Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функции распределения по скоростям и уравнение Больцмана

    Видно, что конечной цели — вычислению скорости неравновесной реакции — предшествуют два этапа определение сечений и решение уравнений Больцмана. Для равновесных реакций эти два этапа также существуют, но их можно обойти, так как функции распределения известны заранее. [c.50]

    В разделе 7.1 из цепочки Боголюбова строго выводится уравнение Больцмана — наиболее известное из интегральных кинетических уравнений. Раздел 7.2 посвящен выводу классических уравнений гидродинамики из уравнения Больцмана, при этом для коэффициентов переноса (вязкости и теплопроводности) получены явные выражения. В разделе 7.3 излагается статистическая модель псевдоожиженного слоя, основанная на использовании интегрального кинетического уравнения типа Больцмана и Фоккера — Планка для функции распределения твердых частиц по координатам и скоростям. Построена также замкнутая система уравнений, описывающая изменение во времени гидродинамических параметров обеих фаз слоя. Приведены простейшие примеры применения этой системы уравнений при изучении структуры потоков в псевдоожиженном слое. [c.313]


    Рассмотрим систему многих частиц, характеризуемую их мгновенными координатами и скоростями Уг. Предположим, что система разрежена настолько, что столкновения между частицами можно считать мгновенными, и будем рассматривать только парные столкновения. Такие системы полностью описываются одночастичной больцмановской функцией распределения /(д г, Уг, ). Во внешнем поле сил Рг (на единицу массы) функция распределения / удовлетворяет уравнению Больцмана [30] [c.146]

    Допущения теории переноса. Ввиду того что для получения газодинамических уравнений используются только два члена в разложении Энскога для функции распределения, а также ввиду того, что решается только уравнение Больцмана для одночастичной функции распределения скорости, здесь перечисляются условия, при которых можно ожидать, что будут иметь силу получающиеся газодинамические уравнения переноса. Только исследование этих условий позволяет полностью оценить ту скудную основу, на которой построена газовая динамика как наука в настоящее время, и понять, каким триумфом является то, что наука, построенная при таких ограничивающих предположениях, находится в разумном согласии с экспериментом в широком диапазоне условий. Это же помогает осознать необъятность задачи, которая возникает при распространении этой теории на области, которые в настоящее время не могут быть описаны теорией в ее теперешнем состоянии. [c.366]

    Для уяснения положения дел укажем на следующее обстоятельство. В уравнении Больцмана носителем информации является функция распределения, а основной временной масштаб связан со средним временем свободного пробега (10 с в нормальных условиях). С другой стороны, в гидродинамике временной масштаб определяется временем распространения звуковой волны на макроскопически конечное расстояние (обычно 10 3 с), а вся существенная информация определяется небольшим числом макроскопических параметров плотностью, гидродинамической скоростью и температурой. Иными словами, переходу от кинетической теории к гидродинамике соответствует сокращение формального описания. Такая ситуация напоминает ситуацию, рассмотренную в гл. 3. Там сначала проводилось динамическое описание задачи N тел с помощью ТУ-частичной функции распределения, удовлетворяющей уравнению Лиувилля, которое затем сводилось к описанию с помощью сокращенного числа переменных путем перехода к одночастичной функции распределения, удовлетворяющей (обобщенному) уравнению Больцмана. Удовлетворительное решение проблемы рассматриваемого здесь сокращения описания было впервые получено Гильбертом в 1912 г. в работе [100], посвященной существованию и единственности решения уравнения Больцмана. Рассматривая ограниченный соответствующим образом класс функций, в котором ищется решение уравнения Больцмана, Гильберт доказал наличие для любого момента времени взаимооднозначного соответствия между решением для функции распределения / и первыми пятью моментами этой функции плотностью, тремя компонентами гидродинамической скорости и температурой. Необходимо отметить, что тем самым устанавливается связь единственности любого решения уравнения Больцмана с решением уравнений гидродинамики. Теория Гильберта будет рассмотрена в 5.1. [c.117]


    Функции распределения по скоростям и уравнение Больцмана [c.539]

    Уравнение Больцмана для функции распределения р (г, i) в пространстве скоростей V для газа А в случае пространственно однородной системы [24, 25] имеет вид [c.154]

    Выход из этого положения возможен только на пути экспериментального или теоретического определения неравновесных функций распределения, формирующихся в результате конкуренции релаксационных и химических процессов. Вместо обычных уравнений кинетики, содержащих константы скорости различных элементарных реакций, приходится пользоваться гораздо более общими — так называемыми обобщенными уравнениями Больцмана, описывающими микроскопическую кинетику. Вместо полных концентраций реагентов искомыми величинами теперь являются заселенности различных квантовых состояний молекул. Кинетическими же параметрами служат не константы скорости, имеющие макроскопический смысл, а сечения столкновений, приводящих к обмену энергии или к реакции. [c.50]

    В кинетической теории газ описывается с помощью функции распределения, которая содержит информацию как о распределении самих молекул внутри рассматриваемой системы, так и о распределении молекулярных скоростей. Функция распределения в общем случае изменяется С течением времени. Если предположить, что молекулы можно рассматривать как классические точечные центры, окруженные силовым полем, то для функции распределения можно вывести нелинейное интегро-дифференциальное уравнение — так называемое уравнение Больцмана. Тщательное изучение гипотез, на которых основан вывод этого уравнения, показывает, что оно правильно описывает поведение газа, если плотность достаточно низка и если газ достаточно пространственно однороден. Поскольку в настоящей книге для описания процессов переноса в газах в основном используется уравнение Больц- [c.15]

    Уравнение Больцмана для функции распределения в пространстве (скоростей [c.27]

    Основываясь на формуле (7.2.27), определяющей характер изменения вида функции распределения молекул по скоростям, для описания кинетической стадии эволюции рассматриваемой макросистемы вместо общего уравнения (7.2.18) иногда используют соответствующее упрощенное уравнение, в котором интеграл столкновений Больцмана заменен выражением —(р — р( >)/т< >, Урав- [c.330]

    На основании механизма спонтанного испарения и функции распределения Максвелла—Больцмана получены уравнения для определения скорости конденсации водяного пара в твердое состояние и распределения конденсата на поверхности. [c.2]

    Для описания процессов, происходящих в плазме, мы обычно используем термодинамические или статистические методы. В первом случае нас интересует уравнение состояния плазмы, поскольку, если оно известно, становится возможным определить все интересующие нас макроскопические характеристики плазмы. Во втором случае наиболее интересным представляется получение уравнений, описывающих процесс приблин ения системы к равновесному состоянию. Напомним известные определения. Если температура и плотность числа частиц постоянны по объему, занимаемому системой, а соответствующие функции распределения (см. ния е) даются формулой Гиббса, то говорят, что система находится в состоянии полного термодинамического равновесия. Это означает, что распределение частиц по скоростям является максвелловским, а плотности чисел частиц на различных уровнях системы связаны между собой формулой Больцмана (или формулой Саха, которая является обобщением формулы Больцмана, учитывающим существование непрерывного спектра значений энергии). Если же температура и плотность числа частиц зависят от координат и в каждой точке (вернее, в физически бесконечно малом объеме вблизи нее) функция распределения дается формулой Гиббса, причем параметрами распределения являются именно значения температуры и плотности в данной точке, то говорят, что система находится в состоянии локального термодинамического равновесия (ЛТР) 1. [c.113]

    В кинетической теории газов используется модель, основанная на статистическом (вероятностном) описании поведения совокупности молекул. Основную роль в этой модели играет уравнение Больцмана для функции распределения молекул по их положениям в пространстве и по скоростям. Газокинетическая модель существенна и успешно применяется для описания поведения сильно разреженных газов, [c.14]

    Обычное уравнение Больцмана описывает эволюцию функции распределения в фазовом пространстве одной частицы. Уравнение содержит два члена потоковый, описывающий движение молекул по траекториям в фазовом пространстве и представленный дифференциальным оператором, и столкновительный, описывающий изменения скорости, обусловленные столкновениями он представлен интегральным оператором. Уравнение Больцмана, следовательно, интегродифференциальное уравнение, причем столкновительный член является нелинейным. В этой нелинейности -— главное препятствие при построении методов его решения, тем более что интеграл столкновений тесно связан с законом межмолекулярного взаимодействия, относительно которого имеется весьма неполная и зачастую противоречивая информация. [c.144]


    Уву — векторы скорости молекул А и В. Предполагается, что функции распределения /ао fвi удовлетворяют каждая своему уравнению Больцмана. [c.71]

    Коэффициенты скоростей химических реакций зависят от сечений их, функций распределения реагирующих и образующихся частиц по энергиям поступательного движения. Для реакций с участием электронов для описанных выше условий они определяются соответствующими сечениями и видом энергетического распределения электронов (е). Поскольку химические реакции и процессы возбуждения внутренних степеней свободы тяжелых частиц электронным ударом в большинстве своем пороговые, необходимо знать /е (е) особенно детально за порогом. Последние могут быть найдены из решения системы уравнений, состоящей из кинетического уравнения для электронов (например, уравнения Больцмана), уравнений химической кинетики для всех реакций с их участием и в общем случае уравнений электродинамики. [c.228]

    Пытаясь дать строгое обоснование максвелловского предположения о случайном характере молекулярного движения, Больцман в 1872 г. сформулировал и доказал Н-теорему [7]. Эта теорема выявляет необратимость физических процессов и показывает, что столкновения молекул приводят к увеличению энтропии системы любое начальное распределение по скоростям и координатам будет почти всегда стремиться к равновесному максвелловскому распределению скоростей молекул. В этой же работе Больцман вывел интегро-дифференциальное уравнение (известное ныне как уравнение Больцмана), которое описывает эволюцию функции распределения во времени и пространстве. Больцман показал, что найденные Максвеллом выражения для различных кинетических коэффициентов в газе, состоящем из максвелловских молекул, можно получить непосредственно, решая это интегро-дифференциальное уравнение. Построение формальной основы кинетической теории неоднородных газов было фактически завершено, когда Больцман в 1875 г. [8] и Лоренц в 1887 г. [136] обобщили Я-теорему, распространив ее на случай газа, находящегося в консервативном силовом поле. [c.18]

    После того как была определена структура решения уравнения Больцмана и установлено однозначное соответствие между функцией распределения по скоростям / и макроскопическими переменными п. [c.117]

    Чтобы иметь возможность решать уравнения сохрЭ нения (см. Дополнение В или Г), необходимо уметь вы-числять фигурирующие в этих уравнениях диффузионные скорости, вязкие напряжения и тепловой поток, которые связаны с молекулярным переносом массы, импульса и энергии соответственно. Эти величины, вообще говоря, нельзя непосредственно связать с другими переменными, входящими в уравнения сохранения, поскольку они выражаются через высшие моменты функции распределения (см., например, уравнение (Г. 28)). В случае систем, близких к равновесию, Энског для того, чтобы из уравнения Больцмана получить явную связь между векторами (и тензором) переноса и градиентами гидродинамических переменных, воспользовался разложением функции распределения скоростей в ряд около максвелловского распределения. Полученная таким путем замкнутая система уравнений представляет собой уравнения Навье — Стокса, которые оказываются применимыми при весьма больших отклонениях от равновесия ). Так как строгий вывод уравнений Навье — Стокса по Энскогу очень громоздок, здесь приводится лишь физическое обоснование уравнений, до некоторой степени аналогичное тому, которое содержится в работах [ ] и [ ]. Строгое изложение можно найти в работах [Ч и [ ]. Хотя упрощенный подход, по-видимому, позволяет лучше понять существо дела, он приводит к неточным выражениям для коэффи- [c.553]

    Третий подход основан на теоретическом анализе псевдоожиженных систем методами кинетической теории газов [55, 56]. Конечной целью, к которой стремятся исследователи, развивая это направление, является получение шестимерной плотности распределения частиц по скоростям и координатам, полностью описывающей поведение каждой частицы в слое (см. 1.5). Знание этой функции дает возможность описать осредненпые пульсационные движения в рассматриваемой ФХС. В работе [55] предложено уравнение Больцмана для твердой фазы, дифференциальная часть которого включает диффузионный член. Это уравнение содержит много экспериментально определяемых величин, что затрудняет его практическое использование. Кроме того, на уровне кинетической задачи не рассматривается взаимодействие между твердой и газовой фазами. В работе [56 ] приводится кинетическое уравнение для твердой фазы п eвдooжижeннoгoJ слоя, полученное из уравнений Лиувилля и Гамильтона. При этом физические эффекты в системе в целом рассматриваются в масштабах изменения функции распределения частиц газовой фазы. Однако не учтено, что масштабы изменения функции распределения частиц газовой фазы значительно меньше масштабов изменения функции распределения частиц твердой фазы. Для устранения этой некорректности модели требуется осреднить функцию распределения частиц газовой фазы по объему, являющемуся элементарным для твердой фазы. При этом необходимо рассматривать уже не одно, а два кинетических уравнения — для газа и твердой фазы. Кроме того, корректное использование уравнения Лиувилля для вывода уравнения, описывающего движение твердой фазы, является затруднительным из-за неконсервативности поля сил, в котором движется отдельная твердая частица. [c.161]

    Наиболее детально теоретически могут быть описаны процессы диффузии в газах. Диффузия является следствием теплового движения молекул, которые при соударениях изменяют свои скорости. Простейшие слзп1аи диффузии — диффузия одного газа, находящегося в очень малой концентрации в другом газе, или взаимная диффузия практически одинаковых молекул, различающихся лишь своим изотопным составом, могут быть рассмотрены с помощью методов элементарной кинетической теории газов. Однако трактовка взаимной диффузии различных газов, находящихся в соизмеримых концентрациях, в рамках элементарной кинетической теории газов имеет принципиальные трудности и приводит поэтому к ряду противоречий. Вполне последовательная теория взаимной диффузии различных газов может быт развита лишь на основе уравнения Больцмана (см. Приложение Б), позволяющего вычислить функцию распределения молекул газа при диффузии по координатам и скоростям. С самым простым частным случаем уравнения Больцмана мы уже познакомились в 4 предыдущей главы. [c.37]

    Модель Куртисса — Пригожина касается лишь возмущения распределения Максвелла по поступательным скоростям. Кинетическое уравнение Больцмана дополняется членом, учитывающим влияние химических реакций, и рассматривается возмущенная функция распределения [c.6]

    При исследованиях элементарных актов, позволяющих установить сечения (или вероятности) тех или иных процессов, решается динамическая задача При рассмотрении эволюций функций распределения во времени (а в случае неоднородной системы и в пространстве) необходимо воспользоваться уравнением Больцмана или какой-либо его линеаризованной или упрощенной формой. Наконец, при описании процесса в терминах наблюдаемых концентраций н скоростей необходимо применягь управляющее уравнение , или уравнение Паули, являющееся обобщением основного уравнения обычной химической кинетики. Уравнение Паули учитывает не только каналы различных химических реакций, но и переходы между квантовыми уровнями в реагирующих молекулах и особенности реакций с различных энергетических уровней. В силу Э]ого в уравнение Паули входят не суммарные коэффициенты (константы) скоростей химических реакций, которые применяются в обычной химической кинетике, а коэффициенты скоростей с различных квантовых уровней. Все эти коэффициенты скоростей химических реакций, учитывая заселенности и ее кинетику, в совокупности пo вoляют определить коэффициент (константу) скорости, определяемую по промежуточным и конечным продуктам реакции в обычном химическом кинетическом эксперименте. [c.6]

    Как известно, всякий процесс в системе, протекающий с конечной скоростью, приводит к возмущению максвелловской функции распределения. В частности, возмущение максвелловской функции распределения может происходить за счет неупругих соударений молекул, в результате которых происходит перераспределение массы и внутренней энергии сталкивающихся частиц. В обычных условиях, когда температура смеси Т невысока или достаточно велика энергия активации Е (так что параметр Е=Е кТ 1), число неупругих столкновений молекул много меньше числа упругих соударений. Большинство опубликованных работ посвящено рассмотрению именно этого случая. Первые работы этого направления были выполнены Пригожиным и его сотрудниками [1, 2]. Было установлено, что в общем решении линеаризованного уравнения Больцмана первого приближения появляется дополнительный скалярный член, а решение соответствующего интегрального уравнения оказалось удобным представить (исходя из конкретного вида дополнительных условий) в виде ряда типа Фурье по полиномам Сонина с индексом Авторами упомянутых работ было рассмотрено изменение скорости реакции инициирования типа АЧ-А продукты реакции по сравнению со скоростью этой реакции полученной в предположении максвелловского распределения реагирующих компонент. Считалось, что реакция только начинается, так что концентрацией продуктов реакции можно пренебречь. Таким образом, смесь газов фактически была однокомпонентной, причем имелся сток частиц. Уменьшение скорости реакции, полученное Пригожиным, составляет К= 0Л7 (Е=5), если кинетическая энергия относительного движения молекул больше энергии активации. В работе [21 была сделана попытка получить оценку влияния теплоты реакции на ее скорость. При больших значйниях параметра Е разложение по полиномам Сонина сходится несколько медленнее, чем при умеренных значениях Е (см. стр. 110). [c.88]

    Решено линеаризованное уравнение Больцмана относительно функции f H, распределения молекул метана но скоростям. На рис. 4 представлено изменение во времени функции Ф-нн 4тг v. Пункти[)ом показано максвелловское распределение при температуре 1,Г).Ю °К, 326 [c.326]

    Если в газе отсутствуют градиенты скорости, температуры и концентрации, то функция f г, с , т) представляет собой распределение Максвелла. Если же система неравновесная и существуют градиейты, то функция распределения определяется из интегро-дифференциального уравнения Больцмана. Уравнение Больцмана для случая, мало отличающегося от равновесного, когда потоки линейны по отношению к производным, может быть решено с помощью метода теории возмущений, развитого Чепменом и Энскогом. Уравнение Больцмана справедливо лишь для достаточно малых плотностей газа, когда влиянием столкновений более чем двух молекул можно пренебречь. Таким образом, рассматриваются лишь парные столкновения. В то же время длина свободного пробега молекулы должна быть достаточно мала, чтобы газ можно.было рассматривать как сплошную среду. В этом случае из уравнения Больцмана получают гидродинамические уравнения Навье-Стокса и выражения для векторов потоков. Коэффициенты переноса определяются векторами потоков и выражаются через интегралы [12], значение которых зависит от вида потенциальной функции межмолекулярного взаимодействия. [c.24]

    Задачу подлинной разработки формализма, позволяющего найти решение уравнения Больцмана, независимо решили Чепмен и Энског вскоре после опубликования результатов Гильберта. Работа Чепмена, в которой используется метод Максвелла, основана на применении уравнений переноса, в то время как подход Энскога основан на построении решения уравнения Больцмана для функции распределения по скоростям. Оба метода приводят к одинаковым выражениям для кинетических коэффициентов. В двух статьях 1916 и 1917 гг. Чепмен [28, 29] вьшел формулы для коэффициентов вязкости и теплопроводности простого газа и газовой смеси, приняв (как и Максвелл), что для слабо неоднородного газа функцию распределения по скоростям можно записать в виде /=/ (1 + ф) при этом предполагается, что в однородном газе функция ф должна обращаться в нуль. Теория Энскога, опубликованная в его докторской диссертации [64] в 1917 г., основана на решении уравнения Больцмана с помощью разложения в ряд. Такой подход был впервые применен Гильбертом, который пытался разработать (к сожалению, безуспешно) аналогичный формализм, основанный на последовательных приближениях. [c.19]

    Выведенное в предыдущей главе уравнение Больцмана описьпзает эволюцию функции распределения в фазовом пространстве одной частицы. Вообще говоря, это уравнение содержит два члена потоковый и столкновительный. Первый член описьшает движение молекул по траекториям в фазовом пространстве и представлен дифференциальным оператором, второй член описывает изменения скорости, обусловленные столкновени51ми, и представлен интегральным оператором. Уравнение Больцмана, следовательно, представляет собой интегро-дифференциальное уравнение. Замечательным его свойством является нелинейность столкновительного члена. Как и можно было ожидать, в этой нелинейности и состоит главное препятствие при построении методов решения уравнения Больцмана. Положение еще больше осложняется тем, что интеграл столкновений тесно связан с законом межмолекулярного взаимодействия, относительно которого имеется лишь весьма неполная информация. Поэтому начнем изучение уравнения Больцмана с того, что постараемся извлечь из него всю ту информацию, которую можно получить, не располагая строгим решением этого уравнения. Это будет проделано в настоящей главе. [c.71]

    Из газовой динамики известно, что в большинстве встречающихся задач нет необходимости использовать детальное микроскопическое описание газа с помопдью функции распределения. Поэтому естественно поискать менее детальное описание, используя макроскопические гидродинамические переменные (плотность, гидродинамическую скорость, температуру), введенные в гл. 2. Поскольку-эти переменные определяются через моменты функции /, мы сталкиваемся с проблемой анализа различных моментов уравнения Больцмана. Особый интерес, разумеется, представляют моменты, соответствуюпще инвариантам столкновений, так как с ними непосредственно связаны гидродинамические переменные. Фактически мы покажем ( 4.1), что уравнения переноса для инвариантов столкновений идентичны гидродинамическим законам сохранениям тем самым будет установлена формальная связь между кинетической теорией и гидродинамикой. [c.71]

    В предыдущем параграфе мы доказали, что в классе нормальных решений уравнения Больцмана функция распределения однозначно определяется значениями своих первых пяти моментов, заданных в начальный момент времени t=tQ, (Это обстоятельство иногда называют па-радоксом Гильберта,) Следовательно, плотность, гидродинамическая скорость и температура в произвольный момент времени t определяются непосредственно их значениями в начальный момент Более того, так как взаимооднозначное соответствие между функцией распределения по скоростям и ее первыми пятью моментами сохраняется во времени, моменты выспшх порядков, в частности тензор напряжения и вектор теплового потока, могут быть выражены в любой момент времени непосредственно через плотность, гидродинамическую скорость и температуру. Следовательно, подстановка подобных выражений в общие уравнения сохранения, выведенные в 4.1, превращает их в замкнутую систему уравнений. [c.124]


Смотреть страницы где упоминается термин Функции распределения по скоростям и уравнение Больцмана: [c.45]    [c.70]    [c.163]    [c.251]    [c.15]    [c.140]    [c.39]    [c.326]    [c.338]    [c.395]    [c.157]    [c.24]    [c.88]    [c.24]    [c.140]    [c.37]    [c.51]    [c.88]    [c.97]   
Смотреть главы в:

Теория горения -> Функции распределения по скоростям и уравнение Больцмана




ПОИСК





Смотрите так же термины и статьи:

Больцмана

Больцмана уравнение

Больцмана уравнение распределение

Распределение по скоростям

Уравнение скорости

Функция распределения



© 2025 chem21.info Реклама на сайте