Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы изучения обмена веществ

    ЯМР-спектроскопия представляет собой перспективный метод исследования. Она позволяет фиксировать образование промежуточных продуктов химических реакций (ионов, промежуточных комплексов, сольватов и др.). По интенсивности сигналов ЯМР в ходе не очень быстрых реакций уда -ется следить за изменением концентрации веществ. ЯМР-спектроскопия широко применяется для изучения скоростей и активационных параметров обменных процессов, при которых периодически меняется магнитное окружение ядер. [c.128]


    Монография состоит из десяти глав. В первой главе, посвященной общим кинетическим закономерностям химических реакций, рассматриваются простые и сложные реакции и химическое равновесие. Вторая глава посвящена вопросу о химическом механизме реакций. В ней рассмотрены экспериментальные методы изучения механизма реакций, вопрос о промежуточных веществах и реакции свободных атомов и радикалов. Третья глава посвящена теории элементарных химических процессов, включая теорию столкновений и метод переходного состояния. В четвертой главе рассматриваются бимолекулярные реакции различных типов, а также вопрос о зависимости скорости этих реакций от строения реагирующих частиц, и в пятой главе — мономолекулярные и тримолекулярные реакции. Шестая глава посвящена вопросу об обмене знергии при соударениях молекул, играющем основную роль в процессах их термической активации и дезактивации. В седьмой главе рассмотрены фотохимические реакции, в восьмой — реакции в электрическом разряде и вкратце, что, может быть, не соответствует их все возрастающему значению,— радиационнохимические реакции. Девятая глава посвящена цепным химическим реакциям и последняя, десятая, глава — кинетике реакций в пламенах. В этой главе рассматривается также вопрос о равновесиях в пламенах. [c.4]

    Манометрический метод, разработанный О. Варбургом в 20-х годах для определения дыхания переживающих тканей, может быть использован и для исследования других обменных процессов, например гликолиза, дезаминирования, изучения ферментов и субстратов промежуточного обмена веществ. Метод позволяет определять изменение давления в замкнутой системе за счет выделения или поглощения в процессе реакции газообразного продукта. Этим замкнутым пространством служат сосудики разнообразной формы, присоединенные посредством шлифа к манометру, заполненному специальной, не смачивающей стенки манометра жидкостью. Зная объем замкнутого пространства V и измерив наступившее в результате реакции изменение давления к, можно рассчитать объем образовавшегося или поглощенного газообразного продукта. Измерения производят в аппарате Варбурга. [c.10]

    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]


    В настоящее время метод ионного обмена является одним из основных физико-химических методов изучения состояния вещества в растворе. Особенно успешным оказалось применение ионного обмена к изучению процессов комплексообразования. Ионный обмен в применении к изучению состояния радиоэлементов в растворе позволяет работать в широкой области концентраций исследуемого вещества, так как нри всех условиях на основании измеренной радиоактивности можно с достаточной точностью судить о распределении исследуемого элемента между ионитом и раствором. В случае же, если изучаемая система нерадиоактивна, добавление к ней радиоактивного изотопа (метод меченых атомов) позволяет изучать эту систему, применяя для количественных определений измерения активности добавленного изотопа. Особенно удобно пользоваться ионным обменом для изучения систем, в которых исследуемый элемент находится в микроконцентрации. [c.587]

    В этой главе будут описаны специа льные методы ХТС, применяемые при диагнозах, и стандартные условия, не рассмотренные достаточно подробно в других главах. Поскольку метод ХТС.можно использовать также для изучения продуктов превращения лекарств в организме и для выявления происходящих при этом изменений в обмене веществ, рассмотрены соответствующие работы. Вследствие короткого времени развития метода ХТС здесь будут приведены лишь некоторые прописи и соображения. [c.338]

    Радиохимические методы нашли широкое применение во многих областях науки и техники благодаря их исключительной чувствительности и возможности с их помощью легко отличать радиоактивные изотопы какого-либо элемента друг от друга и от неактивных изотопов, того же элемента. Когда требуется проследить за очень малыми количествами вещества или за обменом местами атомов одного и того же элемента, радиохимические методы позволяют легко разрешать задачи, с трудом решаемые или совсем неразрешимые другими методами. Из наиболее важных примеров можно указать на определение весьма малых примесей изучение прочности химической связи по скорости межмолекулярного обмена, процессов самодиффузии и диффузии определение абсолютного геологического возраста пород изучение обмена веществ в живых организмах клиническую диагностику изучение процессов истирания механизмов. [c.8]

    Изложенные выше вопросы лиофильности высокодисперсных минералов связаны с реологическими и структурно-механическими свойствами их водных дисперсий. Рассмотрим взаимосвязь между лиофильностью и деформационно-структурными показателями дисперсных систем, методы изучения которых вытекают из основных положений физико-химической механики, разработанной академиком П. А. Ребиндером и его школой [24]. Многочисленные исследования однозначно указывают на коагуляционный характер образования пространственных сеток в дисперсиях слоистых силикатов. Такие системы являются тиксотропными, причем тонкие прослойки дисперсионной среды, т. е. наиболее близкие к поверхности частиц слои гидратных (сольватных) оболочек (согласно А. В. Думанскому), оказывают пластифицирующее действие, создавая условия для образования обратимых, хотя и неполных, контактов и значительных остаточных, а иногда и быстрых эластических деформаций. С увеличением толщины прослоек дисперсионной среды по местам контактов, например, за счет адсорбирующихся поверхностно-активных веществ или при замене обменного комплекса слоистого силиката на различного рода катионы наблюдается понижение прочности системы на сдвиг, т. е. ее разжижение и потеря тиксотропных свойств. [c.225]

    А. Л. Курсанова наглядно продемонстрировали, как важно учитывать закономерности передвижения образованных при фотосинтезе веществ в различные органы растений. Только используя все эти показатели, мы можем более полно изучить фотосинтез, вскрыть его роль в общем обмене веществ растения, выяснить его взаимосвязи с другими физиологическими функциями. Таким образом, исследователям необходимы методы изуче ния фотосинтеза, которые могли бы характеризовать его интенсивность, качественный состав образующихся продуктов и закономерности передвижения органических веществ в другие органы растений. Желательно также изучение не только обмена углекислоты, но и кислорода. [c.4]

    Эти примеры показывают, что метод изучения активности ферментов не в автолитических смесях, а в тканях живых организмов имеет большое теоретическое и практическое значение. Изменяя условия выращивания и главным образом питания растений, мы изменяем в них активность и направленность действия ферментов, а следовательно, и интенсивность, и направленность биохимических процессов. Исследование закономерностей действия ферментов под влиянием питания растений дает возможность направлять обмен веществ в растениях в сторону улучшения качества урожая. [c.76]

    Следует отметить, что усилия биохимиков были направлены прежде всего на изучение главных в количественном отношении путей превращения аминокислот. Это являлось естественным следствием ограниченной чувствительности применяемых методов. Такое положение дела приводит иногда к тому, что превращения, стоящие на первом месте в количественном отнощении, отождествляются с превращениями, имеющими наибольшее значение в обмене веществ. Между тем, хотя внимание нередко привлекают те пути обмена, которые преобладают количественно, вполне очевидно, что некоторые превращения, второстепенные в количественном отнощении, могут иметь большое и даже решающее физиологическое значение. [c.307]


    Высокая каталитическая активность, регулярная структура и способность к ионному обмену делают цеолиты уникальными объектами для изучения гетерогенного катализа. После переведения в соответствующие формы путем ионного обмена эти кристаллические алюмосиликаты по своей активности и селективности становятся значительно более эффективными катализаторами, чем аморфные алюмо-силика.ты Ц], хотя такую закономерность и нельзя распространять на все реакции [2]. Цеолиты являются кристаллическими веществами с развитой пористостью, поэтому их внутренняя поверхность определяется системой пор, которая регулярно повторяется в трехмерном пространстве. В этом отношении цеолиты выгодно отличаются от большинства других гетерогенных катализаторов, в том числе и кристаллических, где активные центры расположены главным образом на внешних гранях или в дефектных узлах решетки. Таким образом, данные, полученные рентгеноструктурным анализом или каким-либо спектроскопическим методом, в принципе можно использовать для определения структурных особенностей каталитически активных центров. (В действительности, однако, такие попытки успехом не увенчались [3], потому что методы рентгеновского анализа оказались слишком малочувствительными, чтобы можно было выявить локализацию активных центров.) Разнообразие каталитических свойств цеолитов объясняется прежде всего тем, что существует несколько различных типов кристаллических. каркасов и что методами регулируемого ионного обмена структурные особенности каркасов можно модифицировать. Для выяснения механизмов реакций особое значение имеет тот факт, что изменение структуры цеолитов непосредственно отражается на каталитических свойствах. [c.5]

    При физических нагрузках изменяются обмен веществ и энергии, а также механизмы их регуляции, что составляет основу метаболической адаптации организма к воздействующим нагрузкам (тренировкам). Изучение приспособительных изменений обмена веществ позволяет познать особенности адаптации организма к физическим нагрузкам, выбрать эффективные средства, методы восстановления и повышения физической работоспособности. [c.10]

    Одним из преимуществ этого метода исследования в сравнении с другими является возможность изучения обменных процессов в условиях наиболее адекватных тем, которые имеют место в организме. Особое значение имеет то обстоятельство, что этот метод позволяет обнаруживать исследуемые вещества в ультрамикроколичествах, иногда порядка миллионных долей микрограмма. [c.3]

    Необходимо признать вместе с тем, что при всем большом прогрессивном значении исследований на молекулярном уровне, позволяющих вскрыть интимные, глубинные стороны процессов жизнедеятельности, такого рода изучение не может рассматриваться как конечная задача физиолога. Целью физиологического исследования должна быть разработка путей управления обменом веществ организмов, методов активного вмешательства в ход процессов, определяющих рост и развитие живых систем и их конечную продуктивность. [c.14]

    Кроме того, существуют не менее важные разделы биохимии, которые можно рассматривать как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования. Среди них следует отметить эволюционную и сравнительную биохимию, задачами которых является изучение особенностей жизни организмов на различных стадиях их эволюционного развития энзимологию, занимающуюся исследованиями строения, функций и механизмов действия ферментов витаминологию — химию витаминов эндокринологию — химию гормонов радиационную биохимию, изучающую изменения в обмене веществ живых [c.19]

    Следует также особо отметить, что, несмотря на высокую интенсивность обменных процессов, количественное содержание многих физиологически важных веществ в головном мозгу существенно не изменяется даже при различных функциональных состояниях организма. На основании этого делались неправильные выводы о том, что те вещества, содержание которых не изменяется при различных воздействиях, являются инертными соединениями. Только благодаря применению метода меченых (радиоактивных) атомов удалось проникнуть в интимные механизмы и установить участие ряда веществ в обменных процессах, происходящих в головном мозгу. Особенность метода радиоактивной индикации состоит в том, что исследования проводятся в условиях, наиболее близких к тем, которые существуют в органах и тканях целостного организма. Это объясняется тем, что при изучении обменных процессов с помощью радиоактивных веществ, которые вводятся в ничтожных количествах, не происходит изменения нормального хода биохимических превращений. [c.13]

    Химический потенциал как термодинамическую переменную ввел в науку Гиббс. Возникает естественный вопрос как можно было не заметить этой величины раньше при изучении химических процессов Ответ на него кажется несколько неожиданным — все законы химической термодинамики можно получить, ие используя в явном виде химические потенциалы (11, хотя само изложение предмета при этом приобретает. весьма громоздкий вид. Дело в том, что для закрытых систем, не обменивающихся массой с окружающей средой, все относится к внутренним координатам состояния, тогда как основу термодинамического способа рассмотрения составляет метод контрольной поверхности, согласно которому об изменении энергии системы судят по обмену внешними координатами между системой и средой. Тогда внутренние переменные явным образом не входят в (Ш Рассмотрим для примера обратимый переход некоторого количества вещества йп в двухфазной системе при постоянных Т и р н отметим штрихами принадлежность величины к той или иной фазе. Тогда изменение энергии системы с1и=Т(18 — рйУ + [>, —так как йп = —д.п."—йп. В правой части слагаемое 1 — 1")йп является величиной второго порядка малости, так как для обратимого переноса вещества сама разность потенциалов (ц — ц") должна быть величиной бесконечно малой. Поэтому Гиббс как бы рас- [c.72]

    Интересно отметить, что в окрестности термодинамического равновесия получающийся критерий устойчивости удовлетворяется тождественно. Как и следовало ожидать, устойчивость термодинамического равновесия обеспечивает устойчивость и вблизи равновесия. По этой причине все нетривиальные задачи по устойчивости нельзя исследовать методами линейной термодинамики необратимых процессов. Возможность появления новых типов организации материи за точкой неустойчивости под влиянием неравновесных условий возникает только тогда, когда система находится достаточно далеко от равновесия. Изучение такой новой организации, так называемой диссипативной структуры, возникающей благодаря обмену-Энергией и веществом с окружающей средой, представляет одну из наиболее привлекательных задач макроскопической физики (ср. гл. 11 и 14). [c.80]

    Описанный метод использовался также при изучении глинистой фракции нижних зеленых песков (Англия) [7]. В почве, просеянной через мелкое сито, органическое вещество разрушалось при кипячении с перекисью водорода. Некоторые характерные результаты представлены на рис. 5. Наиболее важными выводами, сделанными при рассмотрении этих кривых, являются следующие 1) имеются отчетливо устанавливаемые ряды сродства 2) для почв, у которых обменные свойства преимущественно связаны с глинистыми минералами, общие свойства будут определяться свойствами отдельных глин. [c.39]

    Обменные реакции с участием простых ионов идут с большой скоростью, лимитируемой практически только скоростью поступления исходных веществ в зону реакции. Поэтому при простом слиянии, а тем более перемешивании двух концентрированных растворов (пусть тех же СаСЬ и КР), почти мгновенно проходящая реакция образования СаРг приводит к образованию раствора этого вещества, по концентрации в сотни раз большей, чем концентрация насыщения. Вообще, малорастворимые соединения имеют очень большую ширину метастабильной зоны. Если же раствор достигает лабильной области, то происходит множественное зародышеобразование, приводящее к появлению мелкокристаллического, а то и коллоидного материала. Предотвратить это можно, либо существенно замедлив поступление исходных веществ в зону реакции, либо использовав растворы пониженной концентрации. Второй вариант более прост, поэтому начнем с него. Для целого ряда физических исследований достаточно иметь кристаллы с размерами, не превышающими десятые и сотые доли миллиметра. Для получения таких кристаллов [Мошкин С. В. и др., 1980] требуется всего лишь чашка Петри с крышкой и пара стеклянных полосок толщиной 1 —1,5 мм. Приготавливаются две порции исходных растворов объемом по 5 мл с такой концентрацией, чтобы при их слиянии, т. е. на объем 10 мл, создавалось пересыщение, соответствующее 300—500%, т. е. 3—5 концентрациям насыщения. Растворы сливаются в колбу, которая встряхивается 5—10 с, после чего раствор выливается в большую емкость чашки Петри (крышку) с положенными в нее заранее упомянутыми полосками стекла. Затем меньшая емкость, донной частью вниз, вводится внутрь большой и ставится на стеклянные полоски. Кристаллизация идет в растворе, находящемся в узкой щели между донными частями емкостей. Возникающие кристаллы способствуют быстрому снижению пересыщения и прекращению зародышеобразования. Отсутствие контакта раствора с воздухом также уменьшает вероятность возникновения зародышей сверх тех, которые возникли при смешении. Через несколько часов кристаллизация заканчивается, крышка вынимается, раствор осторожно сливается, а его остатки оттягиваются фильтровальной бумагой. Без извлечения кристаллов этот метод успешно используется для изучения под микроскопом особенностей кристаллизации, в частности, гипса. [c.88]

    Наличие в реакциях изотопного обмена симметрии между реагирующими веществами и продуктами делает эти реакции очень удобными для детальных исследований механизма. До настоящего времени изотопные эффекты при реакциях изотопного обмена изучались очень мало, но эта область исследования имеет, несомненно, большие перспективы. С точки зрения химика-органика весьма удачным является то обстоятельство, что как водород, так и углерод обладают тремя изотопами (Н Н , Н , и С , С , С ), достаточно долго живущими, вследствие чего с ними удобно работать. Одна пара изотопов позволяет изучать только одну реакцию обмена, в то время как при наличии трех изотопов можно в принципе проводить изучение трех реакций. Обычно наиболее удобен такой способ проведения опытов, когда основную массу материала составляет главный изотоп и проводится обмен между ним и каждым из двух остальных изотопов, причем последние берутся в малых количествах. Этот метод обладает тем преимуществом, что обе реакции обмена протекают в почти одинаковых средах даже в том случае, если растворителем служит один из участников изотопного обмена. [c.69]

    Второй раздел охватывает 4 темы и рассчитан на 6 четырехчасовых занятий, из которых 2 темы Обмен углеводов и Обмен белковых веществ — включают каждая по 2 занятия. Этот раздел знакомит с методами изучения обмена веществ и содержит много работ по количественному микроанализу. [c.3]

    Эти исследования были продолжены Швабом, а также Зур-маном и Захтлером, которые показали, что ос[ювным условием для протекания процесса, будь [о чисто химическая реакция, каталитический процесс или предварительная стадия каталитического процесса, г. е. адсорбция, является наличие веществ, способных отдавать и принимать электроны. Не подлежит сомнению, что со временем станет возможным предсказать наиболее выгодные сочетания носителя, катализатора и реагирующего вещества и тем самым управлять течением реакции. В этом отношении можно провести аналогию с методами изучения таких процессов, как флотация и ионный обмен. [c.7]

    Реакционная способность различных тиотактонов представляет интерес в теоретическом и практическом отношегаш При ее изучении сделаны важные заключения о прочности циклов, сопряжении связей и разработаны новые методы синтеза меркаптокислот, меркаптоаминокислот полипептидов, содержащих сульфогидрильные группы, радио защитных препаратов и новых серусодержащих полимеров. Многие из этих типов соединений играют важную роль в обмене веществ и обладают физиологическим действием. [c.3]

    Изучение и получение витаминов — природных незаменимых пищевых веществ— имеет важное значение. На основе предложенной химической классификации витаминов детально изложены и обобщены вопросы химии витаминов в ее современном состоянии, методы выделения из природных источников, различные методы синтеза. Рассмотрена зависимость биологической активности от структуры витаминов, коферментов и их химических модификаций. Детально излои ена химия провитаминов и рассмотрены пути их превращения в витамины. Даны представления о биологических свойствах витаминов, их превращении в коферменты, о биокаталитических функциях коферментов в обмене веществ животного организма, о роли витаминов в питании и путях их применения в пищевой промышленности, а также в животноводстве, о значении витаминов и коферментов в профилактике и лечении различных заболеваний. [c.2]

    Пушленков и Федоров [89] предложили оригинальный метод изучения кинетики массопередачи при малом времени контакта фаз. Контакт фаз осуществляется в момент, когда капля органической фазы, оторвавшаяся от капилляра, попадает на поверхность водной фазы. В момент соприкосновения начинается процесс массопередачи вещества из органической фазы (реэкстракция). Образующиеся в воде ионы быстро отводятся от границы раздела фаз с помощью электрического поля. На пути продвижения ионов к электродам помещены экраны из ионообменной смолы, на которых происходит обмен образующихся ионов на ионы водорода. Последние, разря- [c.395]

    Новый период в развитии наших знаний об обмене белков и связанных с ними веществ в живых организмах начался в последние 15 лет, после того как в биохимических исследованиях стали щироко применять новейшие физические, химические и физико-химические методы. Метод меченых атомов, электронная микроскопия, дифференциальное центрифугирование, хромаго-фия, электрофорез и многие другие методы позволили биохимикам перейти от изучения процессов обмена в отдельных органах и тканях организма к исследованию этих процессов в клетке и даже взаимодействию между молекулами, получить многие новые данные об обмене веществ и преж де всего обмене белков и связанных с ними нуклеиновых кислотах. [c.286]

    Для изучения форм азота в гуминовых веществах препараты, полученные методом щелочных вытяжек, непригодны, так как в процессе выделения они подвергаются ашилком значительным изменениям [6]. Поэтому мы проводили свое исследование на препаратах, полученных при pH = 7—7,2, методо м обменного разложения с нейтральными солями. [c.337]

    Несмотря на то что обмен веществ самих жвачных и метаболизм микробных популяций определенным образом взаимосвязаны, существует несколько показателей, по которым эти две системы способны варьировать почти независимо друг от друга. Чистое изучение активности рубцовой микрофлоры в отрыве от организма животного приводит к огромным отклопениял Этот факт побудил исследователей изучать активность рубцовой микрофло ры несколькими методами. [c.191]

    Выбор методов при изучении метаболизма у растений определяется в основном степенью организации растения. Одноклеточные и многоклеточные водоросли, например, хорошо растут на простых, чаще всего неорганических питательных средах при соответствующих внешних условиях. Такие водоросли можно рассматривать как интактные организмы они имеют относительно простое строение и являются удобным экспериментальным материалом для изучения фундаментальных биохимических процессов, которые трудно исследовать на высокоорганизованных растениях. В качестве классического примера можно привести такие растительные организмы, как S enedesmus и hlorella, которые используются для изучения фиксации углекислого газа. Эти системы благодаря удобству контроля за их ростом и простоте поставки экзогенных соединений клеткам особенно удобны для изучения действия на обмен веществ таких факторов, как освещение, температура, питание и т. д. [c.33]

    Изучение адсорбции, например, на глинах, обладающих большой поверхностью, усложняется многими факторами, которые сильно сказываются на величинах сорбционной емкости. К ним следует отнести способность некоторых глинистых минералов увеличивать параметр вдоль оси С, т. е. изменять структуру в процессе сорбции эффект ультрапористости у структур, состоящих из высокодисперсных глинистых частичек, который ограничивает проникновение вещества с молекулами, превышающими размеры тонких пор, к участкам внутренней поверхности насыщение глин разными обменными ионами, вследствие чего они обладают неодинаковыми адсорбционными свойствами влияние кислотной обработки, термического воздействия, электродиализа, диспергирования и др. Поэтому, прежде чем изучать явление адсорбции на глинах, необходимо подробно исследовать структуру данного материала адсорбционными методами, что позволит учесть структурные и кристаллохимические особенности дисперсного минерала и исключить те случайные помехи , которые встречаются в процессе сорбции. [c.123]

    В основе первого метода лежит изучение гетерогенного обмена между ионами, находящимися на поверхности твердого вещества, и ионами раствора [362—367], В обмене могут принимать участие как изотопные, так и изоморфные ионы. Если пренебречь явления ми рекристаллизации и диффузии вглубь кристалла, то после уст-ановления динамического равновесия между частицами кристалла и раствором радиоактивный изотоп равновесно распределится между поверхностью и раствором. При этом имеет место следующее соотношение  [c.192]

    Kaтaлитn J киe реакции водорода II. Каталитическое окисление 1П. Каталитический крекинг углеводородов IV. Прочие каталитические реакции Изотопный обмен VI. Изучение катализаторов изотопными методами VII. Изотопные эффекты 1И. Физические и физико-химические методы исследования IX. Синтезы меченых веществ. [c.3]

    Калбус [15, 16] провел широкое изучение факторов, влияющих на структуру спектров. Трудности, встречающиеся при применении метода щелочногалоидных таблеток, были приписаны анионному обмену между исследуемым веществом и галогенидом щелочного металла, а также возникающим в результате прессования ориентационным эффектам в образце. Были выявлены некоторые факторы, воздействующие на анионный обмен, а именно размеры и тип ионов, величина давления и время прессования, размер частиц, время измельчения, наличие влаги на поверхности и растворимость образца. В табл. 1 приведены полученные результаты. [c.16]

    В процессе работы по изучению реакции обмена серой между сульфидами и меркаптанами было замечено, что при нагревании реакционной смеси более 15—20 ч баланс продуктов реакции по радиоактивности не сходился. Можно было предполагать, что в обмене участвует третье вещество, которое тоже являлось радиоактивным, но не обнаруживалось нашими методами анализа. Было обращено внимание на то, что меркаптаны при нагревании в присутствии кислорода легко окисляются до дисульф ра. Однако предположение о том, что в наших условиях проведения реакции дисульфид образуется из исходного меркаптана, отпало после холостых опытов по окислению меркаптанов в запаянной ампуле в среде сухих неполярных растворителей и в атмосфере азота, в результате которых образования дисульфида не было замечено. [c.106]


Смотреть страницы где упоминается термин Методы изучения обмена веществ: [c.254]    [c.91]    [c.113]    [c.282]    [c.458]    [c.12]    [c.18]    [c.39]    [c.12]    [c.18]    [c.75]    [c.342]   
Смотреть главы в:

Биохимия Издание 2 -> Методы изучения обмена веществ


Биохимия Издание 2 (1962) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Метод веществам



© 2025 chem21.info Реклама на сайте