Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения ультрафиолетовые влияние растворителей

    В книге собраны и обобщены данные об ультрафиолетовых и видимых спектрах поглощения растворов антрахинона и его замещенных. Приведены цифровые характеристики 2830 спектров более 1300 производных антра-хинона. В текстовой части книги рассмотрено влияние на спектры поглощения антрахинона положения заместителей, природы растворителя и температуры. [c.2]


    При спектрофотометрических определениях в ультрафиолетовой области спектра необходимо учитывать возможность присутствия посторонних примесей в растворе, которые будут поглощать свет и мешать анализу влияние растворителей на характер спектра растворенного вещества поглощение света самими растворителями. Ниже приведены некоторые растворители, используемые в спектрофотометрии  [c.268]

    В работе необходимо на спектрографе ИСП-28 снять спектры поглощения паров бензола, раствора бензола в метаноле или в этаноле и в гексане. Все спектры снимаются в ультрафиолетовой части спектра. Полученные спектры следует сопоставить визуально и сделать заключение относительно влияния растворителя на электронный спектр поглощения. [c.71]

    Характерные ультрафиолетовые спектры поглощения стероидов с сопряженными двойными связями представляют значительную ценность для установления строения этих соединений. Часто удается установить связь между особенностями химического строения и положением главного максимума поглощения, а также интенсивностью поглощения в точках максимума (выражаемой либо с помощью коэффициента экстинкции s, либо функцией Ige). Иногда коэффициент экстинкции является наилучшим показателем чистоты исследуемого вещества. В случае ,[3-непредельных кетонов положение полос поглощения зависит до некоторой степени от природы применяемого растворителя влиянием растворителя на значение коэффициента экстинкции можно пренебречь. Описанные в литературе опреде.чеиия проводились в различных растворителях, и, к сожалению, в некоторых случаях растворитель не указывается. В настоящее время [c.178]

    Изучение межмолекулярного взаимодействия по спектрам поглощения в ультрафиолетовой, видимой или инфракрасной части спектра или по спектрам комбинационного рассеяния (можно рекомендовать изучение димеризации ацетонитрила в органических растворителях, влияние растворителей на положение и интенсивность полос поглощения или линий комбинационного рассеяния кетонов). [c.466]

    Таким образом, по температурной зависимости спектра поглощения концентрированного раствора, по влиянию природы растворителя, по характеру изменений ультрафиолетовой полосы поглощения, а также по виду изменений свечения при увеличении концентрации раствора всегда можно однозначно установить, имеет ли место в растворе ионизация или ассоциация молекул растворенного вещества. [c.291]


    Необходимо учитывать возможность присутствия посторонних примесей в растворе, которые будут поглощать свет и мешать анализу, а также влияние растворителей на характер спектра растворенного вещества и, поглощение самих растворителей в ультрафиолетовой области (табл. 15). [c.153]

    Поэтому при поглощении молекулой ультрафиолетового излучения высокой энергии наблюдаемый спектр поглощения состоит из широких полос, являющихся результатом наложения большого числа узких полос, соответствующих различным переходам между близко расположенными подуровнями. Сложная природа электронных спек-ров многоатомных молекул делает очень трудным их полный анализ даже при использовании приборов высокого разрешения, т. е. высоко монохроматичных потоков излучений. Отсутствие вращательной и вращательно-колебательной структур можно наблюдать в спектрах жидких веществ и растворов, что связано с взаимодействием между соседними молекулами растворенного вещества и влиянием сольватации (большинство химических исследований относится именно к этим условиям). Полярные растворители обусловливают обычно значительно большие изменения в полосах поглощения, чем неполярные. Это объясняется тем, что оптические спектры возникают в результату поглощения или излучения света внешними электронами, наименее прочно связанными с ядром, которые требуют для возбуждения меньше энергии, чем внутренние электроны. [c.8]

    Рассматриваются особенности стереохимии и устойчивости комплексных соединений, образуемых органическими реагентами. Много внимания уделено влиянию комплексообразования на окислительно-восстановительные потенциалы, а также кинетике и механизму реакций комплексообразования. Обсуждаются спектры поглощения комплексов и реагентов в видимой и ультрафиолетовой областях. Особенно подробно рассмотрены факторы, влияющие на растворимость соединений и их экстракцию органическими растворителями. [c.4]

    Более эффективен спектрофотометрический метод, основанный на измерении поглощения монохроматического света. Выбор узкой области частот спектра позволяет повысить чувствительность и точность анализа и уменьшить влияние других веществ, находящихся в растворе. Например, можно определить малое содержание ксантогенатных ионов, измеряя оптическую плотность их водных или водно-спиртовых растворов в ультрафиолетовой области при длине волны А, = = 226 и 301 нм. Для определения содержания алифатических аминов используют их способность давать окрашенные комплексы с бин-доном или метилоранжем, экстрагируемые органическими растворителями. При наличии интенсивных характеристических полос поглощения в инфракрасной области спектра их также можно использовать для количественного анализа растворов реагентов. [c.289]

    Влияние растворителя на спектры ультрафиолетового поглощения ароматических углеводородов о механизме высаливания. I. Спиртовые растворы хлорида лития. [c.22]

    Большинство исследуемых веществ имеет в видимой или ближней ультрафиолетовой областях спектра интенсивные пики поглощения, для которых линейные десятичные коэффициенты поглощения имеют величину порядка 10 . Соответствующие спектры и таблицы коэффициентов поглощения приведены в следующем разделе, где обсуждается также влияние растворителя и противоиона на положение и интенсивность пиков поглощения. [c.168]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Изучение смещения полос поглощения замещенных бензола в ультрафиолетовых спектрах под влиянием взаимодействия с растворителем способствует в известной степени выяснению природы полос поглощения. А так как смещение полос поглощения связано с изменением распределения электронной плотности в молекуле, то возможно изучение этого распределения, а также предсказание места образования связи между двумя молекулами, образующими комплекс вследствие донорно-акценторного взаимодействия. [c.157]

    Нельзя вообще предсказать, каким образом будет влиять на поглощение данным растворенным веществом замена одного растворителя другим. Вопрос о влиянии замены растворителя может и не возникать в связи с тем, что аналитик часто принужден употреблять определенный растворитель или класс растворителей, в которых растворяется исследуемый материал. Дальнейшее ограничение налагается при работе в ультрафиолетовой и инфракрасной спектральных областях, где многие обычные растворители становятся непрозрачными. Это ограничение особенно велико для инфракрасной области, поскольку неизвестны растворители, прозрачные на всем участке спектра, на котором желательно проводить анализы. Для работы в ультрафиолетовой области оказываются удовлетворительными вода, спирт, эфир и насыщенные углеводороды, но бензол и его производные, хлороформ, четыреххлористый углерод, сероуглерод, ацетон и многие другие здесь неприменимы, за исключением области, непосредственно [c.178]

    Поскольку поглощение белков в области 250—300 ммк обусловлено остатками триптофана, тирозина и фенилаланина, изменение поглощения в этой области связано, по-видимому, с влиянием, которое оказывает на хромофоры изменение условий в молекуле белка. Эксперименты с индолом, фенолом и бензолом— соединениями, которые можно рассматривать как модели этих остатков, — показывают, что при увеличении показателя преломления растворителя наблюдается сдвиг в область длинных волн (в данном случае речь идет не о красном сдвиге к 295 ммк, обусловленном ионизацией фенольной группы). Для неполярных растворителей этот сдвиг можно объяснить и оценить количественно. В водных растворах направление сдвига остается тем же, однако описать его простой формулой не удается. Для этого необходимо оценить, в какой мере растворитель может стабилизировать основное и возбужденное состояния хромофорных групп. Сдвиг в голубую область спектра, наблюдаемый при разрушении структуры белка, можно объяснить качественно, если предположить, что хромофорные группы перемещаются при этом из гидрофобной среды в белковой матрице в водную среду, показатель преломления которой меньше. Разностные спектры служат чувствительным показателем нарушений в третичной структуре, которым обычно сопутствуют изменения оптического вращения, вязкости и т. д. В некоторых случаях большое изменение теплоты и энтропии наблюдается при условиях, когда, судя по измерениям оптического вращения, изменений во вторичной структуре не происходит. В таких случаях разностные ультрафиолетовые спектры могут служить дополнительным критерием наличия изменений в третичной структуре. Можно ожидать также изменений в спектре, обусловленных изменением величины заряда вблизи хромофора. Однако эксперименты с модельными соединениями показывают, что подобные изменения могут происходить только в том случае, если [c.299]

    Приблизительно таково же влияние заместителей и в случае сложных ароматических соединений. Как упоминалось выше, спектр излучения нафталина лежит в ультрафиолетовой области. Введение таких групп, как —ОН, —ЗОзН, —ННг, и =0 в молекулу нафталина приводит к сдвигу полосы поглощения в длинноволновую область, а также к тому, что эти вещества могут ионизоваться в полярных растворителях и служить рН-индикаторами. Поэтому цвет их излучения зависит от величины pH (табл. 6 и 7). [c.49]

    Существование в системе различного типа ионных пар доказано данными электронной спектроскопии в видимой и ультрафиолетовой частях спектра и данными ИК-спектроскопии. По наличию батохромного сдвига полосы поглощения, обусловленной контактной ионной парой в присутствии сильно сольватирующего растворителя, можно обнаружить факт сольватации ионной пары, и рассчитать соответствующую константу равновесия [45]. Доказано (см. гл. И1, 3), что способность растворителя к образованию в растворе сольватированных ионных пар зависит от диэлектрической проницаемости среды, стерических факторов, основности растворителя и т. д. [45, 46]. При отсутствии стерических эффектов способность эфиров к сольватации ионов щелочных металлов удовлетворительно коррелирует с основностью растворителя, однако в общем случае установить строгие закономерности влияния среды пока не представляется возможным. Определенные перспективы в отношении выяснения строения сольватно-разделенных ионных пар и причин изменения их реакционной способности по сравнению с контактными ионными парами открываются при использовании метода ЭПР [47—50]. [c.387]

    Применяя для разделения тяжелых остатков нефти на основные компоненты такие методы, как осаждение жидким пропаном асфальтенов и смол, обработка избирательно действуюп1,ими растворителями (фенол и крезол), хроматография, молекулярная перегонка и некоторые другие методы, они выделили ряд фракций смол и высокомолекулярных углеводородов, заметно различающихся между обой по элементарному составу и свойствам. Общая схема выделения и разделения показана на рис. GS [75]. Более полное изучение этих фракций химическими (определение элементарного состава, каталитическое гидрирование) и физическими методами (определение вязкости, удельного и молекулярного весов, инфракрасные и ультрафиолетовые спектры поглощения и др.) и применение методов структурно-группового анализа позволили авторам сделать некоторые выводы о химической природе их и о влиянии последней на физико-механические свойства таких нефтепродуктов, как смазочные масла. Результаты опытов и основные выводы о химической природе смол, сделанные на основании этих данных, хорошо согласуются с результатами других исследователей. [c.470]

    Поскольку фенолы могут вести себя как индикаторы Гаммета, то, изучая поглощение в ультрафиолетовой области, можно измерить их р/Са непосредственно [11, 15]. Естественно, что использование видимого и ультрафиолетового света исключено для насыщенных спиртов. Ряд исследователей изучали возможность получения кривой титрования с использованием спектров ЯМР по изменению химического сдвига а-водородных атомов по мере протонирования гидроксильной группы. Однако в настоящий момент этот метод не кажется многообещающим из-за огромного влияния растворителей (см. разд. IIIA). [c.244]

    Как положение, так и характер структуры полос поглощения зависят от растворителя. В общем полярные растворители имеют тенденцию смещать полосы в сторону больших длин волн и смазывать их колебательную структуру. Интенсивность поглощения также может зависеть от растворителя. Инертный растворитель, например гексан, дает очень малое изменение в характере спектра по сравнению со спектром вещества в газообразном состоянии, в то время как спиртовый раствор характеризует влияние полярных растворителей (рис. 1,6, стр. И). Синтетический гексан мог бы быть использован как неполярный растворитель высокой прозрачности в ультрафиолетовой области, но он дорог. Может быть использован циклогексан, но оп требует предварительной очистки от бензола. Изооктан высшего качества, перегнанный над твердым КОН, может быть рекомендован как наиболее подходящий и доступный углеводородный растворитель [31]. Для многих работ удовлетворительный растворитель может быть приготовлен из технического лигроина по методике Кастиля и Генри [32]. [c.60]

    В ультрафиолетовой области спектра сильно поглощают сами реагенты — а-бепзплдиок СИМ и р-нитрозо-а-нафтол, которые экстрагируются хлороформом вместе с комплексными соединениями никеля и кобальта. В литературе [1, 2] имеются указания па возможность реэкстракцип этих реагентов щелочами из хлороформного раствора. Нами были детально изучены условия экстракции и реэкстракции реагентов. Результаты представлены на рисунке. Двойная реэкстракция реагентов щелочью приводит к почти полному устранению их влияния на определение металлов в ультрафиолетовой области соединения никеля с а-бепзплдиок-симом и кобальта с Р-нитрозо-а-нафтол ом щелочью не реэкстра-гируются. Для устранения влияния на поглощение ничтожной доли реагента, остающегося в фазе органического растворителя, работа всегда проводилась с использованием нулевого раствора, содержащего все реагенты и прошедшего те же операции, что и исследуемые растворы, но не содержащие никеля п кобальта. [c.299]

    Коэффициенты экстинкции молекул часто сильно изменяются в результате адсорбции. Этот эффект, не говоря о любых других наблюдениях спектральных сдвигов, представляется весьма важным для интерпретации спектральных данных с каталитической точки зрения, так как появление таких изменений делает опасными и ненадежными попытки каким-либо путем оценить степень заполнения поверхности катализатора на основании наблюдаемых оптических плотностей полос поглощения адсорбированных молекул. Эти изменения не могут быть просто связаны с различиями в полярности, поскольку неизвестны соответствующие изменения в системах с растворителем. Изменение коэффициента экстинкции, пожалуй, может быть результатом специфических ориентаций молекул и их электронных векторов по отношению к электронному вектору полярной поверхности. Этот тип оптической анизотропии может приводить или к усилению, или к ослаблению интенсивности поглощения в зависимости от того, адсорбирована ли молекула так, что ее электронный вектор параллелен или перпендикулярен электростатическому полю поверхности. Хотя имеется очень мало количественных данных относительно влияния поля поверхности на интенсивность полос поглощения в ультрафиолетовой и видимой областях спектра, некоторые авторы обсуждали такие эффекты для инфракрасной области [3—5]. Как симбатные, так и антибат-ные изменения коэффициента экстинкции в зависимости от степени заполнения поверхности (0) наблюдались в инфракрасной и ультрафиолетовой областях. Коэффициент экстинкции для хемосорбированного на окиси меди этилена увеличивается с заполнением, тогда как на окиси никеля он падает, показывая, что направление изменения зависит не только от адсорбата, но и от природы адсорбента [6]. Когда с адсорбированными молекулами связано несколько полос поглощения, эти полосы могут по-разному изменяться с заполнением поверхности. Для ароматического соединения, адсорбированного так, что его плоскость параллельна плоскости поверхности, силовое поле, нормальное к поверхности, может увеличивать интенсивность плоских колебаний, в то время как интенсивность неплоских колебаний будет уменьшаться [7] в результате нелинейного изменения относительных интенсивностей с заполнением. Нелинейное изменение относительных интенсивностей полос поглощения связей С—О и С—Н кетонов, адсорбированных на монтмориллоните [5], и связей N—И и С—И аминов, адсорбированных на пористом стекле [8], было интерпретировано на [c.11]

    Намного более сложной задачей является интерпретация зависимостей от растворителей спектров электронного возбуждения комплексов металлов, и в особенности комплексов переходных металлов [287]. Известно, что спектры последних содержат полосы поглощения, соответствующие следующим трем типам переходов 1) -переходы 2) переходы с переносом заряда и 3) переходы внутри лиганда. Переходы й — -типа на самом деле запрещены и появляются только в результате возбуждающего влияния лигандов это объясняет их слабую интенсивность [176]. В соответствии с энергиями -й -переходов эти линии обычно расположены в видимой или ближней ультрафиолетовой областях их расположение зависит от донорной способности лиганда. Например, полосы /-поглощения комплексов с молекулами воды обычно наблюдаются в видимой области спектра. Если молекулы воды в координационной сфере атома переходного. металла заменить более сильны.м растворителем (или лигандом), г/— /-полосы сдвигаются в направлении УФ-области замена на более слабые донорные лиганды приводит к сдвигу в противоположном направлении. Если замена лиганда сопровождается изменением координационной сферы, интенсивности d—d-noлo тоже обычно изменяются. Понижение симметрии, как правило, сопровождается увеличением молярного поглощения. [c.97]


Смотреть страницы где упоминается термин Спектры поглощения ультрафиолетовые влияние растворителей: [c.96]    [c.182]   
Химия природных соединений фенантренового ряда (1953) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Поглощение растворителя

Спектры поглощения влияние растворителя

Ультрафиолетовая поглощения

спектры как растворители



© 2024 chem21.info Реклама на сайте