Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы электрические свойства

    Благодаря электрическим свойствам этой гидроксильной группы вся молекула рицинолеиновой кислоты приобрела способность прилипать к поверхности металлов, распластываясь при этом по ней плашмя. Если таких молекул много, то они образуют прослойку между этой металлической поверхностью и любой другой прижатой к ней. В результате эти поверхности скользят не друг по другу, а по податливым молекулам рицинолеиновой кислоты. Другими словами, она играет роль смазки. [c.175]


    По природе связей между атомами твердые тела делят тоже на две группы ионные, к которым относятся полупроводники и изоляторы, и ковалентные, включающие металлы. К ионным твердым телам относят вещества с большой долей ионной связи—типа галогенидов щелочных металлов, а также некоторые тела, у которых ионность невелика и преобладают ковалентные связи. Общим для них является изменение электрических свойств — от свойств, типичных для изоляторов, до свойств, проявляющихся у полупроводников. Такие вещества связывают адсорбат посредством электронной пары либо за счет проявления полярности. К ковалентным твердым телам помимо металлов относят элементарные полупроводники и отдельные полупроводниковые соединения. Объединяет их способность связывать адсорбат за счет свободных связей. [c.180]

    До сравнительно недавнего времени носитель рассматривали как инертную составляющую катализатора. Обычно как доказательство инертности носителей приводится отсутствие у них каталитической активности. Однако, как указывалось несколько выше, и у других типов сложных катализаторов один из компонентов может не обладать каталитической активностью. Шваб [87] показал, что при варьировании носителей для одного и того же активного компонента изменяется не только удельная каталитическая активность последнего, но и электрические свойства получаемого катализатора (электропроводность). Следовательно, влияние носителя может иметь электронную природу, что должно также вытекать из теории явлений в пограничных слоях металлов и полупроводников. [c.46]

    В настоящее время металлурги [17, 56, 158] объясняют образование и развитие зародышей кристаллов в металлах их электрическими свойствами, а направление сцепления и роста кристаллов— действием электростатического взаимного притяжения между ионами и электронами (или протонами). [c.54]

    Термоэлектрическими свойствами, т. е. способностью образовывать электрический ток на контакте двух разнородных материалов при нагревании, обладают металлы и полупроводники, но в металлах эти свойства выражены обычно слабее.. [c.213]

    Электронно-химическая теория катализа. Эта теория является наиболее современной, но еще нуждается в серьезной доработке. В ней делается попытка объяснить механизм катализа с точки зрения электронных уровней внутри кристаллов катализаторов и па пх понерхности. Идея о том, что свободные электроны металла являются причиной каталитической активности, в свое время была предложена А. В. Писаржевским с сотрудниками. Электрические свойства поверхности катализатора оказывают существенное влияние на химические связи адсорбированных или ориентированных молекул, вызывая их деформацию и тем самым облегчая разрыв и перестройку этих связей. [c.165]


    Электропроводность металлов сильно зависит от степени очистки металла и понижается по мере появления новых примесей, что связано с нарушением упорядоченности в кристаллической решетке и возникновением новых препятствий направленному движению электронов. Металлы по своим электрическим свойствам относятся к проводникам. [c.323]

    При обычных условиях пластмассы представляют собой твердые, упругие тела с блестящей поверхностью, не нуждающейся в дополнительной обработке. Плотность их колеблется от 0,9 до 2,2 г/см . В среднем они легче алюминия в 2 раза. Прочность отдельных пластмасс значительно превосходит прочность чугуна, сплавов алюминия и больше прочности многих марок стали. По электрическим свойствам пластмассы относятся к диэлектрикам. По антифрикционным свойствам многие пластмассы значительно превосходят лучшие антифрикционные сплавы металлов и, кроме того, их металлополимерные системы обладают особыми свойствами, изменяющими трение тел. Так, полиамиды, наполненные твердыми смазками — графитом, дисульфидом молибдена, имеют очень высокие среди полимеров антифрикционные свойства (см. разд. 36.2.7). [c.650]

    Коррозия металлов представляет собой самопроизвольный процесс разрушения металлов или изменения их свойств в результате взаимодействия с окружающей средой. Например, когда ржавеет железо, происходит его постепенное разрушение. Если медные или серебряные контакты покрываются оксидной или сульфидной пленкой, разрушение, как правило, не происходит, но существенно возрастает переходное (на границе двух контактирующих металлов) электрическое сопротивление, в результате чего выходит из строя радиотехническое или электронное устройство. [c.370]

    Обсудим электрические свойства алмаза, кремния, графита и металлов группы I Периодической системы элементов. [c.183]

    Простые вещества. При обычных условиях благородные газы — бесцветные, без вкуса и запаха вещества с малой растворимостью в воде и органических растворителях. На живые существа они оказывают, подобно алкоголю, наркотическое действие, которое ослабляется из-за нх малой растворимости. Практически безвреден только гелий, заметно активен ксенон. Благородным газам свойственна более высокая электрическая проводимость, чем другим газам они ярко светятся при прохождении через них электрического разряда. Подвергнув высокому давлению замороженный ксенон, удалось превратить его в металл, проявляющий свойства сверхпроводника. [c.350]

    Композиционные материалы (композиты)—состоят из полимерной основы, армированной наполнителем в виде высокопрочных волокон или нитевидных кристаллов. Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты 364 [c.364]

    Такие вещества в течение долгого времени не использовались в электро- или радиотехнике и поэтому не выделялись в отдельную группу, а их электрические свойства почти не изучались. Тем не менее, именно эти вещества обладают очень важными и интересными свойствами. Оказалось, что, во-первых, величина их удельной проводимости весьма существенно зависит от температуры и изменяется под действием света, ядерных излучений, деформаций и т. д. Во-вторых, при контакте рассматриваемых веществ между собой или с металлами, на границе раздела возникает переходный слой, сопротивление которого зависит от величины и полярности приложенного к контакту напряжения. Такне контакты характеризуются нелинейной зависимостью между протекающим через них током и приложенным напряжением. [c.9]

    Ниже рассматривается контакт полупроводников или металлов с водными растворами. При этом вначале мы остановимся на основных термодинамических и электрических свойствах чистой воды, а также водных растворов солей, кислот и оснований (щелочей). [c.184]

    Принцип электронной теории катализа для процессов, протекающих при участии катализаторов металлов или их окислов, заключается в том, что электрические свойства этих катализаторов могут влиять на ковалентные или электровалентные связи адсор- [c.106]

    Возможность вычисления электропроводности жидких металлов по значениям интерференционной функции и псевдопотенциала подтверждает наличие прямой связи между структурой и электрическими свойствами. На это впервые указал А. Ф. Иоффе. По мысли ученого, процесс образования электронов проводимости непосредственно связан с ближним порядком и электронной конфигурацией атомов. [c.54]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]


    Для оценки концентрации и поведения примесей в кристаллах изучение электрических свойств твердых веществ также играет важную роль. Если в металлах примеси несколько снижают электрическую проводимость (за счет увеличения рассеяния носителей тока и, следовательно, снижения их подвижности), то в полупроводниках ничтожные количества примеси (порядка 10" —10 %) резко увеличивают электрическую проводимость. Именно благодаря успехам в изучении полупроводниковых материалов стало возможным получение сверхчистых веществ, без которых немыслимо развитие ряда современных областей техники (полупроводниковой электроники, атомной энергетики и др.). [c.318]

    В результате воздействия а-, р и у-излучения высокой энергии в металлических кристаллах возникают дефекты-вакансии и атомы в междоузлии (пары Френкеля), искажения кристаллических решеток и др. Как правило, в результате облучения меняются физические и химические свойства металлов. Механические свойства конструкционных металлов, как правило, меняются так Ств — предел прочности увеличивается (30—60%), б — относительное удлинение падает ( 50%) и нарастает микротвердость (30—50%), т. е. металл упрочняется, но охрупчивается. Электрическое сопротивление металлов после облучения возрастает. Изменение химических свойств можно оценить сдвигом в положительную сторону электродных потенциалов после облучения  [c.531]

    При повышении температуры проводимость полупроводников в отличие от металлов обычно возрастает (см. 2). Электропроводность диэлектриков тоже возрастает. При температуре, близкой к абсолютному нулю, проводимость полупроводников и диэлектриков практически нулевая. По электрическим свойствам полупроводники стоят ближе к диэлектрикам, чем к металлам, от которых они имеют принципиальное качественное отличие. [c.232]

    Физические свойства. Хотя в свободном состоянии сурьма и висмут напоминают металлы, металлические свойства выражены у них слабо они хрупки, отличаются плохой электрической проводимостью, низкой электрохимической активностью, имеют положительные значения стандартных электродных потенциалов (см. табл. 27). [c.340]

    Коррозией называется разрушение материалов в результате химического и электрохимического воздействия на них окружающей среды. Особенно большой урон народному хозяйству приносит коррозия металлов. Коррозия металлов понижает механическую прочность и пластичность металлов, увеличивает трение между частями машин, ухудшает электрические свойства, нарушает герметичность аппаратов. Коррозия вызывает также прямые потери металла. Для железа, например, эти потери составляют в среднем около 10% от его ежегодной выплавки. [c.325]

    В фазовом анализе руд и других неметаллических материалов часто после измельчения исследуемой пробы используют различные физические методы разделения, например по плотности, на основе различия магнитных и электрических свойств. Главным же образом при фазовом анализе руд и в особенности металлов и сплавов химические методы применяют для избирательного растворения, а в металлургическом фазовом анализе применяют прежде всего электрохимические методы, основанные на селективном анодном растворении фаз сплава. [c.825]

    В случае примесных полупроводников, пока содержание примесных атомов невелико, остаются в силе основные соотношения, полученные для собственно полупроводников. С ростом содержания примесей поведение системы полупроводник— раствор уже не может быть описано приведенными уравнениями и зависит от природы примесных атомов. Так, в пределе для примесного л-полупр6 -водника, особенно ири высокой плотности поверхностных состояний, электрические свойства границы его с раствором приолнжаются к свойствам системы металл — раствор. [c.275]

    После того как было рассказано о химической связи между неболь-щим числом атомов, объединенных в молекулы, можно перейти к рассмотрению связи в твердых и жидких веществах. Простая, но очень плодотворная теория электрических свойств кристаллов рассматривает весь кристалл как одну большую молекулу, по всему объему которой простираются делокализованные молекулярные орбитали. Она называется зоииой теорией металлов и диэлектриков (изоляторов). [c.601]

    Если типичные свойства металлов определили их применение в качестве конструкционных материалов, то для механической обработки металлов потребовались материалы — инструментальные и абразивные — с иными свойствами. Инструментальные и абразивные материалы должны отличаться от конструкционных (металлических) материалов большей механической прочностью, твердостью, термической и химической стойкостью. Оказалось, что такие свойства могут иметь вещества, кристаллические решетки которых в отличие от металлических относятся к атомному типу. Такой тип крис1аллических решеток встречается у элементарных веществ и простых соединений, образованных химическими элементами промежуточного характера, к которым относятся бор, углерод, кремний, германий, сурьма. Электрические свойства веществ, образованных последними тремя элементами, дали возможность использовать их также и в качестве полупроводниковых материалов. Таким образом, промежуточные элементы и их соединения разрешили проблему изыскания инструментальных, абразивных и полупроводниковых материалов. [c.213]

    Германиды во многом напоминают силиды металлов, проявляя свойства интерметаллических соединений. Только немногие германиды особенно активных металлов разлагаются водой или разбавленными кислотами. Большинство л<е германидов, характеризующихся составом, ие соответствующим обычным валентностям металлов, отлича.ются твердостью, тугоплавкостью и химической инертностью, Германиды переходных металлов имеют металлический блеск и довольно высокую электрическую проводимость. [c.364]

    Маннит применяется в кондитерской промышленности для питания больных сахарным диабетом имея более высокую температуру плавления, чем ксилит и сорбит, он может быть использован для производства таких видов кондитерских изделий, которые не могут быть приготовлены с применением ксилита и сорбита. Примерно половина съеденного маннита не усваивается и выделяется неизменным. Используется маннит для стабилизации перборатов находясь с боратом аммония в электролитических конденсаторах, он снижает потери тока, повышает напряжение пробоя и улучшает электрические свойства. В качестве антиоксиданта маннит используется в производстве фотопроявителей на основе метола и амидола. В гальванотехнике добавка маннита стабилизует в растворе ионы трехвалентного хрома, препятствует их окислению. Способность маннита к комплексообразованию с окислами металлов позволила применить его в паяльных флюсах. Маннит наряду с дуль-цитом используют в бактериальных средах для идентификации различных микроорганизмов. [c.182]

    Химическая коррозия — это взаимодействие металла с корро-зиопно-агрессивными компонентами среды и смазочного материала, приводящее к его разрушению и не сопровождающееся возникновением в металле электрического тока. Применительно к химической коррозии говорят о коррозионных свойствах масел, т. е. их способности вызывать (коррозионная агрессивно сть) или предотвращать (противокоррозионные свойства) коррозию металлов при повышенных температурах. Характерными особенностями химических процессов, протекающих на поверхности металла, являются зависимость их скорости от температуры и сопровождение их выделением или поглощением тепла. [c.35]

    Электрохимическая коррозия — это разрушение металла при взаимодействии с коррозионной средой (электролитом), соправож-дающееся возникновением в металле электрического тока. Скорость электрохимической коррозии контролируется работой микро-гальванических пар на поверхности металла и зависит от разности потенциалов ее катодных и анодных участков. При электрохимических процессах продукты реакции отводятся с поверхности металла вглубь смазочного материала ионизация атомов металла (анодный процесс) и ассимиляция образующихся в металле избыточных электронов деполяризатором (катодный процесс) протекают в результате пространственного разделения участков реакции не единовременно. Применительно к электрохимической коррозии.говорят о защитных свойствам масла, т. е. о способности его тонкого слоя защищать металл от коррозионного воздействия внешних факторов (прежде всего электролитов). [c.36]

    Электрические свойства катализаторов из металлов или окислов бесспорно должны оказывать влияние на ковалентные или элек-тровалентные связи ориентированных или адсорбированных молекул, вызывая деформации их, приводяш,ие к перестройке связей и образованию новых продуктов. Мысль о том, что свободные электроны металла являются причиной каталитической активности, была высказана Л. В. Писаржевским с сотрудниками [58]. Так, например, реакцию 21 2+0. над платиной они объясняли тем, что с поверхности последней вырывается поток электронов, выталкивающий электроны из водорода и превращающий их в свободные протоны. Вытолкнутые электроны образуют с О анионы О", которые сочетаются с платиной в (Р1"0.2)". Это соединение легко превращается в поверхностный комплекс, в котором ион О соединяется с 2Н" в НдО. Аналогично Л. В. Писаржевский объяснял и другие каталитические реакции в присутствии металлов или их окислов как процесс медленно идущей диссоциации на ионы и электроны, например  [c.160]

    Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием технЕжи, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовлешы тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. В последние годы все больше привлекают внимание другие исключительные свойства алмаза его, электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации. [c.43]

    Магнитные свойства металлов связаны с их электрическими свойствами, поскольку элементарные носители магнетизма - электроны - обладают как магнитным моментом, так и элеюрическим зарядом. Наряду с общими для всех твердых тел элеюрическими свойствами магнитные материалы обладаюг рядом специфических электрических свойств, зависящих от самопроизвольной намагниченности. В магнитных материалах в каждом ферромагнитном домене на электрон проводимости даже при нулевом внешнем магнитном поле действует сила Лоренца. [c.17]

    Электрические свойства металлов. Основой изучения электрических свойств металлов и их сплавов является закон Ома. Константой, характеризующей электрические свойства металла, является его удельное сопротивление р. Оно определяется природой объекта и не зависит от его формы и размеров. Значение р может бьпъ получено измерением сопротивления г на образце длиной I и сечением 5 по формуле [c.32]

    При образовании твердого раствора электропроводность металла снижается. При размещении в пространственной решетке растворителя чуждых атомов растворенного вещества электрическое поле решетки растворителя искажается, и рассеяние элеюронов увеличивается. Электрические свойства твердого раствора обусловлены также химическим взаимодействием компонентов. При наклепе удельное электрическое сопротивление твердых растворов, так же как и чистых металлов, повьш1ается, а при отжиге понижается. При наклепе и отжиге твердых растворов, даже слабо-концентрирюванных, их электрическое сопротивление изменяется в большей степени, чем сопротивление чистых металлов в тех же условиях. [c.58]

    Металлические пленки, получаемые испарением металла и последующей его конденсацией, также захватывают примеси из вакуума . Во время получения этих пленок за счет испарения металла достигается очень высокий вакуум. После этого происходит загрязнение пленки следами газов, выделяющихся из различных частей прибора. Однако благодаря весьма большой величине поверхности пленки могут сохраняться в чистом состоянии значительно дольше, чем нити. Многие пленки, по-видимому, имеют еще и то преимущество, что их поверхность образована преимущественно одной кристаллографической плоскостью. При этом методе приготовления металлических поверхностей создаются необычные условия для процесса кристаллизации [11], и поэтому возможно, что образующаяся кристаллическая грань отличается от граней, возникающих при получении исследуемого металла другими методами. Использование пленок имеет, однако, один недостаток. Вследствие исключительно большой величины поверхности пленок на единицу веса металла [262] они обладают высокой поверхностной энергией. Средняя толщина первичных слоев, из которых состоит вся пленка, очень мала, и поэтому пленки по своим электрическим свойствам отличаются от обычных металлов [263], Во многих случаях у пленок наблюдается некоторое увеличение параметров решетки, достигающее 1—2% [264]. Лишь после сильного спекания их структура приближается к более нормальному состоянию металла. Согласно наблюдениям Миньоле [259], у пленки работа выхода в процессе спекания возрастает, приближаясь к величине, характерной для нормального металла. Вполне возможно, что во время процесса спекания происходит захват примесей. На получение пленок с сильно развитой поверхностью, а следовательно, с предельно открытой структурой большое влияние оказывает скорость испарения и конденсации металла. Пленки вольфрама по своим свойствам несколько более приближаются к нормальным металлам, чем не подвергнутые спеканию никелевые пленки. [c.142]

    Основная часть никеля (85—87%) расходуется для- производства сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используются в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. [c.286]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Катарометр надежен в работе и прост в изготовлении. Он представляет собой блок с двумя ячейками, в каждой из них находятся чувствительные нагревательные элементы. Элементы — это нити из вольфрамовой или платиновой проволоки или термисторы. Термисторы — полупроводниковые термосопротивления сбо-" лее высоким температурным коэффициентом сопротивления в сравнении с вольфрамовыми и платиновыми нитями. Это спекшиеся смеси окислов металлов марганца, кобальта и никеля с добавкой микроэлементов для обеспечения желаемых электрических свойств. Термистор укрепляется в форме маленького шарика и для х)беспечения химической инертности покрывается стеклом. [c.246]

    Вместе с углеродом и кремнием германий, олово и свинец составляют IVA группу периодической системы элементов. На наружном энергетическом уровне атомов этих элементов находится четыре электрона s p . Этим элементам свойственны обычно окислительные числа +2 и - -4, причем число +4 возникает вследствие перехода во время химических реакций одного из s-электронов на уровень р. Ввиду роста радиусов атомов и уменьшения энергии ионизации в группе IVA наблюдается усиление металлических свойств. Германий по электрическим свойствам явл яется полупроводником. Другие свойства металлов у него выражены очень слабо. В своих соединениях германий характеризуется ковалентным характером связей. Олово и свинец — металлы менее активные и типичные, чем металлы IA, ПА и IIIA групп. Это видно из преимущественно ковалентного характера связей в соединениях этих элементов, в которых их степень окисления +4. Также и во многих соединениях этих элементов, где их степень окисления +2, связи имеют смешанный характер. [c.208]

    Электрические свойства карбидов, нитридов, боридов и силидов указывают на то, что образование ковалентных связей электронами -подуровня и электронами присоединяющегося атома (С, 81, В, Ы) одновременно может возбуждать часть электронов, которые обусловливают металлическую элекгропровод-ность. Вещества с металлической проводимостью или металлообразные вещества образуют, как правило, соединения металлов с неметаллами, которые имеют близкие значения ионизационных потенциалов. [c.110]

    Электрические свойства рассмотренного контакта должны совпадать со свойствами п— + перехода. Действительно, потенциальный барьер, расположенный в слое пространственного заряда, обла,цает вольт-амперной характеристикой именно такого перехода, а потенциальный барьер непосредственно на границе раздела с металлом отсутствует. Последнее соответствует невыпрямляющему контакту к обогащенной поверхности полупроводника. [c.180]

    Большинство химических элементов относится к металлам, важнейнлями свойствами которых являются металлический тни связи в кристаллической решетке электрическая проводимость теплопроводность металлический блес - ковкость пластичность. [c.265]

    Электрические свойства простых веществ, как известно, являются одним из признаков, по которым осуществляется деление на металлы и неметаллы. С электрической проводимостью тесно связана теплопроводность кристаллов, обусловленная двумя вкладами передачей теплоты за счет колебаний атомов в узлах кристаллической решетки (фононы ) и передачей теплоты электронами. В кристаллах неметаллов, где в соответствии с правилом 8—N преобладают парноэлектронные ковалентные связи, концентрация свободных электронов незначительна. Поэтому все они являются полупроводниками и диэлектриками и обладают низкой теплопроводностью, обусловленной колебаниями решетки. В противоположность этому для металлов характерны высокие значения электрической проводимости (порядка Ю —10 Oм м ) и теплопроводности, поскольку в этом случае вклад свободных электронов в теплопроводность является определяющим. Наиболее высокой электрической и теплопроводностью обладают металлы подгруппы меди и алюминий. Для переходных металлов характерны достаточно высокие, но несколько меньшие значения электрической проводимости. [c.38]

    Все металлоподобные гидриды обладают собственным кристаллохимическим строением (в отличие от твердых растворов водорода в металлах) и свойствами, типичными для металлов металлическим блеском, значительной твердостью. Многие из них являются жаропрочными и коррозионностойкими веществами. По механическим свойствам металлоподобные гидриды уступают металлам, так как они более хрупки. Плотность этих гидридов меньше плотности исходных металлов, а энтальпии образования больше, чем у солеобразных гидридов, например для 2гН АН", oos = =—169,6 кДж/моль. В металлоподобных гидридах часть атомов водорода отдает электроны в зону проводимости металла, а электроны остальных атомов образуют с неспаренными электронами металла ковалентные связи. Последние и являются причиной увеличения твердости при образовании металлоподобных гидридов по сравнению с исходными металлами. Эти представления хорошо согласуются с фактом миграции водорода к катоду при длительном пропускании постоянного электрического тока, а также с уменьшением магнитной восприимчивости гидридиых фаз из парамагнитных металлов. [c.104]

    Влияние дислокаций и других дефектов сказывается не только на росте кристалла и его механических свойствах, но и на электрических свойствах полупроводников, так как вызывают рассеяние носителей заряда. Дефекты решетки сильно влияют на оптические свойства некоторых кристаллов. Например, вакансии в анионной подрешетке галидов щелочных металлов являются центрами притяжения электронов. Когда в места таких вакансий попадают электроны, то возникают так называемые F-центры, вследствие чего бесцветные прозрачные кристаллы (Na l и др.) приобретают синюю или пурпурную окраску из-за поглощения света электронами, захваченными де ктами решетки. [c.146]

    Свойства сплавов. Сплавы сохраняют хорошую электрическую проводимость, теплопроводность и другие присущие металлам свойства. Однако их свойства не складываются как среднее арифметическое из свойств сплавляемых компонентов. Наоборот, температуры плавления сплавов ниже, чем у исходных металлов. Например, сплав Вуда плавится пр11 75 "С, а температура плавления самого легкоплавкого его компонента — олова 232 С. Сплав Деварда [50% (мае.) меди, 45% (мае.) алюминия и 5% (мае.) цинка] легко растирается в порошок и вытесняет водород из воды, хотя ни один из исходных металлов этим свойством не обладает. Очевидно, у сплавов появляются новые свойства, возникают новые качества. Как правило, сплавы более тверды, чем исходные металлы. Например, твердость латуни составляет 150 условных единиц, а исходных компонентов — меди и цинка — соответственно 40 и 50. Удельное электрическое сопротивление сплавов обычно выше, чем у исходных чистых металлов. Например, у нихрома [20% (мае.) хрома + 80% (мае.) никеля] сопротивление 110-10 , у хрома 15-Ю , а у никеля только 7 10" Ом-см. [c.267]

    Другая важная проблема — разработка методов обнаружения и определения микроколичеств элементов. Физические и химические свойства материалов часто зависят от присутствия именно микрокомпонен-тов. Титан и хром долгое время считали хрупкими металлами, которые нельзя ковать и прокатывать, однако недавно было установлено, что эти металлы в очищенном состоянии пластичны и что их хрупкость обусловлена незначительными примесями посторонних элементов. Германий является одним из основных материалов для изготовления полупроводниковых приборов в радиотехнической промышленности, однако он утрачивает свои полупроводниковые свойства, если на десять миллионов атомов германия приходится более одного атома фосфора, мышьяка или сурьмы. Самая незначительная примесь гафния в металлическом цирконии делает последний непригодным для использования в атомной промышленности. Ничтожные примеси титана, ванадия, висмута и некоторых других металлов в сталях значительно изменяют их механические и электрические свойства. Почти все элементы периодической системы входят в очень небольших количествах в состав тканей растений и живых организмов, причем каждый элемент играет впол- [c.16]

    Модель свободных электронов, описанная выше, хорошо объясняет ряд физич ких свойств металлов, особенно щ,елочных, однако наряду с этим имеются и такие свойства, для интерпретации которых модель свободных электронов оказывается совершенно бесполезной. Эта модель не может прмочь нам понять главного, почему одни химические элементы в кристаллическом состоянии являются хорошими проводниками электричества, а другие оказываются изоляторами к группе не укладывающихся в эту теорию веществ относятся и полупроводники, электрические свойства которых резко изменяются с температурой. [c.121]


Библиография для Металлы электрические свойства: [c.287]   
Смотреть страницы где упоминается термин Металлы электрические свойства: [c.90]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы свойства

Электрические свойства



© 2024 chem21.info Реклама на сайте