Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции электрофильного замещения в ароматических соединениях, механизм

    Оказалось, что в таких реакциях электрофильного замещения, как нитрование бензола, толуола, нитробензола, нитротолуола, нафталина и других ароматических соединений, а также бромирование бромбензола, изотопный эффект практически отсутствует. Это позволяет однозначно считать, что названные реакции протекают по двухстадийному механизму и, следовательно, присоединение электрофильной частицы и отщепление протона происходят неодновременно. При этом лимитирующей стадией всего процесса является образование карбокатиона, когда еще не затрагивается связь Аг—Н. [c.315]


    Радикальный и ионный механизмы реакции галогенирования. Нуклеофильное замещение при насыщенном атоме углерода. Механизмы 5д,1 и 5д,2. Зависимость механизма реакции от строения исходных веществ и условий реакции. Электрофильное замещение в ароматическом ядре (5 ). Галогенирование ароматических соединений. Механизм реакции, я- и о-Комплексы. [c.76]

    Галогенирование ароматических соединений, так же как и нитрование, сульфирование и ацилирование, выгодно отличается от других реакций ароматических соединений тем, что эта реакция легко может быть проведена ступенчато, без применения специальных мер предосторожности, так как введение галогена в ароматическую систему пассивирует кольцо и препятствует дальнейшей реакции. Механизм галогенирования в соответствии с общей картиной реакций электрофильного замещения заключается в атаке кольца положительным атомом галогена и последующем отщеплении протона  [c.60]

    Однако некоторые реакции электрофильного замещения, например реакция сульфирования, протекают с изотопным эффектом, хотя чаще он бывает незначителен. При этом нельзя составить себе определенное представление о механизме реакции, так как изотопный эффект может наблюдаться как в том случае, когда реакция идет согласно первому, одностадийному, механизму, так и в случае, когда скорость образования карбокатиона по второму механизму высока и соизмерима со скоростью отщепления протона. Последнее может наблюдаться при реакциях ароматических соединений с повышенной основностью или при проведении реакции с очень агрессивными электрофильными реагентами. В этом случае суммарная скорость процесса будет зависеть как от первой, так и от второй стадий, и, следовательно, при этом будет наблюдаться изотопный эффект. [c.315]

    К реакциям электрофильного замещения 8е относятся процессы замещения водорода в ароматическом ряду, реакции нитрования и сульфирования, галогенирования в присутствии катализа торов, реакции обмена металлов в металлорганических соединен ниях и т. п. Наиболее изучены реакции обмена металлов в металлорганических соединениях. При этом возможны три механизма реакций. [c.219]

    Из изложенного следует, что вопрос о механизмах изомерных превращений гомологов ароматических углеводородов и межмолекулярного перераспределения алкильных групп тесно связан с представлениями о природе и свойствах комплексов, образующихся при взаимодействии ароматических углеводородов с сильными кислотами. Эти представления еще не приобрели должной четкости и строгости и, естественно, будут видоизменяться в ходе дальнейшего изучения. Параллельно с этим будут уточняться и наши взгляды на механизм процессов изомеризации. Для более глубокого понимания подобных превращений важно также дальнейшее развитие теории реакций электрофильного замещения ароматических соединений. [c.46]


    Однако кинетический метод с использованием ароматических соединений, меченных дейтерием и тритием, позволил однозначно установить, что большинство реакций электрофильного замещения в ароматическом ядре протекает по двухстадийному механизму. Если бы реакции протекали по первому механизму в одну стадию или если бы вторая стадия второго механизма лимитировала весь процесс, то при замене в реагирующем ароматическом соединении водорода на дейтерий или тритий наблюдался бы изотопный эффект, т. е. произошло бы значительное уменьшение скорости реакции. (Известно, что вследствие различия масс водорода, дейтерия и трития разрыв связи С—Н происходит в 5—8 раз быстрее, чем связи С—О, и в 20—30 раз быстрее, чем связи С—Т). [c.315]

    Относительно механизма металлирования ароматических соединений, как известно, существует две гипотезы. Согласно одной из них, наиболее важной стадией реакции является электрофильная атака катионом металла (металлорганического реагента) углеродного атома ароматического кольца, от которого в дальнейшем легко удаляется атом водорода. Поскольку реакции электрофильного замещения в ароматическом кольце обычно протекают без измеримого изотопного эффекта водорода, естественно ожидать, что его не будет и при реакции металлирования. [c.255]

    С другой стороны, многочисленные кинетические исследования реакций образования я-комплексов, большей частью выполненные на модельных соединениях, показали большую скорость и низкую энергию активации этих взаимодействий. Из имеющихся рентгеноструктурных данных видно, что остаток ароматического субстрата в я-комплексах близок по структуре к исходному соединению. Все это позволило считать, что в большинстве случаев элементарные стадии с участием я-комплексов можно исключить из рассмотрения и механизм реакций Электрофильного замещения считать состоящим только из двух элементарных стадий — образования а-комплекса и его разрушения с отрывом протона основанием, присутствующем в реакционной среде  [c.39]

    Известен обмен в связи С—Н, протекающий по механизму электрофильного замещения. Если в реакции обмена участвуют ароматические соединения, то в ряде случаев можно предполагать, что замещение происходит по ассоциативному механизму через стадию образования промежуточного я-комплекса. [c.137]

    Оксигруппа фенола, подобно аминогруппе, очень сильно активирует ароматическое кольцо по отношению к реакциям электрофильного замещения, и механизм активации в обоих случаях в основном сходен. В качестве промежуточного соединения, вероятнее всего, образуются оксониевые ионы (типа I и П), в которых каждый из атомов (за исключением атомов водорода) имеет полный октет электронов они образуются гораздо быстрее, чем карбониевый ион из бензола. [c.765]

    Во многих ароматических соединениях водород, связанный с ядром, можно заместить на дейтерий путем обмена с дейтеросерной кислотой. Механизм аналогичен механизму других реакций электрофильного замещения. [c.198]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]

    Процессы, протекающие по ионному механизму (например, реакция замещения 1а и 16), классифицируют на основании типа действующего реагента [1]. Реагент, который дает электронную пару для вновь возникающей связи, называется нуклеофильным реагентом, а реакции, осуществляемые при его участии,—реакциями нуклеофильного замещения (соответственно, отщепления или присоединения) реагирующая молекула при этом проявляет электрофильность. Приведенные выше реакции иодистых солей с хлористым бензилом или аммиака с иодистым метилом, а также распад катионов четвертичных аммониевых оснований под действием гидроксильных ионов являются реакциями нуклеофильного замещения. Если же реагент не дает электронной пары для вновь возникающей связи, он является электрофильным реагентом и реакции, осуществляемые при его участии, называют реакциями электрофильного замещения (соответственно отщепления, присоединения)-, реагирующая молекула при этом проявляет электронодонорные свойства, поскольку новая связь образуется за счет имеющихся у этой молекулы электронов. Например, приведенная реакция нитрования ароматических соединений является реакцией электрофильного замещения. [c.247]

    Для соединений ароматического характера, имеющих замкнутую я-электронную систему, наиболее характерны реакции с электрофильными агентами. С помощью кинетических методов показано, что большинство реакций электрофильного замещения в ароматическом ряду протекает по двухстадийному механизму. На первой, медленной, стадии происходит нарушение ароматической системы и переход атакуемого атома углерода ядра в состояние 5р -гибридизации  [c.170]


    Различньш аспекты механизма реакций электрофильного замещения в ароматических соединениях в настоящее время достаточно широко освещены в литературе (см., например,Наименее изученным остается механизм электрофильного замещения у фенольных соединений, так как фенолы обычно мало использовались в качестве объектов исследования. При сравнительном изучении механизма электрофильного замещения у разных классов ароматических соединений, как правило, применялись простые эфиры фенолов, которые обладают более стабильной ароматической системой и, в известной степени, не проявляют свойств, присущих фенолам. Однако различие особенностей механизма реакций электрофильного замещения у фенолов и их простых эфиров неоднократно отмечалось (см., например, [c.54]

    МЕХАНИЗМ РЕАКЦИИ ЭЛЕКТРОФИЛЬНОГО ЗАМЕЩЕНИЯ (5е2) в АРОМАТИЧЕСКИХ СОЕДИНЕНИЯХ [c.74]

    Сульфирование — реакция электрофильного замещения. Эта реакция имеет свои особенности. Во-первых, она обратима. Во-вторых, стадией, лимитирующей скорость реакции, часто является отщепление протона от а-ком-плекса, но механизм сульфирования до конца не выяснен. Не решен вопрос о строении электрофильной частицы, атакующей ароматическое соединение. Известно только, что сульфирование оксидом серы (VI) протекает значительно легче, чем серной кислотой. [c.97]

    Особую группу реакций электрофильного замещения в ароматических соединениях образуют процессы изотопного обмена водорода. Электрофильным реагентом в таких системах является протон или какая-либо другая кислота. В случае, например, бензола общепринятый механизм замещения представляется следующим образом  [c.226]

    В этой главе рассмотрена обширная группа важных в практическом отношении реакций электрофильного замещения, с помощью которых в ароматические соединения вводят алифатические цепи, получают ароматические спирты, альдегиды, кетоны и кислоты. При всем разнообразии исходных веществ, условий проведения и деталей механизмов в этих реакциях есть общая, объединяющая черта атакующим реагентом является карбкатион или катионоидная частица, в которой имеется атом углерода с частично незаполненной электронной оболочкой. Роль катализаторов при этих реакциях в большинстве случаев состоит в том, что они содействуют образованию таких активных реагентов в концентрациях, достаточных для успешного протекания процесса. [c.193]

    Однако известны многочисленные реакции электрофильного замещения водорода в ароматических соединениях. Такие реакции протекают в две стадии по более сложному механизму. [c.207]

    Этому уравнению хорошо подчиняются все реакции электрофильного замещения ароматических соединений причем всегда р < О, что может служить подтверждением их механизма. Примеры использования этого уравнения в целях корреляции кинетических данных представлены для двух реакций на рис. 16. Зная константу р для данной реакционной серии, можно вычислить константу скорости для какого-то замещенного бензола (Ai), но лишь приближенно, без учета орто-замещения. Зато достаточно точно-рассчитывается отношение парциальных факторов /п-//л- и соотношение пара- и леега-изомеров  [c.102]

    Оксид углерода, цианистый водород и нитрилы также реагируют с ароматическими соединениями в присутствии сильных кислот или дру гих катализаторов Фриделя — Краф са. Эти реакции широко исполь-зуютсй в синтезах, поскольку в результате образуются формил- и ацил-за мещенные ароматические соединения. Этл электроноакцепторные группы препятствуют дальмейшему электрофильному замещению. Подробные исследования механизма не проводились ниже приведены при мерные механизмы дтих реакций  [c.238]

    Таковы общие положения механизмов реакщш электрофильного замещения. Это касается, однако, незамещенного бензола. Механизм реакции S , характер ее протекания зависит не только от природы атакующего электрофильного реагента. Характер образующихся продук тов реакции и активность ароматических соединений очень сильно зависят от наличия заместителей в кольце и их природы. [c.167]

    Реакции электрофильного замещения широко распространены среди ароматических соединений. Общий механизм реакции эле1сгрофильного агента Е" " с ароматическим соединением А1Н можно представить следующей схемой  [c.291]

    Взаимодействие свободных галогенов (хлора, брома, иода) с ароматическими углеводородами в зависимости от условий реакции может привести к образованию различных соединений. При нагревании в неполярных средах или при освещении смеси галогена и ароматического углеводорода происходит замещение на галоген водорода боковой цепи. Эти реакции имеют свободнорадикальный механизм и будут подробно рассмотрены в главе четвертой . При взаимодействии ароматических углеводородов с галогеном в присутствии кислот Льюиса (А1С1з, 2пС12, РеВгз) при невысокой температуре происходит реакция электрофильного замещения атома водорода в ядре на галоген. Действующим агентом этой реакции является положительно заряженный атом галогена (или положительно поляризованный конец диполя Х ). Роль катализатора в этой реакции и состоит в поляризации (ионизации) молекулы галогена [c.108]

    Обычно реакции электрофильного замещения протекают при действии достаточно энергичных электрофильных реагентов к реакциям такого типа в ароматическом ряду относятся хорошо изученные процессы электрофильного замещения водорода реакции нитрования и сульфирования, реакция Фриделя—Крафтса, а также галогенирование в присутствии катализаторов—Al lg и т. п. В противоположность реакциям ароматических веществ реакции нитрования и галогенирования предельных соединений алифатического и алициклического ряда протекают по радикальному механизму (стр. 870 и 876). [c.327]

    Поскольку имеются данные, что трибромид-ион Вг может участвовать в электрофильном замещении ароматического ядра, необходимо учесть возможность электрофильной атаки этой частицей на двойную связь, несмотря на формальный отрицательный заряд. Реакцию, идущую по этому механизму, кинетически нельзя отличить от присоединения, катализируемого анионами, которое обсуждалось выше, и способы, которыми их можно было бы отличить, отсутствуют. Однако Макдональд, Милберн и Робертсон [19] полагают, что им удалось установить существование еще одного механизма присоединения, по которому ион типа трибромид-иона действует как нуклеофильный бромирующий агент для соединений, в которых этиленовая связь в значительной степени дезактивирована наличием электроноакцепторного заместителя с сильным индуктивным эффектом. В табл. 20 приведены соотнощения скоростей, на основании которых сделаны эти выводы. [c.150]

    При рассмотрении нуклеофильных диссоциативных процессов мы видели, что наряду с реакцией замещения (Sivl) образующийся карбкатион может вступать в реакцию отщепления ( I). Можно предположить, что и в данном случае на второй стадии катион может стабилизироваться не только за счет присоединения нуклеофила, но и за счет отщепления протона. Было показано, что увеличение протонизации атома водорода в а-положении к карбкатионному центру приводит к увеличению доли аномального присоединения, что согласуется с предложенным механизмом. Таким образом, здесь наблюдается и аналогия с реакциями электрофильного замещения в ароматическом ряду. В случае реакций электрофильного замещения образовавщнйся катион почти всегда стабилизируется за счет отщепления протона, так как этот процесс сопровождается образованием весьма выгодной энергетически ароматической системы, а присоединение нуклеофила происходит редко. В реакциях электрофильного присоединения к непредельным соединениям, как правило, более выгодным является взаимодействие с нуклеофилом, но возможно и отщепление протона. [c.384]

    Как мы видели, в алифатическом ряду достаточно легко осуществляются 5л 1- и 5лг2-механизмы замещения. Однако, следует ожидать, что в случае ароматических соединений они будут значительно более редкими, так как связь уходящей группы с р -гиб-ридизоваиным атомом углерода значительно прочнее, чем с 5р -атомом, и ее разрыв будет протекать существенно труднее. В то же время при рассмотрении реакций электрофильного замещения в ароматическом ряду (см. гл. ХП1) мы убедились в том, что образование интермедиата за счет присоединения реагента к ароматическому ядру происходит довольно легко. Различие заключается в том, что в случае электрофильных реакций происходит взаимодействие свободной орбитали электрофильного реагента с высоколежапюй запятой л-орбиталью ароматической системы. В реакциях нуклеофильного замещения, которые мы рассматриваем, будет происходить взаимодействие высоколежащей заполненной орбитали нуклеофила с достаточно низкой по энергии разрыхляющей л -орбпталью ароматического кольца. [c.396]

    Таким образом, оксихлорирование алкилароматических углеводородов в присутствии соединений хрома протекает как в направлении замещения на хлор атомов водорода в бензольном ядре, так и в боковой цепи, причем наиболее активным углеводородом в последней реакции оказался этилбензол. Влияние температуры на направление реакции, как видно из данных таблицы, значительное. При низких температурах распад комплекса хлорида водорода с надхромовой кислотой протекает преимущественно с образованием молекулярного хлора. Этим объясняется столь низкий выход монохлорбензола, образование которого происходит по механизму электрофильного замещения, и относительно высокий выход продуктов замещения в боковой цепи (бензилхлорид, а- и -хлорфенилэтаны, изомерные ксилилхлориды и др.). С повышением температуры распад комплекса протекает в основном с образованием ионов хлора, которые вступают в реакцию электрофильного замещения в ароматическом ядре с образованием хлорбензола, хлортолуола, хлорксилолов и хлорэтилбензола.. По активности в реакции оксихлорирования при 0°С исследованные углеводороды можно расположить в следующий ряд  [c.54]

    Благодаря большой электрофильпости протона ассоциативный механизм водородного обмена сводится к механизму электрофильного замещения. Систематическое изучение обмена с дей-терокислотами в ароматических соединениях обнаружило, что ему способствуют те же факторы, которые облегчают реакции электрофильного замещения (сульфирования, нитрования, галоидирования и др.), а именно — сильная кислотность донора дейтерия, и заместители, увеличивающие электронную плотность на атоме углерода в связи С — Н, в которой происходит обмен. Например, А. И. Шатенштейном[17] было показано, что обмен углеводородов с жидким бромистым дейтерием ускоряется при введении электроположительных заместителей —СНд и —ОСН3 и замедляется при введении электроотрицательных заместителей —СК и -N02- [c.58]

    В ряду Р <С С1 < Вг < I, причем не удалось обнаружить эффектов растворителя при проведении реакций СеНвСНгС в воде, метиловом и этиловом спиртах [130]. Эти результаты можно согласовать только с таким механизмом, в котором лимитирующей стадией является образование СбНэСНгС] -, причем заряд аниона в основном сосредоточен на атоме галогена. Поэтому довольно трудно установить аналогию между реакциями гидратированных электронов с алкилгалогенидами и процессами типа SNl и SN2 у насыщенного атома углерода [131]. Тем не менее между механизмами присоединения электронов к алкилгалогенидам и к замещенным ароматическим соединениям имеется сходство в том отношении, что в обоих случаях атака идет по центрам с наименьшей электронной плотностью. Поскольку атом галогена, связанный с углеродом, может играть роль электрофильного центра только при атаке сильным восстановителем, то гидратированный электрон при реакциях с алкилгалогенидами выступает не только как активный нуклеофил, но также и как активнейший восстановитель. В принципе можно использовать активность алкилгалогенидов в реакциях с гидратированными электронами как меру относительных восстановительных потенциалов этих соединений. Более высокую реакционную способность СбНзСНгС] по отношению к гидратированным электронам, чем следовало ожидать из соответствующих значений а , можно объяснить, как и в отмеченном выше случае, дополнительным взаимодействием электрона с ароматическим кольцом [130]. [c.139]

    По своему механизму азосочетание относится к реакциям электрофильного замещения в ароматическом ядре благодаря своему положительному заряду катион диазония АгЫг играет роль электрофильной частицы. Однако поскольку электрофильные свойства катиона диазония весьма слабы, он вступает в реакцию лишь с теми ароматическими соединениями, ядро которых активировано электронодонорными группами — гидроксилом или аминогруппой. Участвующие в реакции ароматические амины или фенолы называют азокомпонентами или азосоставляющими, а введенные в реакцию диазосоединення называют диазокомпонентами или диазосоставляющими. При проведении реакции большое значение имеет создание необходимой среды — слабощелочной при сочетании с фенолами, и слабокислой — при сочетании с аминами. Это требуется для того, чтобы создать нужные условия для существования азосоставляющих в наиболее активной форме фенолов в виде фенолят-ионов Аг—0 , аминов — в виде солей, легко гидролизующихся с образованием свободных оснований, которые и вступают в реакцию. [c.318]

    За прошедшие три десятилетия и после этапного обзора Баннета и Залера [1] химики-органики признали, что ароматические соединения могут легко вступать не только в реакции электрофильного замещения, но и в реакции нуклеофильного замещения. Механизмы этих реакций весьма разнообразны и определяются природой ароматической части молекулы, нуклеофила и условиями проведения реакций. Б общем случае [c.9]

    Таким образом, скорость реакции пропорциональна произведению концентрации углеводорода на концентрацию комплекса, образуемого катализатором и реагентом. В случае других катализаторов (8ЬС15, ОаС1з, РеС1з) кинетическое уравнение имеет несколько иной вид, причем концентрация комплекса катализатор — хлорангидрид входит в уравнение во второй степени. Различие заключается в данном случае только в способе образования промежуточного активного агента ацилирования во всех случаях этим промежуточным продуктом является положительный ацилоний-ион. Последний взаимодействует с ароматическим соединением согласно общему механизму электрофильного замещения ароматического ядра  [c.636]

    Если нитровать дейтерированные или тритилированные ароматические углеводороды, то степень нитрования пропорциональна концентрации образующегося в растворе изотопа водорода, что находится в прекрасном соответствии с сформулированным выше механизмом электрофильного замещения [209, 210]. Аналогично галоидированию и нитрованию, сульфирование ароматических соединений также может рассматриваться как реакция электрофильного замещения при помощи катиона ЗОдН . [c.485]


Смотреть страницы где упоминается термин Реакции электрофильного замещения в ароматических соединениях, механизм: [c.160]    [c.94]    [c.183]    [c.187]    [c.138]    [c.228]   
Органическая химия Том 1 (1963) -- [ c.32 ]

Органическая химия Том 1 (1962) -- [ c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение механизм

Замещение электрофильное

Механизмы ароматических соединени

Механизмы реакций замещения ароматического

Реакции замещения

Реакции замещения механизмы

Реакция электрофильного

Синтез соединений ароматического ряда с помощью реакций электрофильного замещения Общие представления о механизме реакций

Соединения механизм

Электрофильное механизм

Электрофильность

Электрофильные соединения



© 2025 chem21.info Реклама на сайте