. Среда не должна оказывать влияния на реакцию (5.34), если дипольный момент активированного комплекса приближается к величине 10,Ы0 2 Кл М (т. е. к сумме дипольных моментов реагентов), которая соответствует дипольному моменту продукта реакции. Обнаруженная экспериментально зависимость скорости реакции от природы растворителя показывает, что в активированном комплексе заряды разделены в большей степени, чем в ад-дукте [100]. [c.228]

    Растворитель оказывает сильное влияние на реакционную способность, так как влияет на сольватацию реагентов А и В и переходного состояния [А...В], которое проявляется в энтропиях активации А5.  [c.17]

    Соотношения линейности свободных энергий типа уравнений Гаммета и Тафта иногда рассматриваются в предположении, что существует линейное соотношение между энергиями активации и энергиями реакций, а энтропия активации внутри гомологической серии остается постоянной. Однако для такой точки зрения нет особых оснований, и, как сейчас становится ясным, свободные энергии являются значительно более простыми функциями, чем энергии, которые заметно более чувствительны к внешним факторам, например к влиянию растворителя. Известны случаи, когда для свободных энергий обнаруживается линейное соотношение и проявляется аддитивность, в то время как изменения соответствующих энергий и энтальпий не приводят к подобному соотношению. Причина этого, возможно, состоит в том, что существует общая тенденция для теплот и энтропий процессов в растворе компенсировать друг друга, так что результирующие изменения в свободной энергии оказываются много меньшими. Ниже это явление рассматривается несколько более подробно. [c.259]


    Вклад 5г, в энтропию активации связан с наличием у растворителя диэлектрических свойств. Он обусловлен влиянием диэлектрической проницаемости среды на межионные силы между заряженными реагентами. Вклад Ро в свободную энергию активации, связанный с влиянием диэлектрической проницаемости растворителя, выражается уравнением [c.27]

    Уинстейн и Файнберг [18] нашли, что влияние растворителя на свободные энергии, энтальпии и энтропии активации очень сложно и часто зависит в одинаковой степени от изменения сольватации как реагентов, так и переходного состояния. [c.202]

    Поскольку растворитель, так же как и строение органических молекул, влияет различно на энергию и энтропию активации системы, мы по аналогии с предшествующим разделом рассмотрим влияние растворителя на каждую из этих величин. [c.116]

    Для рассмотрения влияния растворителя на скорость реакции может быть успешно использована физическая интерпретация влияния температуры на скорость, основанная на теории активированного комплекса. Поскольку важным фактором наряду с энергией активации является и энтропия активации, на диаграмме энергии, соответствующей рис. 5-1, по ординате откладывают свободную энергию Гиббса G. Действительно, нередко встречаются реакции, энергии активации которых близки, но скорости заметно различаются при одной и той же температуре. Это должно быть связано с разницей энтропий активации. В качестве ориентира полезно помнить, что сдвиг на 6 к Дж/моль или на 21 Дж/(моль К) при комнатной температуре соответствует изменению константы скорости на один порядок. Таким образом, очевидно, что влияние растворителя на скорость необходимо обсудить с точки зрения свободной энергии. Могут наблюдаться следующие явления  [c.158]

    Одна из задач, которую мы надеемся решить сравнением данных по основности, — это установление зависимости между строением и реакционной способностью. Поэтому необходимо знать, какой из параметров является лучшим для корреляций энтальпия или свободная энергия. Мнения по этому поводу разделились. Химики-теоретики приписывают энтальпии большее значение в теоретическом отношении [232. Однако на практике оказывается, что для реакций в водных растворах свободная энергия передает влияние строения лучше, чем энтальпия, в то время как для реакций в газовой фазе или в неполярных растворителях энтальпия оказывается предпочтительнее [337]. Для большинства целей наилучшие сведения о влиянии строения дает сравнение констант равновесия, так же как константы скорости в большинстве случаев заключают в себе больше смысла, чем энергии или энтропии активации. Этот вопрос подробно теоретически обоснован в превосходной монографии Белла [29]. [c.199]

    Пытаясь объяснить, почему, вступая в переходное состояние, молекулы, имеющие наибольшее число степеней свободы, теряют их в гораздо большей степени, чем соединения с более жесткой структурой, Кирквуд [43] ),т<азал, что заряженное тело (карбонильная группа), погруженное в среду с высокой диэлектрической постоянной (растворитель), будет отталкивать тело с низкой диэлектрической постоянной (метильные группы и т. п.). Если такого рода влияние вызывает в переходном состоянии отталкивание метильных групп диэтилкетона и пинакона, достаточно сильное, чтобы они мешали свободному вращению друг друга, то можно понять, почему в этих случаях наблюдаются столь малые энтропии активации. В случае циклических соединений такой эффект невозможен. В дополнение к мысли Кирквуда можно сказать, что так как эга реакция каталитически ускоряется кислотами, то возможность существования сравнительного большого положительного заряда в критическом комплексе поблизости от карбонильной группы кажется весьма правдоподобной. [c.245]

    Как и при влиянии на энтропию активации (см. раздел 3.1), наибольшую электрострикцию показывает растворитель, имеющий наиболее свободное расположение молекул. АУ здесь является суммой двух частей, одна из которых обусловлена связями, а другая— электрострикцией. Интересный подход, когда обе эти части рассмотрены отдельно, представлен на примере полярного 2,- 2-циклоприсоединения [19]. [c.59]

    НИИ. В сильно полярном переходном состоянии сольватация, вероятно, не зависит от заместителя, но влияние заместителя должно заметно сказываться на сольватации в основном состоянии. Сольватация приводит к большому изменению угла С—Hg—С, что исключает возможность передачи мезомерного эффекта заместителя через атом ртути. Наибольшей сольватации подвергаются соединения с электроноакцепторными заместителями — в этом случае разница в сольватации основного и переходного состояний невелика (перераспределение энергии по связям в переходном состоянии незначительно). Это находит выражение в высоких значениях энтропийного фактора. Наименее сольватирована ртуть в соединениях с электронодонорными заместителями. В этом случае разница в количестве замороженных молекул растворителя в двух состояниях велика, что приводит к низким значениям энтропии активации. [c.88]


    Хотя активационные параметры и полезны при трактовке механизмов органических реакций, их использование, однако, не имеет универсального характера. Наиболее часто осложнения вносит влияние растворителя. Увеличение сольватации активированного комплекса по сравнению с исходными соединениями может приводить к отрицательным значениям энтропии активации даже в случае диссоциативных процессов, так как при этом происходит уменьшение числа степеней свободы молекул растворителя, В то же время энтальпия активации при увеличении сольватации будет уменьшаться. В связи с этим использование параметров активации для характеристики механизмов реакций в растворах требует осторожности и подробного анализа эффектов растворителя в каждом отдельном случае. [c.220]

    Несмотря на то что значения этих термодинамических функций можно взять из литературы, влияние растворителя делает эти величины довольно неопределенными. И хотя точные данные недоступны, было найдено, что, как и для реакций в газовой фазе, энтропия активации дает полезную информацию о структуре переходного состояния. Положительная энтропия активации указывает, что переходное состояние менее упорядочено, чем исходные молекулы, в то время как отрицательная энтропия свидетельствует об увеличении упорядоченности при образовании переходного состояния. [c.124]

    Одним из эффектов, изменение которого часто определяет изменение энтропии активации реакции в растворе, является изменение сольватации [80]. Если переходное состояние более полярно и в большей степени сольва-тируется, чем основное состояние исходных соединений, то это приводит к большему влиянию растворителя и к снижению энтропии системы. Так как энтропия активации, видимо, всегда отрицательна для реакций комплексов Р1(П) независимо от заряда комплекса и природы входящих или уходящих групп, то из этого следует, что энергия сольватации не играет главной роли в этих реакциях. [c.354]

    Нитрозильные соединения кобальта и железа проявляют одинаковые свойства и реагируют с данным нуклеофильным заместителем приблизительно с одинаковой скоростью . На скорость реакции соединений кобальта растворитель имеет лишь незначительное влияние. Энтальпия активации невелика, энтропия активации отрицательна. Они аналогичны параметрам активации, полученным для реакции комплексов Pt(II) (стр. 353), и подтверждают процесс бимолекулярного замещения. [c.498]

    Большая часть обсуждений, связанных с вопросом о сольватации карбониевых ионов, основана на полуэмпирической обработке влияния эффекта растворителя на скорости образования карбониевых ионов и определяемые при этом параметры активации, особенно энтропии активации. Для обсуждения вопроса [c.167]

    Вторая трудность, которая особенно существенна для реакций в водных растворах, заключается в том, что наблюдаемые термодинамические величины сильно искажены за счет сольватационных эффектов и необходимо вводить поправки на эти эффекты, прежде чем делать заключения о внутренних энергиях реакции. Так, можно ожидать, что индуктивные и резонансные эффекты заместителей при ионизации фенолов и карбоновых кислот будут проявляться в энергиях кислоты и аниона, однако различие в кислотностях этих соединений определяется в большей степени энтропиями, а не тепло-тами ионизации [62]. Это видно из данных для замещенных бензойных кислот, приведенных в табл. 2. То же явление наблюдается для констант скоростей реакций производных фенола различие в скоростях щелочного гидролиза замещенных фенилацетатов в воде вызывается только различиями в энтропии активации [63]. Влияние растворителя на величины термодинамических параметров активации видно из того факта, что в смешанном растворителе ацетон (60%) — вода различие в скоростях гидролиза тех же эфиров почти полностью определяется различием в энтальпии активации [64]. Одна из причин влияния полярных свойств заместителей на энтропию реакции заключается в том, что диэлектрическая проницаемость, которая определяет передачу электростатического влияния от заместителя на реакционный центр, зависит от температуры и эта зависимость проявляется в энтропии реакции. [c.246]

    Первое направление реализуется для гидротриоксидов силанов. Механизм разложения этих ROOOH подробно изучен на примере гидротриоксида фенилдиметилсилана [117]. Кинетические и активационные параметры распада (высокое отрицательное значение энтропии активации), значительный эффект заместителя, зависимость скорости распада от полярности растворителя, а также отсутствие влияния радикального ингибитора ионола на кинетику распада согласуются с преимущественно молекулярным (> 90%) механизмом разложения. [c.259]

    В завершение раздела обсудим влияние растворителей на реакции диспропорционирования радикалов. Небольшие эффекты растворителей обнаружены в реакции диспропорционирования 2,б-ди-7 рет -бутил-4-изопропилфеноксильного радикала на соответствующие хинонметид и фенол [уравнение (5.73)] [225]. При переходе к более полярным растворителям энтальпия активации возрастает с 21 кДж-моль в циклогексане до 32 кДж-моль в бензонитриле, однако в силу компенсирующего влияния изменения энтропии активации состав среды почти не сказывается на скорости реакции. Образование активированного комплекса можно рассматривать как присоединение двух биполярных частиц по типу голова к хвосту . Для образования такого активированного комплекса необходима десольватация одного из фе-ноксильных радикалов, поэтому в среде, в которой радикалы сильно сольватированы, энтальпия активации должна быть относительно высокой, чтобы обеспечить необходимую энергию десольватации. В таких случаях должно наблюдаться наибольшее повышение энтропии. Линейная зависимость, обнаруженная между ДЯ и (бг—1)/вг, позволяет приписать эффекты растворите- [c.267]

    Определены скорость и параметры активации термической цис->тракс-изомеризации М,М -дистеароилиндиго как в изотропных, так и в жидкокристаллических растворителях [727]. В изотропных неполярных растворителях, в том числе в бензоле, толуоле и -бутилстеарате (при температуре выше 27°С), длинные алкильные цепи бутилстеарата не оказывают никакого влияния на скорость цис->-гранс-изомеризации. Напротив, в смектическом жидкокристаллическом -бутилстеарате скорость изомеризации намного ниже. Соответствующие более высокая энтальпия активации и более положительная энтропия активации, очевидно, обусловлены тем, что г ис- гракс-изомеризация включает миграцию двух длинных стеароильных цепей. Алкильные цепи производного индиго переплетаются с упорядоченными молекулами растворителя, в результате чего их миграции пре- [c.378]

    Тот факт, что влияние давления на скорость химических реакций в существенной степени зависит от природы растворителя, известен уже давно, однако первое удовлетворительное объяснение этому явлению было дано лишь в 1953 г. Букананом и Хэй-манном [436]. В табл. 5.25 в виде схемы представлены эффекты давления и природы растворителя в зависимости от заряда уча- ствующих в них реагентов, установленные Даком [27, 239]. Как показывают приведенные в табл. 5.25 данные, влияние полярности растворителя на АУ" обусловлено более высокой сжимаемостью менее полярных растворителей, благодаря чему под влиянием ионных или биполярных растворенных веществ их объ-. ем уменьшается в большей степени, чем объем более полярных растворителей. Меньшая сжимаемость последних объясняется сильными межмолекулярными взаимодействиями, реализующимися и в отсутствие растворенных веществ. Путем аналогичных рассуждений нетрудно прийти к выводу о том, что между и энтропией активации должна существовать корреляция. Действительно, обусловленное интенсификацией электрического поля вокруг молекул растворенного вещества повышение электрострикции соответствует уменьшению как объема, так и энтропии системы из-за частичной потери свободы движения в рас- [c.393]

    Таким образом, электростатическая модель Ингольда-Хьюза качественно правильно предсказывает влияние растворителя на скорость нуклеофильного замещения у насьпценного атома углерода. Однако она учитьшает лищь электростатическую ориентацию растворителя относительно реагентов и совершенно игнорирует специфическое донорно-акцепторное взаимодействие или образование водородных связей с молекулами растворителя, которые вместе составляют наиболее важную особенность процессов ион-дипольного и диполь-дипольного взаимодействия. Кроме того, эта теория рассматривает только одну составляющую свободной энергии активации АО, а именно энтальпию активации ЛВ, не принимая во внимание изменение энтропии активации ЛЗ, чей вклад может бьпъ очень значителен. [c.114]

    На примере рассматриваемой реакции был изучен весьма важный для данного типа превращений вопрос о влиянии свойств реакционной среды на скорость и равновесие. С этой целью реакция проводилась в смешанных растворителях, содержащих различные количества органического компонента — 3-метил-1,3-бутандиола, п-диоксана, сульфолана, нитрометана и т. д. При увеличении доли п-диоксана от О до 807о значение /Ср уменьшается в 20—30 раз (рис. 72). На скорость прямой и обратной реакций изменение состава растворителя влияет по-разному. Для реакции гндролиза соответствующая зависимость, по существу, является антибатной по сравнению с зависимостью от состава растворителя функции кислотности Яо, что, очевидно, находится в согласии с упоминавшимся выше соотношением Гаммета. Константа скорости реакции образования диметилдиоксана от состава растворителя зависит более сложным образом добавление п-диоксана яо 50—55% практически не сказывается на скорости, а при дальнейшем возрастании доля органического компонента на 15—20% значение к увеличивается в десятки раз. Этот результат, по-видимому, свидетельствует об изменении механизма реакции образования диметилдиоксана при переходе от водного растворителя к органическому, о чем свидетельствует также резкое изменение энтропии активации данной реакции (табл. 55). [c.222]

    Теория такого влияния растворителя основана на тех же принципах, что и теория энтропии активации. Это объясняет также наблюдающуюся корреляцию между изменениями объемов и энтропий активации. Таким образом, если реакция совершается путем сближения ионов одного знака или разделения ионов противоположного знака, происходит увеличение электрического поля, следовательно, увеличивается электронаправленность, результатом чего является понижение объема активации при этом наблюдается и понижение энтропии за счет потери степеней свободы молекулами растворителя. И, напротив, если электрическое поле ослабляется с образованием активированного комплекса (соединяются ионы противоположного знака), то происходит ослабление связывания молекул растворителя в этом случае объем активации и энтропия активации положительны. Возвращаясь теперь к результатам, представленным в табл. 4, можно видеть, что все результаты могут [c.247]

    Более глубоко влияние природы активированного комплекса на механизм органических жидкофазных реакций (на примере реакции Меншуткина) изучили Винн-Джонс и Эйринг [349], ко торые обнаружили, что в ряде случаев изменение энтропии акти вации близко к изменению скорости реакции, т. е. активированный комплекс по своим свойствам приближается к продуктам реакции. Причем если такой комплекс сильно полярен, то многие молекулы (полярного.— В. К.) растворителя ориентируются вокруг него [349, стр. 499]. Так, пока имеется достаточное количество ацетона в смеси ацетон — бензол, для того чтобы окружить активированный комплекс при реакции триэтиламина с бромистым этилом, энтропия активации значительно не изменяется. Однако когда содержание ацетона составляет меньше, чем одну пятую часть от общего объема растворителя, константа скорости реакции уменьшается в соответствии с выражением (И—11) при понижении энтропии активированного комплекса (табл. 26). [c.116]

    Известно, что реакции замещения могут проходить по механизмам 3н1 или Зн2. В случае, когда нуклеофилом служит растворитель, на основании изучения кинетики реакции (определения порядка реакции) различить оба указанных механизма невозможно. Однако по величине энтропии активации можно с успехом определить, предшествует ли переходному состоянию скорость определяющей стадии диссоциация (ЗнЬмеханизм) или же эта стадия является бимолекулярной (Зы2). Разумеется, при протекании подобных реакций на величину ДЗ оказывают влияние сложные эффекты зарядов (см. ниже). Однако в случае катализируемого кислотами сольволиза этого не происходит, поскольку собственно замещению предшествует протонирование субстрата, так что на стадии, определяющей скорость, заряд не возникает и не исчезает. [c.50]

    Окончательное подтверждение изложенных соображений о влиянии сольватации в реакции бензилмеркурхлорида с иодом в присутствии иодид-иона получено при проведении реакции в неполярном растворителе — бензоле (к сожалению, из-за плохой растворимости нельзя использовать для этой цели предельные углеводороды). Естественно, что в бензоле сольватация исходных реагентов и переходного состояния минимальна. Скорость реакции в этих условиях оказалась наибольшей, что подтверждает заключение об отрицательном влиянии сольватации на реакционную способность бензилмеркурхлорида в данной реакции. Такое большое увеличение скорости в бензоле связано в основном с уменьшением энергии активации Е = 9,8 ккал/моль), так как значение энтропии активации довольно низко (А5= = —23,8 э. ед.). Вероятной причиной такого отрицательного значения энтропии является брлее прочная координация отрицательного конца диполя аниона 1з с атомом ртути при отсутствии сольватации ртутноорганического соединения, что приводит к образованию более жесткой структуры циклического переходного состояния. [c.169]

    Как видно из полученных данных, скорости обеих реакций в зависимости от природы растворителя падают в ряду метанол > 80%-ный водный диоксан > ДМФ. Этот результат согласуется с ранее полученным для реакции бензилмеркурхлорида с бромом и иодом в этих же условиях и реакции Р-хлорвинилмеркурхлорида с иодом. Таким образом, влияние растворителя на реакцию расщепления связи С—Hg под действием галогена в данном случае не зависит от валентного состояния атома углерода, хотя величины энергии и энтропии активации различны. [c.183]

    Реакции замещения всех соединений марганца, которые были исследованы, протекают со скоростью, не зависящей от концентрации и природы реагента. Таким образом, в пределах ошибки эксперимента скорости замещения (табл. 7.11) и обмена СО (табл. 7.6) одинаковы для одного и того же соединения. Это предполагает, что как замещение, так и обмен включают одинаковый диссоциативный механизм (рис. 7.8). Как упоминалось выше (стр. 481), скорости реакции Мп(С0)5Х уменьшаются в ряду С1 > Вг > I, энергии активации увеличхрваются в том же порядке, и это согласуется с предположением об увеличении прочности связи М — С в том же порядке. Для процесса диссоциации ожидается положительная энтропия активации, когда переходное состояние менее ограничено, чем основное состояние. Влияние растворителя на скорость реакции невелико, но скорость действительно уменьшается с увеличением диэлектрической проницаемости растворителя, указывая, что переходное состояние менее полярно, чем основное. [c.489]


Смотреть страницы где упоминается термин Растворителя влияние энтропию активации: [c.463]    [c.184]    [c.234]    [c.314]    [c.430]    [c.211]    [c.148]    [c.168]    [c.168]    [c.85]    [c.242]    [c.537]    [c.194]    [c.211]    [c.463]   
Основы химической кинетики (1964) -- [ c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Энтропия активации



© 2025 chem21.info Реклама на сайте