Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связанная и свободная энергии

    Аналогичным образом определяются и вычисляются изменения свободной энергии и энтропии, связанные с химической реакцией. Так, AG определяется как разность между свободной энергией Гиббса продуктов реакции и исходных веществ нри стандартных условиях. Стандартное изменение энтропии AS связано с AG и АН соотношением  [c.44]

    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]


    На рис. 21-21 показано строение молекулы аденозинтрифосфата (АТФ), играющего ключевую роль в биохимическом процессе запасания энергии. Эта молекула построена из аденина (см. рис. 21-3), рибозы (моносахарид с пятью атомами углерода) и трех связанных в цепочку фосфатных групп. Концевая фосфатная группа в АТФ может гидролизоваться, или отщепляться, с присоединением к продуктам ионов ОН и Н от воды, в результате чего образуются ортофосфорная кислота и аденозиндифосфат (АДФ). Далее АДФ может снова разлагаться с образованием еще одной фосфатной группы и аденозинмонофосфата (АМФ). Наконец, отщепление последней фосфатной группы приводит к образованию аденозина. При отщеплении каждой из первых двух фосфатных групп высвобождается свободная энергия 30,5 кДж моль а при отщеплении третьей-только 8 кДж моль" Именно АТФ, а точнее его первая фосфатная связь (крайняя слева на рисунке) является главным местом запасания энергии в любой живой клетке. Каждый раз, когда молекула глюкозы биохимиче- [c.327]

    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    В качестве примера рассмотрим закономерности взаимодействия гомологического ряда спиртов (ПАВ) с органическими растворителями и водой [36]. На рис. 3 приведены зависимости коэффициентов активности у спиртов и растворителей от мольной доли Л компонентов в системе. Коэффициент активности связан со свободной энергией растворения уравнением [37]  [c.428]


    Укажите, правильно ли каждое из приведенных ниже утверждений. Если оно неправильно, укажите, что в нем неверно, а) Все экзотермические реакции являются самопроизвольными. б) В большинстве самопроизвольных реакций энтропия Вселенной повышается. в) Если эндотермическая реакция имеет положительное AS, то изменение свободной энергии, связанное с этим процессом, по мере повышения температуры должно становиться все более отрицательным. [c.197]

    X е м и л ю м и н е с ц е н т н ы е индикаторы. Во многих химических реакциях выделяется свободная энергия, большей частью в виде тепла. Известны случаи, когда часть энергии выделяется в виде света. Это явление называется хемилюминееценцией. Пример свечение белого фосфора, связанное с его медленным окислением. Хемилюминесцен-ция веществ, применяющихся как индикаторы, наблюдалась впервые в 1928 г. В последнее время наиболее часто применяется люминол (гидра-зид аминофталевой кислоты). В реакции этого вещества с перекисью водорода в и елочной среде в присутствии некоторых катализаторов, например солей меди, наблюдается свечение. Реакцию схематически представляют так  [c.271]

    Реакции на электродах представляют собой обычное окисление (на аноде) и восстановление (на катоде) ионных или молекулярных частиц, присутствующих в растворе. Если реакции на электродах являются обратимыми, то потенциал распада Ев связан уравнением Нернста с изменением свободной энергии реакций  [c.553]

    Чем меньше поверхность жидкости, тем меньше общая свободная поверхностная энергия. Отсюда следует, что при сжатии жидкости должна возникать разность давления на пленку (Л-Р), компенсирующая это сжатие таким образом, чтобы работа против давления сжатия была равна уменьщению поверхностной свободной энергии, т. е. Р = 2у г (у — поверхностное натяжение, а г — линейная величина, связанная с размером поверхностной пленки). [c.188]

    Действительно, корректная обработка многих результатов, полученных в самых разнообразных условиях, позволяет убедиться в выполнении соотношения Гриффитса Рс а. если брать для расчетов значения удельной свободной энергии тех поверхностей, которые реально успевают образоваться в ходе разрушения. Так, прочность композитов из кварцевого песка с хлоридом натрия, измеренная на воздухе и в воде, оказывается связанной с поверхностной энергией сухой и увлажненной силанольной поверхности [272]. Если же проанализировать результаты измерений скорости роста трещины во влажном кварце [298], то из анализа полученного отношения нижнего и верхнего пороговых значений фактора интенсивности напряжений можно сделать вывод, что при напряжениях выше верхнего порога рвутся силоксановые связи без участия воды, а при докритическом росте трещины успевает образоваться гидроксилированная поверхность и произойти ее [c.97]

    Тогда свободная энергия системы, связанная с ориентационной упорядоченностью, равна [354]  [c.130]

    Химические потенциалы и коэффициенты активности могут быть определены экспериментально [1], но, с практической точки зрения, более важным является их вычисление из термодинамических свойств смесей. Химический потенциал непосредственно связан с такими термодинамическими свойствами жидких смесей, как свободная энергия Гельмгольца, А и Гиббса, С  [c.28]

    Согласно АН = AG — TAS часть теплоты TAS идет на создание беспорядка (бесполезно рассеивается в окружающую среду) и поэтому не может быть использована для совершения работы ее называют часто связанной энергией. Часть теплоты AG может быть использована для совершения работы, и поэтому энергию Гиббса часто называют также свободной энергией. [c.127]

    В пределах температур от 300 и до 1700°К свободная энергия этилена всегда выше, чем для бензола в расчете на один атом углерода. Следовательно, в энергетическом смысле равновесие между ними в этих пределах температуры не достигается. Переход от метановых к ароматическим углеводородам не связан с обязательным прохождением стадии олефинов, а осуществляется непосредственно. Вероятно, в силу этого в продуктах реакции и не найдены олефиновые углеводороды. [c.42]

    Любая нефтяная система может рассматриваться как открытая физико-химическая или физико-механическая система. Это означает, что при некотором критическом значении внешнего или внутреннего воздействия происходят количественные и качественные превращения системы, приводящие ее в новое состояние, отличное от исходного. Подобные превращения в широком смысле происходят в любых технологических процессах, связанных с нефтяным сырьем и проходят в общем случае через стадии критической неустойчивости или кризисные состояния. Причем кризисные состояния могут наблюдаться далеко от равновесного состояния системы. Результатом превращения является новая система или системы, более упорядоченные и устойчивые. Следует отметить, что внешние или внутренние потоки воздействия могут наоборот привести систему из состояния неустойчивого в устойчивое, то есть определенным образом отрегулировать уровень свободной энергии системы. Научная и практическая реализация указанных представлений может существенно изменить подходы к разработке технологий процессов, связанных с нефтяным и газовым сырьем. [c.251]


    Как видно, свободная энергия переноса молекулы реагента из воды в мицеллярную фазу может практически полностью компенсировать предполагаемую потерю энтропии при включении молекулы общеосновного или общекислотного катализатора в переходное состояние реакции. Эта компенсация и обусловливает некоторое подобие механизмов ферментативного и мицеллярного катализа. В отличие от реакций высокого кинетического порядка, протекающих в результате взаимодействия низкомолекулярных реагентов непосредственно в растворе, в том и другом случае катализа почти отсутствует неблагоприятный инкремент свободной энергии активации, связанный с потерей поступательного и вращательного движений при включении в переходное состояние реакции дополнительной частицы. Разумеется, конкретный механизм этого явления в каждом из видов катализа несколько иной. В мицеллярном катализе имеет место рассмотренная выше компенсация энтропийных потерь за счет свободной энергии термодинамически выгодных ионных и гидрофобных взаимодействий реагента с мицеллой. В ферментативном катализе компоненты активного центра (злектрофильные и нуклеофильные группы) заранее связаны с белковой глобулой (как правило, химически) и обладают до- [c.122]

    Здесь На и ив — химические потенциалы ионов в растворе fiA и лв — химические потенциалы ионов, находящихся в ионите в связанном состоянии АРв — изменение свободной энергии в результате изменения степени набухания ионита. Первый член правой части уравнения описывает начальное состояние, второй — конечное. [c.104]

    Термодинамические функции растворения. Как видно из предыдущего раздела, величины удерживания позволяют рассчитать коэффициент распределения и коэффициент активности. Если был рассчитан коэффициент распределения Кр, и то, как следует из термодинамики, он связан с изменением свободной энергии растворения соотношением [c.211]

    Пусть тело А, обладающее свойствами идеального газа, имея начальную температуру Та, остывает в среде С, температура которой Тс < T a. Если бы температура среды была равна абсолютному нулю и оставалась таковой иа протяжении всего процесса, то тело А, остывая до температуры среды, т. е. до абсолютного нуля, сообщало бы ей всю свою внутреннюю энергию. Однако Тс> О, и тело А, в соответствии с постулатом Клаузиуса, может остывать лишь до Тс, следовательно, оно может сообщать среде лишь часть своей внутренней энергии, называемую свободная энергия — энергия Гиббса (Гельмгольца). Другая часть внутренней энергии тела А, равная теплоте нагрева этого тела от абсолютного нуля до Тс, остается при нем и не может быть использована в данном процессе. Эта часть энергии заперта в теле А, связана запретом, указанным постулатом Клаузиуса. Поэтому ее называют связанная энергия. [c.69]

    Вышеописанный пример является также подтверждением и третьего правил>а. Действительно, в направлении увеличения свободной энергии самопроизвольно процссс идти не может, так как в таком случае происходила бы убыль связанной энергии, что возможно лишь в случае убыли энтропии, а это противоречит правилу первому, [c.70]

    Интерпретируйте эти результаты с точки зрения рассмотренных в этом разделе понятий, максимальная полезная работа , связанная и свободная энергия . [c.245]

    Поскольку абсолютные значения свободных энергий неизвестны (согласно первому началу, можно определять лишь соответствующие разности, связанные с изменением состояния системы), необходимо выбрать исходное состояние, к которому в дальнейшем можно было бы относить все последующие значения свободных энергий. [c.231]

    Свободная энергия в любой системе заключена в виде потенциальной энергии. По мере совершения системой работы ее энергия убывает. Чем больше система содержит свободной энергии, тем большую работу она сможет совершить. Так, более разреженный газ содержит меньше свободной энергии и больше связанной, чем сжатый газ при той же температуре. Следовательно, сжатый газ способен совершить больше полезной работы. [c.70]

    Из определения А следует, что U = А + TS, т. е. что внутренняя энергия системы состоит из двух частей свободной энергии при постоянном объеме и связанной энергии TS. Как видим, связанная энергия равна произведению энтропии на абсолютную температуру. Свободная энергия — это та часть внутренней энергии, которая при обратимом изотермическом процессе может быть полностью превращена в работу. [c.76]

    Важной особенностью катализа является сохранение ката — лизс1тором своего состава в результате промежуточных химических взаимодействий с реагирующими веществами. Катализатор не расходуемся в процессе катализа и не значится в стехиометрическом уравнении суммарной каталит ической реакции. Это означает, что катализ не связан с изменетн-тем свободной энергии катализатора и, следовательно, катализатор не может влиять на термодинамическое равновесие химических реакций. Вблизи состояния равновесия катализатор в равной степени ускоряет как прямую, так и обратную [c.79]

    Такие поправки, связанные с симметрией, представляют собой, однако, лишь первые из возможных поправок. В принципе с точки зрения молекулярных взаимодействий следует считать случайными и несущественными и такие свойству, как молекулярный вес, момент инерции и частота колебаний. Тем не менее эти свойства могут вносить значительный вклад в изменение свободной энергии, и при строгом или по крайней мере неумозрительном обсуждении этого вопроса на молекулярном уровне их следует учитывать. [c.488]

    Лишь часть внутренней энергии—свободная энергия, которую система отдает вовне при Г=соп51, может превратиться в работу (условием для такого превращения является равновесность процесса в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии—связанная энергия—при изменении системы при Т==соп51 не дает работы, а переходит только в теплоту  [c.115]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Алкилирование определяется не только термодинамическим равновесием, но и кинетическими факторами, связанными со свободной энергией активации, поэтому статический фактор не может дать априорного предсказания соотношения изомеров. Эта. задача довольно успешно решается уравнением ГалГмета [22] (к сожалению, стерические факторы этим уравнением не описы- ваются). [c.41]

    Из статистических свойств следует ряд особенностей МСС. Для этих систем характерны бернуллиевские распределения состава по свободной энергии. Следствием этого являются свойства статистической самовоспроизводимости и метастабильности многокомпонентного вещества и его самопроизвольное разделение на многокомпонентные фазы. Существует иерархический ряд распределений термодинамических потенциалов и связанных с ними [c.221]

    В процессе диспергирования возрастает свободная поверхностная энергия и энтропия, связанная с тепловым движением коллоидных частиц. При диспергировании твердых тел до порошкообразного состояния роль энтропийно -о фактора ничтожна. В случае превышения энтропии над свободной энергией, свя- анной с развитием поверхности, формирование коллоидной системы оказывается термодинамически вы10диым процессом и может протекать самостоятельно, особенно в дисперсных системах с газообразной и жидкой дисперсионной средой. [c.65]

    Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как N 0 разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]

    Свободной энергией называется та часть внутренней эне.ргии системы, ко-тор 1я может быть 1превраще1на в работу при постоянной температуре в отличие от связанной энергии, не превращающейся в работу. Свободная энергия обозчачается F°, а из.менение ее в результате реакции Если реакция про- [c.91]

    Отметим, что термодинамическое равновесие для нефтяной дисперсной системы является в определенной мере условным понятием, так как вследствие сложности взаимодействующих элементов системы в ней одновременно могут сосуществовать локальные подсистемы, в которых реализованы условия термодинамического равновесия либо нет предпосылок для их установления. Другими словами, внутри системы всегда существует некоторое среднее поле соответствующей напряженности в зависимости от уровня взаимодействия структурных элементов системы. Минимизируя свободную энергию по характеристикам поля получают значение среднего поля, которое можно принять как параметр порядка системы. Параметр порядка является м1Югокомпонентной переменной, которая должна не только описывать систему с термодинамических позиций, но и определять существенные свойства конечного упорядоченного состояния и содержать одновременно информацию о наиболее значимых характеристиках системы. В этом случае существенно облегчается описание системы на макроуровне. Параметр порядка связан с микроскопическими явлениями в системе до некоторого уровня их детализации, при достижении которого эта связь нарушается и в конечном итоге может исчезнуть. Таким образом, параметр порядка является некоторой условной усредненной феноменологической макроскопической характеристикой системы. [c.178]

    Минимальное термическое расширение имеют образцы, у которых основная потеря массы при тепловом ударе происходит до 400 С. В интервале 400-600 С имеют место основные фазовые превращения внедренного вещества. Характер изменения расширения связан также с летучестью внедренного вещества и соответственно с давлением образующихся газов. Последнее является функцией 1/7 , где Т — температура нагрева ОМСС. Разное фазовое состояние внедренных веществ и их свободных объемов обусловливает их повышенные свободную энергию и энтропию в составе МСС [6-133]. [c.357]

    Образование зародыша твердой фазы. Переход из газообразной или жидкой фазы в более упорядоченную плотную твердую фазу, естественно, связан с понижением энтропии. Так, отвердение жидкости сопровождается уменьшением энтропии на 1,5—3,0 кал-моль- град" . Пусть значение энтропии расплава 5 , а энтропии твердой фазы, которая кристаллизуется из него,—5 . Если переохлаждение АТ не слишком велико, то изменение удельной объемной энергии жидкой фазы, т. е. расплава, составляет AF =S AT, а твердой фазы АР — =5гА7. Считая, что объем образующейся твердой фазы так велик, что поверхностную энергию можно не учитывать, находим изменение свободной энергии АР в процессе отвердевания как разность АР - АР . [c.145]

    В линейных полимерах макромолекулы представляют собой цепочечные последовательности повторяющихся звеньев, число которых обычно настолько велико, что уже саму макромолекулу надлежит трактовать как статистический ансамбль, подчиняющийся, однако, несколько необычной термодинамике малых систем. В этих системах некоторые интенсивные параметры становятся экстенсивными и наоборот [21, с. 229, 234, 240] сами макромолекулы способны претерпевать фазовые переходы, размазанные, оД нако, по температуре и времени (что, впрочем, является лишь следствием правила Онзагера абсолютно резкий фазовый переход возможен только для бесконечно большого кристалла)—и это сказывается на макроскопическом уровне, когда фазовые переходы осуществляются на фоне уже свершившегося более фундаментального перехода в полимерное состояние. Вопрос о правомочности трактовки перехода в полимерное состояние как особого фазового перехода достаточно обстоятельно не рассматривался, но аргументы в пользу этой точки зрения приведены в упоминавшемся очерке [15, с. 176—270] и в более поздних работах [22]. Главными аргументами являются полная применимость критериев переходов, связанных с группами симметрии [23], возможность изображения равновесной полимеризации или поликонденсации в виде обычных диаграмм свободная энергия — температура (с поправками на малость систем, которые особенно существенны на ранних стадиях процесса) и соображения, основанные на двухсторонней ограниченности температ фного диапазона устойчивости полимерной серы [24, т. 2, с. 363-371]. [c.11]

    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]


Смотреть страницы где упоминается термин Связанная и свободная энергии: [c.113]    [c.115]    [c.594]    [c.185]    [c.228]    [c.69]    [c.50]    [c.65]    [c.65]    [c.70]   
Смотреть главы в:

Физическая и коллоидная химия -> Связанная и свободная энергии




ПОИСК





Смотрите так же термины и статьи:

Второй закон термодинамики. Энтропия. Свободная и связанная энергия

Свободная и связанная энергия гальванической цепи Электродвижущие силы и химическое равновесие

Свободная энергия

Свободная энергия Связанная вода коллоидов

Энергия связанная



© 2025 chem21.info Реклама на сайте