Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РЬ2 на бумаге и их адсорбционное разделение

    Фильтровальная бумага использовалась для разделения веществ еще до разработки принципов распределительной хроматографии. Различные авторы использовали бумагу для разделения красителей, основываясь на новаторской работе русского ботаника Цвета, который первый разделил красители растительного происхождения при помощи адсорбционной хроматографии. Однако этот метод основан преимущественно на явлениях адсорбции обычно его называют капиллярным анализом. [c.444]


    Хроматография на бумаге для разделения имеет ряд преимуществ по сравнению с колоночной хроматографией и с капельным анализом [324], так как в плоскостном варианте зоны, содержащие ионы, доступны для проявления. Имеется много работ по отделению ртути с помощью адсорбционной и осадочной бумажной хроматографии [68, 99, 143, 175, 233, 577, 775, 910, 978, 1016, [c.62]

    Своими работами М. С. Цвет существенно углубил и расширил те адсорбционные методы, которые были известны до него. В частности, нынешнее широкое развитие хроматографии на бумаге является в значительной мере следствием распространения открытых М. С. Цветом общих закономерностей на случай адсорбционного разделения смеси на полосках бумаги. Он в какой-то мере предвосхитил и появление хроматографии в тонком слое, отметив аналогию свойств полоски и слоя карбоната кальция, применяемого для хроматографирования растворов. [c.14]

    Различают хроматографию в колонках, тонкослойную, на бумаге, газовую. Разделение веществ происходит в этих случаях либо в результате распределения между двумя жидкими фазами распределительная хроматография), либо вследствие различной адсорбируемости вещества каким-либо адсорбентом адсорбционная хроматография). [c.60]

    Нынешнее состояние хроматографии на бумаге является именно следствием использования открытых М. С. Цветом закономерностей для случая адсорбционного разделения смеси на вертикальных полосках бумаги. [c.119]

    М. С. Цвет своими работами вдохнул новое, более глубокое содержание в те адсорбционные методы, которые были известны до него. В частности, нынешнее широкое развитие хроматографии на бумаге является в первую очередь следствием распространения открытых М. С. Цветом общих закономерностей на случай адсорбционного разделения смеси на полосках бумаги. [c.23]

    НИЯ адсорбционные, ионообменные и другие свойства бумаги — носителя. Разделение нескольких веществ целиком определяется разностью величин их коэффициентов распределения между двумя жидкими фазами [4]. Характеристикой вещества в хроматографическом методе является величина Rf. При разделении гомологов разность между величинами для предыдущего и последующего членов ряда соответствует изменению структуры молекулы вещества на онределенный структурный элемент (например, группу — СНг —), таким образом, величина Rj, являясь константой для данных физических условий разделения, открывает возможность структурного анализа и идентификации новых веществ [5]. [c.252]

    Если твердое тело может поглощать влагу или находится во влажном состоянии, то, как правило, оно является пористым. Большинство пористых, особенно высокопористых тел, можно представить как более или менее жесткие пространственные структуры — сетки или каркасы. Их в коллоидной химии называют гелями. Это уголь, торф, древесина, картон, бумага, ткани, зерно, кожа, глина, почвы, грунты, слабообожженные керамические материалы и т. д. Пористые тела могут быть хрупкими или обладать эластическими свойствами. Их часто классифицируют по этим свойствам. Пористые материалы обладают значительной и разной адсорбционной способностью по отношению к влаге, которая придает им определенные свойства. На практике в качестве адсорбентов. предназначенных для извлечения, разделения и очистки веществ, применяют специально синтезируемые высокопористые тела. Эти тела кроме большой удельной поверхности должны обладать механической прочностью, избирательностью и рядом других специфических свойств. Наиболее широкое применение находят активные угли, силикагели, алюмогели, цеолиты. [c.129]


    Адсорбционную хроматографию можно применять и в препаративных и аналитических целях (разд. 38.3.6). Из большого числа адсорбентов для аналитических целей наиболее важны специальные сорта бумаги, а для препаративных работ — оксид алюминия со стандартизованными характеристиками. Каждая установка для хроматографических разделений приспособлена [c.489]

    Методом электрофореза на бумаге можно не только исследовать состав смесей высокомолекулярных веществ, но и выделить отдельные компоненты. С этой целью полоску бумаги, не прогревая, разрезают на части и из них экстрагируют отдельные, уже разделенные компоненты. Теория этого метода, при котором существенную роль играют поверхностные и адсорбционные явления, еще мало разработана. [c.210]

    Опыт 2. Хроматография на бумаге. Если нанести на фильтровальную бумагу каплю раствора красящего вещества, то посредине капли образуется сильно окрашенное пятно, к которому примыкает бесцветная зона растворителя. Окрашенный центральный кружок образуется вследствие адсорбции бумагой растворенного вещества Когда же в растворе имеется несколько веществ, то вследствие раз личной способности этих веществ к адсорбции на бумаге можно про извести их разделение. Вещества с большей адсорбционной способ ностью окажутся в центре пятна, с меньшей — ближе к периферии [c.295]

    Современные теоретические представления о механизме хроматографических процессов в колонках или в тонких слоях (в том числе и на бумаге) возникли при рассмотрении адсорбционно-хроматографических закономерностей, открытых М. С. Цветом. По мере открытия новых хроматографических явлений, известные ранее закономерности в той или иной мере использовались для теоретической интерпретации наблюдений в области ионообменной, распределительной, осадочной и других разновидностей хроматографии. Такая преемственность в формировании теоретических концепций влечет за собой необходимость при обсуждений различных по механизму процессов хроматографии, объединяемых наименованием сорбционные процессы , исходить из сложившихся теоретических представлений об адсорбционно-хроматографических закономерностях и явлениях [5, 61. Это обстоятельство принято во внимание при изложении теоретических основ хроматографии как метода разделения гомогенных смесей (гл. I). Однако рассматривать здесь более подробно метод адсорбционной хроматографии нет оснований ввиду его ограниченного применения в анализе неорганических соединений. [c.10]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    Хроматографические методы классифицируют по нескольким параметрам а) по механизму разделения компонентов анализируемой смеси (адсорбционная, распределительная, ионообменная, осадочная и др.) б) по агрегатному состоянию подвижной фазы (газовая, жидкостная) в) по типу стационарной фазы и ее геометрическому расположению (колоночная, тонкослойная, хроматография на бумаге) г) по способу перемещения разделяемой смеси в колонке (элюентная, фронтальная, вытеснительная). [c.107]

    Тонкослойная хроматография. Этот способ разделения веществ основан на адсорбционной, распределительной или обменной хроматографии Обычно эти процессы протекают совместно. Тонкослойная хроматография очень похожа на бумажную, но вместо листа бумаги используют тонкий слой порошкообразного адсорбента. Для этого на прямоугольную стеклянную пластинку наносят тонкий слои (обычно 2—3 мм) гидроокиси алюминия или другого подходящего адсорбента на линии старта помещают исследуемые образцы и свидетели . Затем пластинку помещают в слегка наклонном положении, чтобы нижний конец, вблизи которого находится линия старта, был погружен в растворитель. Через некоторое время фронт растворителя подойдет к верхнему концу пластинки тогда проявляют пятна разделившихся веществ либо специальными краси- [c.147]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]


    Изотерма, характеризующая состояние равновесия в двухфазной системе, при высоких концентрациях растворенного вещества перестает быть линейной и приобретает вид изотермы, характерной для адсорбционной хроматографии. Это, естественно, проявляется в изменении формы полосы, которая теперь уже не соответствует кривой Гаусса, а описывается кривой, деформированной в том или ином направлении. Здесь снова можно провести аналогию с противоточным распределением. Однако, если при противоточном распределении упомянутые аномалии ухудшают разделение лишь при очень высоких концентрациях (см., например, стр. 434, [124]), распределительная хроматография в этом отношении гораздо более чувствительна. В целом, сравнивая противоточное распределение, адсорбционную и распределительную хроматографию, можно сказать, что распределительная хроматография обладает наименьшей емкостью. В то время как для адсорбционных колонок оптимальное соотношение между веществом и адсорбентом составляет 1 30—1 100, для распределительной хроматографии это соотношение следует выбирать в интервале 1 1000—1 3000. Хроматография на бумаге характеризуется еще более низким значением этого отношения. [c.447]

    В то время как, например, для хроматографии на бумаге существуют определенные испытанные буферные смеси или для адсорбционной хроматографии известны элюотропные ряды растворителей, для хроматографии на ионитах трудно дать какую-либо универсальную пропись для выбора буферных растворов. Поэтому для каждого данного ионообменника и для каждой данной смеси хроматографируемых веществ необходимо подобрать оптимальные условия разделения эмпирическим путем. [c.556]

    Еще большее развитие метод получил после того, как в 1941 г. в основу разделения смеси веществ А. Дж. П. Мартином и Р. Л. М. Синджем [3] было положено различие не в адсорбционном сродстве компонентов разделяемой смеси, а в их коэффициентах распределения между двумя несмешивающимися жидкостями. Данный метод был назван распределительной хроматографией, в отличие от адсорбционной, предложенной М. С. Цветом. Наибольших успехов распределительная хроматография достигла после того, как в качестве носителя неподвижной фазы стали применять полоски бумаги — распределительная хроматография на бумаге. [c.5]

    Капиллярно-адсорбционный метод, или, как его называют, капельный анализ , основан на использовании для целей анализа капиллярных и адсорбционных явлений в волокнах фильтровальной бумаги. Так как адсорбция волокнами фильтровальной бумаги, а также скорость диффузии по капиллярам различных ионов неодинаковы, то при нанесении капли раствора на фильтровальную бумагу происходит накопление и разделение ионов по концентрическим зонам, где те или другие ионы затем могут быть обнаружены чувствительными и специфическими реакциями. Белый цвет бумаги дает возможность легко замечать цветные продукты реакции. Если образующееся вещество мало растворимо, оно задерживается в капиллярах бумаги в виде пятна, растворимые же продукты двигаются дальше. Поэтому при выполнении капельных реакций, ведущих к образованию осадка, происходит одновременно и процесс фильтрования, при котором фильтрат собирается вокруг пятна, образованного осадком. В случае необходимости в этой краевой зоне ноны могут быть открыты прибавлением надлежащих реактивов. Это ценное свойство фильтровальной бумаги позволяет в не- [c.50]

    Разделение компонентов можно осуществлять в колоннах на-садочного типа (колоночная хроматография), капиллярах, заполненных неподвижной жидкой фазой (капиллярная хроматография), на фильтровальной бумаге (бумажная хроматография), на тонком слое сорбента, нанесенном на стеклянную пластинку (тонкослойная хроматография). Разделять смеси можно при постоянной температуре и давлении или с программированием, т. е. с постепенным повышением по заданной программе температуры или давления газа-носителя. Все варианты хроматографии являются молекулярными, а жидкостно-адсорбционная хроматография может быть и ионообменной, осуществляемой при обмене ионов разделяемых компонентов с поверхностными ионами ионообменного адсорбента. [c.118]

    Адсорбционная хроматография используется главным образом для разделения веществ липофильного характера. Хроматографическое разделение гидрофильных соединений, прежде всего аминокислот, стало возможным после открытия Мартином и Синджем [15] в 1941 г. распределительной хроматографии. Эти авторы использовали в своей работе столбик силикагеля, насыщенного водой. На верхний конец столбика наносили смесь веществ, предназначенную для разделения, и промывали соответствующими органическими растворителями. Подвижной фазой, таким образом, служил органический растворитель, а неподвижной — вода, удерживаемая силикагелем. Разделение аминокислот в этих условиях было возможно лишь после их ацетилирования.. Кроме того, получить силикагель со стандартными свойствами было очень трудно. В связи с этим в качестве материала, способного удерживать на своей поверхности воду, авторы предложили использовать целлюлозу [16]. Целлюлоза оказалась пригодной для разделения свободных аминокислот. От использования целлюлозы как носителя неподвижной фазы оставался всего один шаг к замене порошкообразного носителя полосками бумаги. Так была открыта хроматография на бумаге. В 1944 г. английские авторы опубликовали сообщение [3] об использовании в качестве носителя водной фазы целлюлозы в виде фильтровальной бумаги, в качестве подвижной фазы был испробован ряд растворителей. В 1952 г. Мартин и Синдж были удостоены Нобелевской премии за открытие распределительной хроматографии типа жидкость — жидкость. В том же году Джеймс и Мартин [10], исходя из теоретических положений адсорбционной хроматографии [6], разработали теорию распределительной хроматографии типа жидкость — газ. [c.12]

    Я уже свыше 10 лет интересовался проблемой разделения содержимого растительной клетки и занимался поисками метода, пригодного для этого. Содержимое исследуемых растительных железистых волосков в соответствии с их объемом составляет менее 0,1 [is, и поэтому я сразу мог констатировать, что ни один из тогдашних хроматографических методов не позволяет добиться желательного результата. Микрофотография показала, что железистый волосок меньше отдельного зернышка разделительного слоя или волокна целлюлозы бумаги. Чтобы продвинуться вперед, я перешел к открытым колонкам из тонкоизмельченного материала и стал использовать известные палочки и желобки из окиси магния. Полученные результаты оказались достаточно хорошими, но адсорбционная активность была слишком мала. [c.13]

    На стр. 250 уже было рассмотрено поведение стероидов при распределительной хроматографии на бумаге с использованием различных систем, а также при адсорбционно-хроматографическом разделении на различных сорбентах в колонках. Используя данные табл. 42, следует вывести закономерности, наблюдаемые в тонкослойной хроматографии. [c.261]

    РАБОТА 2.20. АДСОРБЦИЯ = В з+ И 2i2pb + НА БУМАГЕ И ИХ АДСОРБЦИОННОЕ РАЗДЕЛЕНИЕ [4] [c.129]

    Брауи описал метод адсорбционного разделения па бумаге, который он использовал для разделения зеленых пигментов листьев в сероуглеродном растворе. Лист бумаги помещают между двумя стеклянными пластинками (площадью 40 см ). Верхняя пластинка и.меет в центре. маленькое отверстие (5 или 6,5 мм). Раствор смеси наносят по каплям на бумагу через это отверстие, а затем по каплям же наносят и растворитель. Компоненты перемещаются к краям листа бумаги и образуют концентрические зоны. Некоторые смеси удается таким образом очень хорошо разделить. Способ Брауна можно применить к некоторым кубовым красителям. Смесь красителей кубуют гидросульфитом в присутствии едкого натра и затем прибавляют к раствору спирт, диоксан, целлозольв или пиридин для стабилизации куба и уменьшения сродства к целлюлозе. При смешении одинаковых объемов пиридина и водного раствора куба, полученного восстановлением смеси красителей гидросульфитом в среде едкого натра, и при проявлении смесью воды и пиридина (1 1), содержащей едкий натр и гидросульфит, были разделены [c.1511]

    В бумажной хроматографии носителем служит фильтровальная бумага. Фильтровальная бумага в качестве носителя имеет ряд преимуществ меньшую адсорбционную способность, равномерность материала, листообразную форму, пригодную для двухмерной хроматографии возможность разделения веществ в количествах очень малых (микрограммы). Неподвижной фазой служит воздушно-сухая бумага, содержащая 25% воды. В качестве подвижной фаз1Л [c.254]

    Распределительная хроматография основана на различной растворимости разделяемых веществ в заданном растворителе. Природа сил межмолекулярно-го взаимодействия та же, что и в адсорбционной хроматографии, но в первую очередь обусловлена ван-дер-ваальсовыми силами. Поскольку разделение протекает на границе двух несмещивающихся между собой фаз — неподвижной (жидкости) и подвижной (жидкости или газа), процесс разделения веществ определяется различием их коэффициентов распределения между обеими фазами. Одна из фаз, используемых в распределительной хроматографии, богаче ор-га [ическим растворителем, другая — водой. Водная фаза обычно закрепляется на твердых гидрофильных носителях, например силикагеле, диатомовой земле, крахмале, гидрофильных гелях, измельченной в порошок целлюлозе, фильтровальной бумаге. Органическая фаза обычно выполняет роль подвижной фазы. [c.221]

    В адсорбционной БХ разделение компонентов смеси происходит благодаря различию в их сорбируемости адсорбентом-бумагой. В кач-ве элюента используются гл. обр. смеси орг. р-рителей с водой. [c.325]

    Хроматографирование на бумаге проводят на специальной фильтровальной бумаге высокой чистоты и очень равномерной плотности. В некоторых случаях бумагу предварительно обрабатывают уксусным ангидридом. Тогда происходит ацилирование целлюлозы и образуются сложноэфнрные группы, что приводит к изменению адсорбционных свойств бумаги н улучшению хроматографического разделения для некоторых классов соединений. [c.49]

    ВОДЯТ, приближая раскаленную проволоку к краю пластинки. Отдельные адсорбционные зоны в случае закрепленного слоя вырезают шпателем, а в случае незакрепленного слоя отсасывают при помош,и водоструйного насоса и специальной трубки, изображенной на рис. 340. Вещества элюируют подходящим растворителем. Фракции, полученные при микропрепара-тивной тонкослойной хроматографии, бывают, как правило, относительно более чистыми, чем при микропрепаративном разделении веществ на бумаге, так как в последнем случае они часто загрязняются веществами, которые экстрагируются из самой бумаги. [c.369]

    Классические хроматографические методы, которые известны уже в течение нескольких десятилетий,— хроматография на колонке с окисью алюминия (Цвет, 1906 г. Кан, Винтерштейн и Ледерер, 1931 г.), хроматография на бумаге (Мартин и Синг, 1941 г.) — основаны на принципе распределения компонентов смесей между подвижной и неподвижной фазами. Последней при адсорбционной хроматографии является активная поверхность твердого адсорбента, а при распределительной хроматографии — тонкая пленка жидкости, удерживаемая твердым носителем и ограниченно смешивающаяся с подвижной фазой. Разновидность распределительной хроматографии, при которой подвижной фазой является газ, называется газовой хроматографией [134а]. Этот метод пригоден для разделения газов, а также жидких или твердых веществ, которые могут быть превращены в пары без разложения. В зависимости от системы, в которой проводится разделение, различают две принципиальные разновидности газовой хроматографии хроматографию в системе газ — твердое вещество (адсорбционная газовая хроматография) и хроматографию в системе газ — жидкость (газо-жидкостная хроматография). В первом случае разделение происходит за счет адсорбции веществ на активной поверхности твердого адсорбента, во втором — за счет их растворения в тонкой пленке нелетучей жидкости с достаточно большой поверхностью. Практически далеко не всегда можно провести четкую грань между обоими принципами разделения. Так, при хроматографии в системе газ — адсорбент пленка адсорбированного вещества может иметь такие свойства, что на некоторых этапах работы возникают условия для хроматографии в системе газ — жидкость. Вследствие этого происходит дезактивации- некоторых активных центров адсорбента, которую иногда вызывают умышленно [74—76]. С другой стороны, при хроматографии в системе газ — жидкость носитель, на котором закреплена жидкая фаза, может обладать и некоторыми адсорб-цйонными свойствами. Это, как правило, мешает разделению и поэтому нежелательно. [c.487]

    Для полноты укажем, что процессы распределения веществ между двумя жидкими фазами при многократном повторении лежат в основе еще одного важного метода хроматографии— распределительной хроматографии. В распределительной колоночной хроматографии, внешне не отличающейся от адсорбционной, один из растворителей пропитывает материал (силикагель, крахмал, целлюлозу), наполняющий колонку, причем этот материал является лишь носителем одного растворителя. Исследуемая смесь наносится вверху колонки. Второй растворитель протекает через колонку и в процессе течения происходит многократное распределение разделяемой смеси вещества между двумя растворителями и, в результате — полное разделение компонентов. В качестве носителя неподвижной фазы может быть взята фильтровальная бумага. Развитая на этой основе хроматография на бумаге (Мартин, Синг) получила исключительное значение для целей анализа. Наконец, многократрюе использование (до 250—1000 раз) распределения между двумя жидкими фазами, без применения носителя, также широко распространено в виде метода противоточного распределения (Крэйг). [c.129]

    Для тонкослойной хроматографии, предложенной Шталем, применяют стеклянные пластинки, покрытые слоем адсорбента. Этот метод, широко используемый в настоящее время, представляет собой один из вариантов адсорбционной хроматографии. Он экономичнее и обеспечивает большую скорость разделения по сравнению с методом хроматографирования на бумаге кроме того, он пригоден для разделения неполярных соединений, для которых метод хроматографии на бумаге непригоден (см. [14а1). [c.19]

    Изучение первых хроматографических работ Цвета позволяет достаточно четко представить себе основные этапы открытия им проявительного варианта хроматографии. Вначале Цвет проводил статические опыты по поглощению пигментов из раствора фильтровальной бумагой. Изменяя растворитель и смещая адсорбционные равновесия, - Цвет последовательно переводил вновь в раствор различные пигменты смеси- Затем вместо фильтровальной бумаги он использовал порошок адсорбента. Поскольку порошок надо было фильтровать, М. С.- Цвет стал помещать его в воронку с фильтром и постепенно перешел к использованию динамического режима, совместив операции фильтрования и адсорбции, и стал осуществлять разделение сначала по чисто фронтальному варианту. Поскольку в статических опытах Цвет использовал промывание растворителем фильтровальной бумаги с пигментом для отмывки от каротина, ученый после частичного разделения окрашенных слоев стал проводить промывку растворителем в динамических условиях и получил про-явительный вариант жидкостной хроматографии, сразу отметив преимущества этого варианта по четкости разделения по сравнению с фронтальным вариантом. [c.12]

    Хроматография — метод разделения смесей, основанный на избирательном распределении их компонентов между двумя фазами, одна из которых (подвижная) движется относительно другой (неподвижной). Основное достоинство хроматографических методов заключается в разнообразии механизмов разделения. Это может быть адсорбция, распределение между двумя жидкими или жидкой и газовой фазами, ионный обмен, гель-фильтрация, комплексообразование, образование малорастворимых соединений и др. Соответственно различают адсорбционную (газовая и жидкостная), распределительную (газожидкостная хроматография, экстракционная хроматография, распределительная хроматография на бумаге), ионообменную, гель-проникающую (эксклюзион-ная), комплексообразовательную (адсорбционная, лигандо-обмеиная, хроматография на хелатных сорбентах), осадочную хроматографию. Возможны и другие методы. Дополняя друг друга, хроматографические методы позволяют решать широкий круг аналитических задач. Этим объясняется ведущее место хроматографии среди методов разделения, имеющихся в арсенале современной аналитической химии. [c.77]

    Чтобы иметь возможность осуществить свою распределительную хроматографию в микромасштабе, они перешли к фильтровальной бу] лаге, т. е. к открытой колонке (Консден, Гордон, Мартин [8], 1944 г.). Их результаты в области разделения аминокислот получили всеобщее признание, и метод был широко подхвачен другими исследователями. Начал развиваться метод хроматографии на бумаге. К 1956 г. было опубликовано свыше 10 тысяч работ, в которых описывалось применение этого универсальйого метода [15]. Понятно, что под впечатлением этих успехов, все время пытались обойти трудности, изменяя пропитку, используя новые комбинации растворителей,, применяя обращение фаз и химически обрабатывая целлюлозное волокно. Пытаясь исключить все адсорбционные эффекты, большие надежды возлагали на бумагу со стеклянным волокном. [c.12]

    Автором [38] описана схема анализа радиоактивно меченных производных липидов методами ХТС, колоночной хроматографии и хроматографии на бумаге. Смеси жирных спиртов, моно- и диглицеридов и других ацетилируе-мых липидов обрабатывают радиоактивным ацетангидридом и ацетильные производные фракционируют на отдельные классы соединений методом адсорбционной хроматографии на пластинах или на колонках с силикагелем. Количественное соотношение классов ацетилированных липидов определяют, проводя радиометрию элюатов. 1<аждую такую группу соединений можно подвергнуть дальнейшему разделению на силиконизованной бумаге. Количественный промер хроматограммы на бумаге радиоактивных производных липидов осуществляют проточным пропорциональным счетчиком, снабженным приспособлениями для автоматического перемещения полос бумаги и регистрации результатов измерений. [c.75]

    В настоящее время хроматографические методы в значительной степени вытеснили все другие методы фракционирования липидов в аналитическом и микропрепаративном масштабе. Для разделения сложных смесей липидов на отдельные классы соединений использовали адсорбционную и распределительную хроматографию на колонках с силикагелем, на целлюлозных фильтрах, импрегнированных силикагелем, и на бумаге из стекловолокна. Распределительная хроматография с обращенными фазами использовалась для разделения членов винилогомологического ряда на гидрофобизованной колонке или на гидрофобизованной бумаге. Газовую хроматографию использовали в виде распределительно-хроматографического варианта в первую очередь для разделения метиловых эфиров жирных кислот. Разделение смеси липидов по степени ненасыщенности можно осуществить путем хроматографического разделения на силикагеле комплексных ртутноацетатных соединений ненасыщенных липидов. Для выделения кислот и для фракционирования сильно полярных липидов была использована ионообменная колоночная и ионообменная бумажная хроматография. Методом хроматографии на колонках с мочевиной или на бумаге, пропитанной мочевиной, можно отделить жирные кислоты с прямой цепью от кислот с разветвленной цепью. Эффект разделения основан на образовании соединений включения неразветвлеиных жирных кислот с мочевиной. Разли шые хроматографические методы разделения липидов описаны в многочисленных обзорах [23, 86, 96, 100]. [c.144]


Смотреть страницы где упоминается термин РЬ2 на бумаге и их адсорбционное разделение: [c.12]    [c.899]    [c.899]    [c.239]    [c.84]    [c.668]    [c.753]   
Смотреть главы в:

Руководство к практическим занятиям по радиохимии -> РЬ2 на бумаге и их адсорбционное разделение




ПОИСК







© 2025 chem21.info Реклама на сайте