Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомогенные процессы в жидкой фазе

    Гетерогенно-каталитические процессы более распространены в промышленности, чем процессы гомогенного катализа. Это обусловливается тем, что гетерогенные катализаторы более удобны в производстве, их легче отделять от газовой или жидкой фазы в непрерывно действующих реакторах. Активность гетерогенного катализатора существенно зависит от площади поверхности раздела фаз 5 катализатора и фазы, в которой находятся реагенты. Важной характеристикой катализатора является его удельная поверхность. Удельной поверхностью катализатора 5уд называется площадь поверхности раздела фаз, отнесенная к одному грамму или одному кубическому сантиметру катализатора  [c.634]


    Получение фенолоформальдегидной смолы — это процесс гомогенного катализа (исходные вещества и катализатор в жидкой фазе), но в итоге процесса образуется гетерогенная система Ж—Ж двух несмешивающихся жидкостей. Структурная формула смолы имеет линейное строение  [c.219]

    Аналогично протекают процессы испарения и конденсации е системах гомогенных азеотропов, образующих постоянно кипящие смеси с максимумом точки кипения. Здесь также, если состав перегоняемого раствора равен уе (фиг. 27), то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. Также н при охлаждении насыщенного пара состава уе процесс конденсации будет протекать при неизменной температуре и постоянном составе образующейся жидкой и остаточной паровой фаз, пока не перейдет в жидкость последний пузырек пара. Если же начальный состав системы отступает в ту или другую сторону от азеотропического, то перегонка и конденсация протекают с изменением температуры и состава жидкой и паровой фаз. Так, если состав а меньше Уе, то процесс перегонки сопровождается повышением температуры и обогащением остаточной жидкой фазы компонентом ау, который на интервале концентраций 0<а<уе играет роль высококипящего. Если же состав а начальной системы больше азеотропического состава Уе, то в ходе перегонки, сопровождающейся постепенным повышением температуры, состав остатка прогрессивно обогащается компонентом а, который на интервале концентраций уе <я<Г1 играет роль высококипящего. [c.66]

    Гомогенные процессы основаны на реакциях между реагентами, находящимися в одной фазе, и не имеют поверхности раздела отдельных частиц системы друг от друга. В промышленных печах гомогенные процессы осуществляются в основном в газовой фазе. К ним относятся окислительные экзотермические реакции горения различных газов, протекающие в пламенах (например, окисление метана, сероводорода, оксида углерода, водорода, синтез хлористого водорода и т. д.). Условно к гомогенным процессам можно отнести окисление паров серы, фосфора, жидких топлив, потому что непосредственно химическая реакция протекает между паровой фазой окисляемого реагента и газовой средой окислителя, которые совместно образуют горючую газовую фазу. На эти реакции могут быть распространены закономерности гомогенных процессов. [c.23]


    Представляют большой интерес методы разделения бинарных гомогенных в жидкой фазе азеотронных систем, которые при заданном внешнем давлении имеют либо максимальную, либо минимальную точку кипения на диаграмме t — х, у. Процесс выкипания жидкого гомогенного азеотропного раствора протекает при постоянной температуре и одинаковых составах жидкой и паровой фаз, что исключает использование обычных способов ректификации для получения обоих практически чистых компонентов смеси. [c.323]

    Процессы азеотропической перегонки применяются не только для разделения однородных в жидкой фазе азеотропов, но и для разделения систем компонентов с очень близкими точками кипения, ректификация которых обычными методами, вследствие близости коэффициента относительно летучести к единице, оказывается весьма затруднительной. В этом случае третий компонент должен образовать с одним из компонентов системы гомогенный или гетерогенный азеотроп, кипящий при более низкой температуре, чем низкокипящий компонент исходной бинарной системы, и играющий роль верхнего продукта фракционирующей колонны. [c.138]

    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]

    Из проведенного рассмотрения процессов однократного испарения и конденсации гомогенных в жидкой фазе систем частично растворимых компонентов эвтектического типа можно сделать заключение о полной их аналогии с соответствующими процессами в системах растворов, близких по своим свойствам к идеальным. Поэтому процессы многократного испарения и конденсации, состоящие в повторении конечное число раз процессов однократных, с удалением каждый раз из системы образовавшихся фаз, не рассматриваются особо для системы частично растворимых веществ. [c.46]

    Закономерности кинетики реакций в жидкостях имеют ряд особенностей, отличающих их от более простых законов кинетики газовых реакций. В данной главе будут рассмотрены общие принципы кинетики химических реакций в жидкостях для относительно простого случая гомогенных химических реакций и вытекающие из них следствия, полезные для феноменологического описания процессов химического превращения в жидкостных реакторах. Более детальное изложение кинетики гомогенных химических реакций в жидкой фазе дано в монографиях [1] и [2]. [c.27]

    Из рассмотрения процессов однократного испарения и конденсации гомогенных в жидкой фазе систем частично растворимых компонентов эвтектического типа можно сделать заключение о полной их аналогии с соответствующими процессами в системах растворов, близких по свойствам к идеальным. [c.158]


    Следовательно, скорость гетерогенного процесса может быть соизмерима со скоростью гомогенного лишь при 5 = 10 см /см . Для окисления циклогексана S = 10 см /см , т. е. на 10 порядков ниже Следовательно, этот процесс протекает гомогенно в жидкой фазе двухфазной системы. От реакций, протекающих в однофазных системах, рассматриваемый процесс отличается тем, что он осложнен явлениями массопередачи. [c.31]

    Реакторы для проведения процессов в гомогенной жидкой фазе. В гомогенной жидкой фазе протекают некоторые конденсационные процессы (например, получение альдоля из ацетальдегида), процессы гидролиза. [c.122]

    Важно отметить, что поскольку гетерогенно-гомогенный механизм для гетерогенно-каталитических реакций окисления в жидкой фазе является общим случаем, а не частным, в отличие от газофазных процессов, этими реакциями можно управлять совместно при помощи катализаторов и ингибиторов. [c.43]

    Реактор-автоклав. Такой реактор характерен для гомогенных реакций в жидкой фазе или гетерогенных реакций в системе жидкость — жидкость, используемых в процессах органического синтеза. Изготовляется он в виде металлического котла с крышкой, на которой имеются штуцеры для загрузки реагентов и установки мешалки, а также окно для наблюдения за протеканием процесса. Реактор-автоклав прост по конструкции и является одним из наиболее распространенных реакционных аппаратов. [c.351]

    Классификация каталитических процессов и реакций производится по ряду признаков. По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на две основные группы — гомогенные и гетерогенные. При гомогенном катализе катализаторы и реагенты находятся в одной фазе — газе или растворе, а при гетерогенном — в разных фазах. В особую-группу следует выделить микрогетерогенный, в частности ферментативный катализ, происходящий в жидкой фазе с участием коллоидных частиц в качестве катализаторов. [c.106]

    Химические процессы в производстве катализаторов весьма разнообразны. Они могут проходить гомогенно в жидкой или газовой фазе и в гетерогенных системах. Широко применяют гетерогенные процессы, в которых химические реакции сопровождаются диффузией и переходом компонентов нз одной фазы в другую. В системе газ — жидкость часто используют процессы хемосорбции газовых компонентов и обратные процессы десорбции с разложением молекул жидкой фазы. В системе газ — твердое вещество также применяют хемосорбцию и десорбцию в системах жидкость — твердое вещество и жидкость — жидкость — избирательную экстракцию с образованием новых веществ в экстрагенте. Сложные многофазные процессы с образованием новых веществ происходят при термообработке катализаторов. При этом, как правило, в общем твердофазном процессе принимают участие появляющаяся при нагревании эвтектическая жидкая фаза или компоненты газовой фазы. [c.96]

    Разработан вариант гомогенного алкилирования бензола этиленом, при котором катализаторный слой в алкилаторе отсутствует. Процесс в этом случае идет за счет растворенного в реакционной смеси катализатора, используемого за один проход. Такая схема не предъявляет жестких требований к перемешиванию жидкой фазы в реакторе отпадает необходимость в системах отстаивания и рециркуляции комплекса, а также в выводе и нейтрализации отдельного потока отработанного катализатора. Кроме того, при этом облегчается подача катализатора в реактор. [c.102]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Узел реактора. В нефтеперерабатывающей и нефтехимической промышленности применяются реакторы различных типов. Для проведения процессов в гомогенной газовой фазе (термический крекинг, пиролиз) служат реакторы, представляющие собой змеевики трубчатых печей. В гомогенной жидкой фазе протекают процессы гидролиза и некоторые конденсационные процессы, для [c.95]

    Более интересно гомогенное алкилирование в присутствии хлорида алюминия. В этом случае количество катализатора определяется его растворимостью в бензоле, а давление процесса подбирается таким, чтобы олефин находился в жидкой фазе. [c.55]

    Жидкости для промывки скважин используются как гомогенные среды, так и в качестве одной из фаз гетерогенных систем (суспензий, эмульсий, пен). В гетерогенных дисперсных системах жидкости, как правило, являются той средой, которая в наибольшей степени ответственна за физико-химические процессы в системе, и ее свойства находятся в теснейшей зависимости от свойств жидкой фазы. В буровой практике в качестве жидкой фазы применяют углеводородные жидкости (нефть, дизельное топливо) и особенно воду. Поэтому, не останавливаясь на роли этих жидкостей в дисперсной системе, рассмотрим некоторые физико-химические особенности их строения. Это важно еще и потому, что при анализе процессов, происходящих в промывочных жидкостях, до сих пор, к сожалению, не учитываются свойства их жидкой фазы. [c.22]

    В зависимости от агрегатного состояния катализатора и реакционной среды, включающей в себя субстрат (реагирующее вещество), различают следующие типы катализа 1) гомогенный, когда и субстрат, и катализатор находятся в одной фазе (газ, жидкость) и система гомогенна 2) микрогетерогенный, когда и субстрат, и катализатор находятся в одной (обычно жидкой) фазе, но катализатор макромолекулярен, и.ии состоит из частиц коллоидных размеров, не выделяющихся в отдельную фазу. Сюда относится катализ на коллоидных металлах, а также огромной важности раздел биокатализа — ферментативный катализ. Важную роль здесь также играют процессы комплексообразования на макромолекулярном уровне 3) гетерогенный, когда катализатор и субстрат находятся в разных фазах обычно катализатор твердый, а реагирующие вещества — газ или жидкость, причем процесс протекает на поверхности катализатора. Это наиболее распространенный и важный для промышленности тип каталитических процессов. [c.286]

    К гетерогенным относятся каталитические процессы, протекающие на границе раздела фаз т—г и т — ж. Гетерогенный катализ имеет большее применение в промышленности, чем гомогенный катализ. Это объясняется тем, что гетерогенные катализаторы практически более удобны их легче отделять от газовой или жидкой фазы в непрерывно действующих реакторах. [c.297]

    Переходной ступенью от теории ректификации бинарных 1)астворов к теории многокомпонентных систем является рассмотрение тройных смесей, часто встречающихся в нефтехимической технологии. При наличии данных но парожидкостному равновесию состояние тройных смесей поддается наглядному графическому представлению в системе трилинейных координат, а принятие некоторых упрощающих допущений позволяет проводить удобный графический расчет ректификации таких смесей. Исследование же процесса разделения тройных систем является основой для ностроения теории процессов азеотропной и экстрактивной ректификации, в которых разделение гомогенного в жидкой фазе азеотропа пли трудно разделимого бинарного раствора осуществляется путем добавления к системе третьего компонента. [c.247]

    Проследим изменение фазового состояния системы при ее охлаждении. При охлаждении системы до температуры Ti система гомогенная, одна жидкая фаза. При температуре Тх начинается кристаллизация компонента А (точка 2). Так как из расплава в твердую фазу выделяется только компонент А, то соотношение концентраций компонентов В и С в жидком расплаве не меняется. На плоском треугольнике основания призмы такой процесс отражается линией ] —3. Состав расплава меняется по линии 2—3. В точке 3 Расплав становится насыщенным не только компонентом А, но и компонентом В. Точка 3 соответствует температуре Т . При этой температуре из расплава начинает кристаллизоваться совместно с компонентом А компонент В. Состав расплава меняется по линии d—g. На плоском треугольнике этот процесс отражается также линией 3 — g. Тройная эвтектика (точкам) находится при температуре Т . При температуре Т4 вся система кристаллизуется и будет гетерогенной, трехфазной. При дальнейшем охлаждении системы охлаждаются кристаллы компонентов А, В и С, что отражено на диаграмме стрелками на ребрах призмы. Весь процесс охлаждения системы на рис. 39 отражен стрелками. [c.254]

    Для гомогенизации системы в промышленности нередко используют поглощение газов или конденсацию паров, растворение или плавление твердых материалов и получают таким образом жидкую среду, в которой быстро протекают реакции. Иногда применяют испарение жидкостей или выделение из них в газовую фазу нужных компонентов и проводят реакции в газовой фазе. Так, в башенном методе получения серной кислоты после поглощения оксидов азота гомогенно идет образование нитрозилсерной кислоты. В этом же способе используется и газовая реакция окисления диоксида серы в триоксид при каталитическом действии газообразных оксидов азота. При сернокислотной гидратации этилена процесс начинается с физической абсорбции этилена серной кислотой, а затем гомогенно в жидкой фазе осуществляется образование этилсерной кислоты и ее последующий гидролиз  [c.134]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Обе реакции — синтез метилбутанднола и его дегидратация проходят в мягких условиях в жидкой фазе (температура 60— 120 °С, давление 0,6—1,5 МПа) с использованием гомогенного кислотного катализатора, который рециркулирует в процессе. Этот процесс по сравнению с получением изопрена через диме-тилдиоксан, характеризуется меньшим расходом сырья, позволяет упростить аппаратурное оформление, устранить сложную [c.175]

    В гомогенных реакторах процесс протекает в одной фазе и не сопровождается фазовыми переходами. Отсутствие переноса вещества пли энергии через границу раздела фаз является основным признаком гомогенных процессов. При этом совсем не обязательно, чтобы реактор содержал только одну фазу. Он может быть заполнен инертной твердой насадкой для уменьшения продольного перемешивания плп в него может подаваться ннертное жидкое либо газообразное вещество для барботажпого перемешивания или создания эрлифта. Однако если в реакторе не происходит обмен веществом пли энергией между фазамп, то он должен быть йтпесен к гомогенным. [c.10]

    На примере окисления углеводородов на гетерогенных окисных катализаторах было установлено, что в жидкофазном процессе в ряде случаев образуются иные продукты, чем в газофазном с той же исходной системой [77, 78]. Продукты реакции при этом приближаются к продуктам реакции жидкофазного цепного окисления с гомогенными катализаторами из растворимых солей металлов переменной валентности. Так, о-ксилол в газовой фазе окисляется на пятиокиси ванадия во фталевый ангидрид, а в жидкой — в о-толуи-ловую кислоту, которая получается при окислении о-ксилола в жидкой фазе и с солями кобальта и марганца. В некоторых работах роль поверхности окисных катализаторов при жидкофазном окислении углеводородов сводят только к генерированию радикалов для ценного процесса, протекающего в объеме [79, 80]. Однако исследования [c.42]

    Допустим, что компонентом А является вода, а компонентом В — соль, и рассмотрим процесс изотермического испарения воды из рассола, состав которого характеризуется точкой Р (см. рис. 87). В точке I начнется осаждение кристаллогидрата (состав и температура твердой фазы определяются точкой si). При дальнейшем испарении (перемещение точки системы от I к s,) состав равновесных фаз остается неизменным (так как Р, Т — onst), а изменится лищь соотнощение между ними. Когда состав системы совпадает с составом соединения (точка Si), исчезнет последняя капелька насыщенного рассола состава I. Дальнейшее обезвоживание приведет к постепенному испарению кристаллизационной воды с образованием насыщенного раствора кристаллогидрата состава При этом доля жидкой фазы будет увеличиваться, и в тот момент, когда состав системы будет соответствовать точке U, вся фаза расплавится. Гомогенной система будет оставаться до тех пор, пока ее состав не примет значения, отвечающего точке I2. При этом составе раствор станет насыщенным и начнется кристаллизация безводной соли (при неизменном составе раствора). Количество ее ио мере испарения будет увеличиваться и, наконец, вода будет полностью удалена (точка S). [c.265]

    Процесс охлаждения системы с молярной долей ССЦ 50 % будет обратным разобранному. Пусть исходная система имеет молярный состав 50 % I4. При 350 К эта система (точка g) находится в состоянии пара. При охлаждении ее до 345,4 К система станет гетерогенной, появится первая капля жидкой фазы. Ее молярный состав 84 % ССЦ. Так как из пара в жидкую фазу преимущественно уходит I4, то пар обедняется I4 и его состав изменяется по кривой ab . Вместе с изменением состава пара меняется и состав жидкой фазы, находящейся с паром равновесии. Изменение состава кипящей жидкости происходит по кривой ad . Изменение составов жидкой и паровой фаз приводит к изменению температуры конденсации. При 338 К состав жидкой фазы станет равным составу исходного пара. При этой температуре система станет гомогенной, исчезнет последняя порция пара. При дальнейшем охлаждении состав жидкой фазы не изменяется. [c.214]

    Для проведения процессов в гомогенной жидкой фазе в иеф-тс.химической промышленности применяют реакторы смешения с механическими перемешивающими устройствами различных конструкций лопастные, пропеллерные, турбинные и др. Они должны быть снабжены плотно закрывающимися крышками, а вал мешалки должен иметь надежное сальниковое уплотиенне. Весьма важное значение имеет поддержание необходимой температуры реакции. Это достигается в аппаратах с рубашкой или С( змеевиками, обычно располагаемыми вокруг мешалки. [c.332]

    Окисление по насыщенному атому углерода осуществляют главнь м образом при помощи молекулярного кислорода в жидкой фазе, зеже — в газовой фазе в условиях гомогенного процесса. [c.357]

    Коллоидная стабильность смазок лишь отчасти связана с синерезисом, поэтому эти свойства нельзя отождествлять. Чем выше загуш аюш ая способность загустителя и чем больше его в смазке, тем лучше связана в ней жидкая фаза. Высокой коллоидной стабильностью при хранении отличаются углеводородные смазки — гомогенные сплавы минеральных масел с твердыми углеводородами (церезином и парафином), распределенными в смазках в виде тонких, мономолекулярных слоев — кристаллов (см. рис. 12. 1, ж). мазки, загуш енные мылами, менее стабильны, так как структурный каркас не так плотен, а кристаллическая решетка мыл значительно менее масло- мка, чем кристаллическая решетка углеводородов механически задерживаемого масла в каркасе мыл относительно больше, а удерживается оно хуже. Кроме того, мыльные смазки больше подвержены процессам старения, следствием которых являются структурные изменения и связанное с ними выделение масла. [c.662]

    Обычно процесс осуществляется либо в газовой, либр в жидкой фазах, причем в первом случае применяются гетерогенные катализаторы, а во втором — гомогенные. [c.441]

    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    Спирты оказались также удобными в том отношении, что образующийся хлорид натрия растворим в них ограниченно. Был испытан ряд спиртов этиловый, н-бутиловый, изоамило-вый, этиленгликоль, глицерин [228]. Полученные экспериментальные данные представлены в табл. 2.32. Выяснено, что во всех спиртовых средах реакция дегидрохлорирования идет с достаточно высокой скоростью и высокими выходами целевого продукта. Во всех случаях Na l выпадает в виде легко отделяющегося кристаллического осадка. Размер кристаллов 10-15 мкм. При применении одноатомных спиртов получалась гомогенная жидкая фаза и требовалось дополнительное разделение продуктов реакции от растворителя. Наиболее интересными оказались многоатомные спирты, так как в случае их применения получались две жидкие легко разделяющиеся друг от друга фазы. Верхняя фаза — ЭПХГ, а нижняя — многоатомный спирт, содержащий в своем составе реакционную воду (0.2 м на 1 т ЭПХГ) и растворенный в нем хлорид натрия. Из многоатомных спиртов в качестве среды для реакции взят глицерин, поскольку он является конечным продуктом процесса и применение его исключает необходимость введения в реакционную среду новых компонентов. [c.113]

    Так, нейтрализация кислоты [целочью является гомогенным гомофазным процессом, рассмотренное выше гидрирование этилена — гомофазным гетерогенным процессом Окисление углеводорода в жидкой фазе газообразным кислородом представляет собой гомогенный гетерофазнын процесс. Наконец, гашение извести [c.33]

    Как правило, стадиями гетерогенного процесса являются подвод реагентов к поверхности раздела фаз адсорбция на поверхности двумерная диффузия на поверхности непосредственно реакция, проходящая, как обычно, через ряд стадий, состоящих — в свою очередь, — из элементарных актов десорбция и уиос продуктов реакции от поверхности в объем жидкой фазы. В объеме могут происходить последующие гомогенные реакции. Реакцию на поверхности часто называют межфазной. Совокупность всех перечисленных стадий и есть гетерогенный процесс. Скорость всего процесса равна скорости лимитирующей стадии. Если увеличить ее скорость, то скорость процесса возрастет. Ускорение быстрых [c.276]


Смотреть страницы где упоминается термин Гомогенные процессы в жидкой фазе: [c.254]    [c.46]    [c.219]    [c.48]    [c.204]    [c.216]    [c.115]    [c.319]   
Смотреть главы в:

Общая химическая технология -> Гомогенные процессы в жидкой фазе

Общая химическая технология -> Гомогенные процессы в жидкой фазе




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2025 chem21.info Реклама на сайте