Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный резонанс магнитные свойства некоторых

    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]


    ИССЛЕДОВАНИЕ СТРУКТУРЫ И НЕКОТОРЫХ ФИЗИЧЕСКИХ СВОЙСТВ ПОЛИМЕРОВ МЕТОДОМ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА [c.271]

    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Физические основы спектроскопии ядерного магнитного резонанса определяются магнитными свойствами атомных ядер. Взаимодействие магнитного момента ядра с внешним магнитным полем Во приводит в соответствии с правилами квантовой механики к диаграмме ядерных энергетических уровней, так как магнитная энергия ядра может принимать лишь некоторые дискретные значения Я,- — так называемые собственные значения. Этим собственным значениям энергии соответствуют собственные состояния — те состояния, в которых только и может находиться элементарная частица. Они также называются ста-ционарными состояниями. С помощью высокочастотного генератора можно вызвать переходы между собственными состояниями на диаграмме энергетических уровней. Поглощение энергии можно обнаружить, усилить и записать как спектральную линию, или так называемый резонансный сигнал (рис. 1). [c.10]

    Полное понимание молекулярных процессов, имеющих место [при фазовых превращениях, в общем требует экспериментальных исследований различного рода. Исследования структуры кристаллов, диэлектрической проницаемости, изменений объема и плотности, спектров ядерного магнитного резонанса, термических свойств — все представляет интерес. К сожалению, информация, необходимая для интерпретации фазовых изменений органических кристаллов, редко бывает получена более чем одним или двумя методами. Однако иногда может оказаться достаточным изучение только термических свойств, для того чтобы охарактеризовать некоторые виды фазовых изменений. Термодинамические данные особенно ценны при [c.78]


    ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС И НЕКОТОРЫЕ СВОЙСТВА ЯДЕР [c.317]

    Спектроскопия ядерного магнитного резонанса (ЯМР) представляет собой метод, фиксирующий переходы между энергетическими уровнями магнитных ядер во внешнем магнитном поле. Спектроскопия ЯМР связана с поглощением образцом, помещенным во внешнее магнитное поле, энергии электромагнитного излучения в области радиочастот. Поглощение является функцией магнитных свойств некоторых атомных ядер, содержащихся в молекуле. Кривая зависимости поглощения энергии радиочастот от внешнего магнитного поля дает спектр ЯМР. [c.308]

    В основе спектроскопии ядерного магнитного резонанса лежат магнитные свойства атомного ядра. Из ядерной физики мы знаем, что некоторые ядра, в том числе и протон, обладают угловым моментом Р, который в свою очередь обусловливает появление у этого ядра магнитного момента л. Обе величины связаны соотношением [c.17]

    В то же время в периодической системе элементов имеется достаточное количество магнитных ядер, подходящих для экспериментов по ЯМР, н, таким образом, вещество как бы содержит различные датчики, позволяющие исследовать свойства составляющих его молекул и вещества как целого. В гл. X будут обсуждены некоторые из этих возможностей. Кроме того, в ЯМР всегда возможны разнообразные вариации экспериментальных условий, а физика спиновых систем остается и до сих пор столь же волнующей областью, какой она была в период становления спектроскопии ЯМР. Поэтому ядерный магнитный резонанс, несомненно, относится к числу наиболее универсальных спектроскопических методов. В настоящей главе читателю предстоит познакомиться с теми из специальных методик ЯМР, которые зарекомендовали себя как наиболее важные для химии. [c.300]

    Рассматриваемые ниже разновидности ядерно-физических методов радиометрия и ЯМР (ядерно-магнитный резонанс) — сложнее тем, что основаны на регистрации явлений, связанных со специфическими свойствами ядер элементов. Различие между ними состоит в том, что в первом случае необходимые сведения о концентрации интересующего нас вещества получают по изменению интенсивности или энергии частиц ядерного излучения, а во втором — определяемое вещество дает о себе знать по поведению в магнитном поле входящих в него ядер. Оба метода широко используют для исследования строения молекул, кинетики межатомных и межмолекулярных взаимодействий и т. д. Для аналитических целей, в частности для определения влажности химических веществ, указанные методы используются реже. Объясняется это, с одной стороны, особой спецификой проведения радиометрических работ, с другой — малой доступностью соответствующей аппаратуры для аналитических лабораторий. Кроме того, многие из ядерно-физических методов недостаточно специфичны по отношению к воде, а в некоторых случаях — малочувствительны. [c.177]

    Любое ядро с / > О может давать ЯМР-спектр. Некоторые свойства ядер элементов, иногда представляющих интерес для химиков-органиков, приведены в табл. 3-3. В ней указаны частоты (в Мгц), при которых ядра обнаруживают магнитный резонанс виоле 14092 э. Эти величины отвечают частотам радиочастотных генераторов, необходимых для изучения таких ядер. Очевидно, что для исследования спектров магнитного резонанса ядер, перечисленных в таблице 3-3, необходимы различные генераторы. Величина ядерного магнитного момента определяет резонансную энергию ядерного перехода. Спиновое число I указывает число ориентаций 21 + 1), которое ядро может принимать в магнитном поле. [c.147]

    Точно так же, как электроны обладают спином, который определяется спиновым квантовым числом и который диктует, что данную молекулярную орбиталь могут занимать только два электрона с противоположными (т. е. спаренными ) спинами, ядерные частицы — протоны и нейтроны — также обладают спиновыми свойствами. В любом данном ядре некоторые из спинов могут быть спарены, однако имеются остаточные неспаренные спины. Ясно, что это характерно для ядер с нечетным массовым числом (нечетным суммарным числом протонов и нейтронов). Вращающееся заряженное тело можно рассматривать как маленький магнит, который при помещении в магнитное поле может принять две разные ориентации в направлении поля или против поля. Эти ориентации имеют разную энергию. При нормальных условиях ббльшая часть ядер занимает низший энергетический уровень. Облучение с энергией, соответствующей энергетической щели между двумя уровнями (в радиочастотном районе), поглощается, промотируя ядра с одного уровня на другой, и это поглощение можно зарегистрировать. Точная частота (т) зависит от типа ядра ( Н, и т. д.) и электронного окружения, в котором оно находится, а также от силы магнитного поля. Схема спектрометра ядерного магнитного резонанса (ЯМР), применяемого для регистрации этих изменений, приведена на рис. 3.10. [c.70]

    За исключением изотопных эффектов легких атомов, ядро оказывает незначительное влияние на химическое поведение атома кроме того, оно определяет число электронов, окружающих его. Однако некоторые спектральные методы, особенно ядерный магнитный резонанс, зависят от специфических свойств ядер, таких, как магнитный момент и спин. [c.15]


    За последние десять лет произошел существенный сдвиг в применении некоторых физических методов в органической химии. В то время как наиболее сложные и трудоемкие исследования, например с помощью рентгеноструктурного или другого аналогичного метода, по-прежнему могут проводить только специалисты, такие физические исследования, как изучение инфракрасных спектров или ядерного магнитного резонанса, стали достоянием химиков-органиков и проводятся ими с такой же легкостью, как измерения рефракции или оптической активности. То же самое относится и к применению методов квантовой химии для теоретического расчета свойств органических молекул. Вероятно, еще долго сложные расчеты молекул с помощью усовершенствованных методов квантовой химии — различных вариантов теории самосогласованного поля — будут выполняться только специалистами. В то же время обычные расчеты с помощью так называемого простого метода молекулярных орбиталей Хюккеля все больше входят в практику химиков. Действительно, эти расчеты не слишком трудоемки и не требуют специальной математической подготовки. Любой химик может научиться выполнять их без особого труда, тем более что теперь уже не приходится доказывать, какую огромную пользу могут принести результаты таких расчетов, хотя и весьма приближенных, при сопоставлении свойств органических соединений. [c.5]

    Быстрое развитие физических методов исследования позволило пролить дополнительный свет на строение и некоторые свойства комплексных соединений. В частности, это относится к исследованиям ферроцианидов методами гамма-резонансной спектроскопии и ядерного магнитного резонанса. [c.158]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    За последние годы появилось очень много работ по ядерному магнитному резонансу в гидридах переходных металлов. Некоторые из величин, полученные методом ЯМР и ПМР, приведены в справочнике. К сожалению, до сих пор нет единого метода интерпретации данных ЯМР и ПМР. Разноречивость и в некоторых случаях полная противоречивость данных и их интерпретации не позволили использовать все имеющиеся в этой области сведения. Поэтому, хотя мы выбрали для справочника наиболее достоверные, по нашему мнению, сведения по электрофизическим и магнитным свойствам, рекомендуем в каждом отдельном случае учитывать специфику объекта и условий измерения. [c.6]

    ССЫЛОК за период до 1965 г. Эта область химии частично была описана в книге Джерарда Химия органических соединений бора , изд-во Химия , 1966, гл. XI, стр. 190—218, в сборнике материалов симпозиума Американского химического общества от апреля 1563 г. Химия I боразотных соединений , Вашингтон, 1964 г., а также в некоторых статьях различных авторов (см. ссылки в тексте книги). Монография охватывает материал по всем классам боразотных соединений. В книге рассмотрены теоретические вопросы по характеристике структуры, синтезу и реакциям боразотных соединений. Приводятся типичные примеры по получению различных боразотных соединений, описаны их физические и имические свойства, а также современные исследования по ядерному магнитному резонансу в боразотных соединениях. Авторы монографии являются крупными специалистами по химии боразотных соединений, что помогло им отобрать для книги наиболее важный материал, составить оригинальные обобщения и внести ценные предложения. [c.6]

    Приведенные примеры рентгенографических, нейтронографических и электронографических структурных определений показывают, что современный структурный анализ, кроме наиболее простых сведений о расстояниях АВ в водородных связях АН---В, дает целый ряд дополнительных данных. Непосредственно определяется положение атомов Н и тем самым расстояния АН и Н В и угол связи АН - - - В, измеряются константы тепловых колебаний атомов А, В, Н, в отдельных исследованиях делаются оценки степени ионизации атомов Н. Эти данные вместе с данными других физических методов, таких как спектроскопия, ядерный магнитный резонанс и др., позволяют глубже понять природу водородной связи и в некоторых случаях объяснить наблюдаемые свойства веществ с такими связями. [c.91]

    Замена Н на Н сопровождается вполне определенными изменениями некоторых спектральных свойств (в частности, инфракрасных спектров, спектров комбинационного рассеяния и спектров ядерного магнитного резонанса). Такая за.мена влияет также на скорость химической реакции, если стадия, лимитирующая скорость, включает разрыв связи с атомом дейтерия. [c.463]

    В последующих разделах мы приведем сперва краткие сведения о частицах, которые, как полагают в настоящее время, существуют в растворах металлов в аммиаке, после этого кратко опишем основные свойства таких растворов, а затем перейдем к результатам, получаемым из спектров ЭПР таких систем. Мы рассмотрим также использование ядерного магнитного резонанса для исследования растворов металлов в аммиаке, ибо в этом случае метод ядерного резонанса часто позволяет получить более ценные сведения. В заключение мы обсудим некоторые детали теоретического изучения указанных систем. [c.66]

    Явление ядерного магнитного резонанса обусловлено тем, что некоторые атомные ядра, кроме заряда и массы, имеют также момент количества движения, или спин. Вращающийся заряд создает магнитное поле, и в результате ядерному моменту количества движения сопутствует ядерный магнитный момент. Гипотеза о существовании ядерного спина впервые была выдвинута Паули [1] для объяснения сверхтонкой структуры атомных спектров. Долгое время ядерный магнитный резонанс изучали на молекулярных пучках при этом были получены фундаментальные сведения о свойствах атомных ядер [2]. Однако результаты таких исследований представляли мало интереса для химиков, пока в 1945 г. Парсел в Гарварде и Блох в Стэнфорде независимо друг от друга не осуществили наблюдение ядерного магнитного резонанса в конденсированных средах. Парсел и др. [3] наблюдали резонанс в твердом парафине, а Блох и др. [4] — в жидкой воде. После того как в спектре этилового спирта были идентифицированы сигналы трех типов магнитно-неэквивалентных протонов [5], ядерный магнитный резонанс становится преимущественно полем деятельности химиков, и это положение сохраняется до сих пор. [c.13]

    Химический функциональный анализ далеко не всегда позволяет однозначно установить структуру органических соединений. Некоторые группы дают сходные реакции. Иногда вещества в условиях определения оказываются неустойчивыми. Функциональный анализ не нозволяет судить о составе смесей, числе тех или иных групп и о макроструктуре вещества (простраиствеином строении, структуре кристаллов или жидкости, межмолекулярных взаимодействиях и т, п.). Вследствие этого существенную роль в исследовании строения и свойств соединений играют физико-химические, или инструментальные, методы анализа спектральные, электрохимические, хроматографические, радиометрические и др. Для установления структуры вещества чаще всего используют методы, основанные на взаимодействии вещества или смеси веществ, их растворов с различного вида излучениями. К ним относятся ультрафиолетовая, видимая, инфракрасная спектроскопия, метод люми-иесценцин, оптический и рентгеновский спектральный анализ, рефрактометрия, поляриметрия, метод ядерного магнитного резонанса. На взаимодействии с магнитным полем основан метод электронного парамагнитного резонанса, а последовательно с электрическим и магнитным — масс-спектрометрия. Некоторые из этих методов рассмотрены в посебии. [c.82]

    Знание свойств и поведения растворов электролитов при средних и высоких концентрациях имеет большое значение как для электрохимии, так и для целого ряда смежных областей науки. Известно, однако, что большинство существующих в настоящее время теорий надежны только для малых концентраций. Наличие больших и почти непреодолимых трудностей на пути создания теории, способной точно оценивать термодинамические и кинетические свойства ионов даже в растворах умеренных концентраций, заставило ученых уделить большее внимание экспериментальным исследованиям таких растворов с привлечением различных, в том числе и новейших, методов. Глава первая книги (Ж. Денуайе, К. Жоликер) посвящена обзору достижений и состоянию этой области знаний. В ней много внимания уделено различным аспектам взаимодействия ионов с молекулами воды, рассмотрению природы явления гидратации и термодинамическим свойствам отдельных ионов. Особый упор сделан на анализ данных, полученных разными спектральными методами, включая инфракрасную и ра-мановскую спектроскопию, ядерный магнитный резонанс и др. Некоторое внимание уделено теории эффекта высаливания и всаливания неэлектролитов солями. Сделана попытка найти влияние этих эффектов на термодинамические свойства электролитов при определенных концентрациях. Приведены последние, наиболее достоверные значения чисел гидратации, полученных при помощи различных, в том числе и кинетических, методов. В заключение [c.5]

    Большие возможности для координационной химии йоявились с привлечением метода ядерного магнитного резонанса (ЯМР). Метод ЯМ позволил изучать весьма малоустойчивые комплексы и регистрировать одновременно существование в растворе нескольких соединений. С методом ЯМР связан новый этап в координационной химии — вовлечение в круг исследования координационных соединений р-элементов. В некоторых случаях поведение и свойства комплексных соединений о-элементов не укладываются в рамки закономерностей и правил, сформулированных для -элементов. Таким образом, в настоящее время начинает разбиваться новый и исключительно важный раздел координационной химии — координационная химия р-эле-ментов. Систематические исследования в этом направлении в нашей стране проводятся научной школой Ю. А. Буслаева. [c.12]

    XVIIl. Ядерный магнитный резонанс и некоторые свойства ядер [c.266]

    Книга посвяшена применению спектроскопии ядерного магнитного резонанса в структурной химии древесины и других видов растительного сырья, нефти, угля и гуминовых веществ Рассмотрены уникальные возможности методов Я МР для измерения количественного фрагментного состава — наиболее адекватного способа представления химического строения, характера его изменений в различных процессах, а также предсказания некоторых практически важных свойств таких объектов [c.2]

    Об относительной силе кислот долгое время судили по косвенным данным. Для этого сравнивали молярную рефракцию растворов кислот, каталитическую активность кислот по отношению к некоторым органическим реакциям, например реакции разложения диазоуксусного эфира или инверсии тростникового сахара, устойчивость солей-индикаторов в растворах кислот, образование ацидосолей в смеси двух кислот [1]. При построении ряда кислот по убываюш,ей относительной силе на основании любого из этих свойств хлорная кислота занимает первое место. Однако действительная степень и константа ионизации хлорной кислоты в водном растворе в широком интервале концентраций, включая и безводную кислоту, была измерена лишь сравнительно недавно при помощи спектров ядерного магнитного резонанса (ЯМР) и несколько раньше при помощи спектров комбинационного рассеяния. [c.102]

    Очень тонкие спктроскопические измерения показали, что ядерный спин и энергии взаимодействия между магнитным моментом ядра и внешним полем квантованы подобно всем другим атомным свойствам. В отличие от того, что мы наблюдаем для обычных макроскопических магнитов, для ядерных спинов в природе существуют лишь некоторые строго определенные значения спина, с которыми связаны строго определенные уровни энергии. Спектроскопия ядерного магнитного резонанса (ЯМР) изучает переходы между такими уровнями энергии. [c.219]

    Все фенолы при отсутствии пространственных затруднений способны к образованию водородной связи. Система О — Н. .. О является наиболее важной и имеется очень большое число природных продуктов с меж-и внутримолекулярными водородными связями такого типа. Хорошо известно, что водородная связь влияет на многие физические свойства (Пиментел и МакКлеллан [12]), например упругость пара, температуру плавления и кипения, растворимость, кристаллическую структуру, ультрафиолетовый и инфракрасный спектры и спектр ядерного магнитного резонанса. Некоторые из этих свойств лежат в основе методик по выделению и очистке, а также используются для идентификации. Вообще, для исследований соединения с внутримолекулярными водородными связями удобнее, чем соединения с межмоле-кулярными связями, многие из которых являются полимерными в твердой фазе. Полифенольные флавоноидные и хиноидные соединения, например, плавятся при высокой температуре и не растворяются в обычных растворите- [c.12]

    Метод ядерного магнитного резонанса (ЯМР). В основе ме-> тода лежит резонансное поглощение электромагнитных волн исследуемым веществом в постоянном магнитном поле, обусловленное ядерным магнетизмом. Ядра атомов определенного рода действуют как микроскопические магниты, которые, попадая в магнитное поле, поворачиваются все в одном направлении. Если какое-либо- соединение, в котором ядра атомов водоррда обладают свойствами магнитов, поместить в центр катушки (через обмотку которой пропущен переменный ток), расположенной между полюсами магнита, и постепенно повышать напряженность магнитного поля, то при некоторой определенной напряженности поля испытуемое вещество начнет поглощать энергию. При этом ток, протекающий по катушке, возрастает. В результате получают спектр, в котором можно установить происхождение каждой линии. Таким образом, с помощью метода ЯМР можно изучать строение молекул, распределение электронной плотйости и некоторые другие характеристики органического вещества. Применимость метода ЯМР ограничена жидкостями или растворами органических веществ. [c.19]

    Некоторые исследователи изучали возможную связь этих частот с изменениями электронной плотности вокруг кольца, происходящими при введении в него заместителей. Например, Беллами [59] рэ мптрр-т] чоппос о зависимости упомянутых иге полос поглощения от значений постоянной Гяммртя (т т] я заместителей, которая определяет электронодонорные и электроноакцепторные свойства этих заместителей. Если не считать галогензамещенных, которые ведут себя так, как если бы величина а была у них равна нулю, то можно найти связь между величинами а и частотами для трех, двух соседних или одного изолированного атомов водорода, связанных с углеродом кольца эта связь оказывается иногда полезной для предсказания частот у неизвестных соединений. Аномальное поведение галогенов можно объяснить, пользуясь современными данными, полученными методом ядерного магнитного резонанса, которые показывают, что при замещении галогенами электронная плотность углеродного кольца заметно не изменяется [73]. [c.119]

    К числу. методов исследования структуры и свойств макромолекул в растворах относятся изучение вязкого течения растворов макромолекул, их поступательного трения в явлениях диффузии и седиментации, двойного лучепреломления в ламинарном потоке, рассеяния видимого света и рентгеновых лучей, диэлектрической поляризации (дииольные моменты), инфракрасных и ультрафиолетовых спектров поглощения, спектров ядерного магнитного резонанса, поглощения и скорости ультразвука и некоторые другие методы. Данная книга охватывает не все из них, а лишь основные, связанные с изучением вязкости, диффузии, седиментации, динамического двойного лучепреломления и светорассеяния. [c.12]

    В основе ряда методов структурного анализа нуклеиновых кислот лежит зависимость некоторых физических свойств этих биополимеров от их первичной структуры, К числу таких методов относятся электронная микроскопия, дисперсия оптического вращения (ДОВ) и круговой дихроизм, дифракция оентгеновских лучей, ядерный магнитный резонанс и масс-спектрометрия. Основными достоинствами этих методов являются  [c.200]

    Взаимодействие пептидных групп с ионами щелочных и щелочноземельных металлов, по-видимому, имеет в значительной степени ионный характер, но получены доказательства того, что это взаимодействие сохраняется и в растворе. Химические сдвиги протонов в спектрах ядерного магнитного резонанса (ЯМР) указывают на то, что взаимодействие металл — амидный кислород аналогично тому, которое описано для структур, существующих в растворах М-метилацетамида и ионов А1 +, ТЬ , Мд + и Ы+ в таком же порядке уменьшаются длины связей металл—лиганд [46, 47]. Не будучи специфическим свойством отдельных связей, взаимодействия металл — карбоксильный кислород и металл — пептидный кислород доказываются также тем фактом, что растворимость аминокислот и пептидов в воде изменяется в присутствии галогенидов щелочных и щелочноземельных металлов [48]. Например, [Са(Н01у-01у-01у) (Н20)2]С12-Н20 (XV)—это только один из ряда стехиометрических комплексов, которые образуют с аминокислотами и пептидами хлориды, бромиды и иодиды Са(П), 5г(П) и Ва(П). Для всех выделенных комплексов найдено, что растворимость пептида в растворе соли больше, чем в чистой воде [48]. Дополнительным доказательством взаимодействия кальция с пептидом в растворе служит наблюдение обратного факта — растворимость иодата кальция в воде возрастает в присутствии глицилглицина и некоторых других пептидов и аминокислот [49]. Увеличение растворимости иодатов щелочноземельных металлов было использовано для определения констант устойчивости комплексов металлов с пептидами в растворе [50]. И термодинамическая, и кинетическая устойчивость этих комплексов невелика. [c.164]

    Поскольку новые методы исследования тесно связаны со стереорегулярностью полимеров, в книге приведена отдельная глава но определению микротактичности. Только одна глава книги — фракционирование—составлена с препаративной точки зрения. Но даже в этом случае выбраи один метод — экстракционная хроматография применительно к полиолефинам. В шести главах изложены методы, которые можно отнести к категории оптических. К ним относятся использование поляризованного излучения и дейтерированных образцов в инфракрасной спектроскопии, двойное лучепреломление и светорассеяние твердыми полимерами, дисперсия оптического вращения, поляризационная флуоресценция, дифракция рентгеновских лучей под малыми углами и дифракция электронов. В главе о ядерном магнитном резонансе рассматриваются только спектры высокого разрешения. Двумя термометрическими методами являются дифференциальный термический анализ и новый метод измерения тепловых эффектов при механической деформации. Остальные пять глав посвящены свойствам растворов и некоторым другим свойствам светорассеянию и осмометрии при повышенных температурах, ультрацентрифугированию в градиенте плотности, двойному лучепреломлению в потоке, эластоосмометрии и полимерным монослоям. [c.7]

    Явление ядерного магнитного резонанса основано на фундаментальном свойстве некоторых атомных ядер. Кроме массы и заряда, эти ядра обладают спиновым, угловым и магнитным моментами. Под влиянием внешнего магнитного поля ядра стремятся расположиться параллельно приложенному полю. Здесь мы ограничимся лишь рассмотрением ядер со спиновым числом 1 = так как для химии полимеров почти исключительное значение имеют именно такие ядра. Согласно принципам квантовой механики, в присутствии внешнего магнитного поля для ядра возможно 2/ г 1 энергетических состояний. Разница в энергш между соседними энергетическими уровнями составляет величину [c.261]


Смотреть страницы где упоминается термин Ядерный магнитный резонанс магнитные свойства некоторых: [c.81]    [c.12]    [c.69]    [c.253]    [c.359]    [c.6]    [c.146]    [c.446]    [c.272]   
Биофизическая химия Т.2 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс г ядерный магнитный

Ядерные свойства



© 2024 chem21.info Реклама на сайте