Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полициклические ионы

    Общий вид масс-спектра дает некоторые сведения о природе неизвестного вещества. Если интенсивные пики группируются в области малых массовых чисел, а пики тяжелых ионов невелики, то соединение, скорее всего, является алифатическим с функциональными группами, не содержащими других углеводородных радикалов (спирты, карбоновые кислоты, первичные амины, диолы и др.). Присутствие в спектре наряду с пиками глубоких осколочных ионов отдельных интенсивных пиков в средней и близкой к слабому пику М+-областях спектра может указывать на наличие циклов, гетероатомов или функциональных групп, связанных с несколькими углеводородными радикалами (нафтены, вторичные и третичные амины, ацетали, кетали, эфиры карбоновых и дикарбоновых кислот и т. д.). Высокая интенсивность пиков молекулярных ионов и отсутствие заметных пиков в области малых массовых чисел характерны для ароматических и полициклических соеди нений. [c.180]


    Следует напомнить структуру и свойства наиболее употребительных детергентов. Это — всегда довольно крупные молекулы, и в каждой из них можно обнарун ить более или менее разнесенные пространственно липофильные и гидрофильные участки или химические группы. В так называемых ионных детергентах гидрофильную функцию выполняют заряженные группы (остатки кислот, аммониевая группа), в неионных — полиэтиленгликоль (ПЭГ) и остаток сорбитола. Липофильные участки представлены алифатическими цепями, фенильным остатком или полициклической структурой. Торговые наименования и структурные формулы наиболее часто используемых детергентов представлены ниже. [c.183]

    Весьма интересный пример протекания ионной реакции с промежуточной стабилизацией некоторых ионов показан в работе [39]. Реакция замечательна тем, что здесь демонстрируется особенность распределения заряда в мостиковых полициклических ионах, причем стабилизация заряда локальна и связана с возможностью образования третичных ионов карбония. [c.248]

    Ароматические и антиароматические полициклические ионы 503 [c.8]

    Восстановление других полициклических углеводородов следует общей схеме, изложенной выше. Так, антрацен и фенантрен образуют соответствующие 9,10-дигидропроизводные после обработки натрием в жидком аммиаке в присутствии хлорида железа(III). Ион железа(III) восстанавливается при этом в коллоидное железо, которое катализирует превращение избытка натрия в амид натрия. Как антрацен, так и 9,10-дигидроантрацен можно превратить в [c.395]

    АРОМАТИЧЕСКИЕ И АНТИАРОМАТИЧЕСКИЕ ПОЛИЦИКЛИЧЕСКИЕ ИОНЫ [c.503]

    При переходе к сопряженным полициклическим ионам возникают проблемы, с которыми в ряду моноциклических ионов не приходится встречаться. Так, если в моноциклических ионах электроны делокализованы по всей системе, то полициклические ионы Могут вести себя так, как если бы они были составлены из отдельных циклов, а не представляли одну общую систему. Поэтому Нельзя правильно предсказать свойства полициклических ионов на [c.503]

Таблица 2.6.5. Классификация полициклических ионов Таблица 2.6.5. <a href="/info/952817">Классификация полициклических</a> ионов
    Продукты присоединения к полициклическим мостиковым алкенам при условии соблюдения стерических требований быстро перегруппировываются. В этих случаях перегруппировки могут проходить во время реакции, и образующиеся продукты способны к присоединению второй молекулы карбена, что приводит к сложным смесям продуктов. Механизм реакции характеризуется тем, что син-атом хлора временно отщепляется в виде хлорид-иона и дисротаторное раскрытие трехчленного цикла ведет к образованию аллильного катиона, который снова присоединяет хлорид-анион с той же самой стороны молекулы  [c.304]


    Реакционная способность ароматических углеводородов возрастает с увеличением массы, но все же она значительно меньще, чем у изомерных моноалкилбензолов [29]. Инициирование реакций каталитического крекинга алкилароматических углеводородов, так же как и парафиновых, начинается с образования карбоний-иона в результате присоединения протона катализатора. Между молекулами ароматических углеводородов или между ними и оле-финами (или другими непредельными углеводородами) происходит конденсация. В результате образуются полициклические ароматические углеводороды вплоть до асфальтенов и кокса [30], поэтому при переработке сырья со значительным содержанием полициклических углеводородов и одинаковой глубине превращения образуется значительно больще кокса, чем при переработке сырья, содержащего преимущественно моноциклические ароматические углеводороды. [c.50]

    Подобные полициклические соединения особенно пригодны для определения молекулярных весов по характеру ионных пучков, образующихся при действии электронов, так как пик исходных ионов в этих случаях четко выражен, что облегчает установление молекулярной формулы. [c.10]

    Установлено, что лучшими гидридными донорами являются нафтены, полициклические нафтены или нафтено-ароматические углеводороды, изоалканы и даже олефины. Энергетически более выгоден отрыв гидрид-иона от третичного, затем вторичного и менее выгоден от первичного углеродного атома. Нафтеновые, алкилароматические и изопарафиновые углеводороды часто содержат третичные атомы углерода и поэтому интенсивно участвуют в реакциях Н-переноса. Активными акцепторами гидрид-ионов являются наименее стабильные высокореакционноспособные карбений ионы или углеводороды, содержащие несколько тг-связей, например, диолефины. Именно Н-перенос обусловливает повышенные выход топливных фракций и химическую стабильность бензинов каталитического крекинга. По Н-переносу осуществляются следующие реакции каталитического крекинга  [c.460]

    Сложные перегруппировки, особенно в полициклических карбениевых ионах, можно представить в виде последовательно проходящих 1,2-сдвигов. Важным примером является превращение эпоксида сквалена в ланостерин. В ряде случаев выбор между альтернативными последовательностями 1,2-сдвигов можно сделать на основании теории графов в сочетании с теоретическими квантовыми или молекулярно-механическими расчетами энергий возможных промежуточных катионов [49]. [c.544]

    По групповому химическому составу для сырья каталитического крекинга наиболее благоприятны нафтеновые углеводороды и изопарафины, так как их крекинг идет с высокими скоростями и сопровождается большим выходом бензина. Это объясняется наличием третичного атома углерода, требующего более низкие затраты энергии на отрыв третичного гидрйдного иона. Наиболее нежелательными являются голоядерные полициклические ароматические соединения, блокирую1дие активные центры катализатора и вызывающаие усиленное коксообразование. Кроме того, в сырье присутствуют компоненты, вызывающие необратимое дезактивирование катализатора. К таким компонентам относятся азотистые соединения и металлы (N1, V, Ре, Ма) [4.9]. Влияние содержания металлов в сырье крекинга на скорость догрузки свежего катализатора в систему для поддержания заданной степени конверсии сырья показано в табл. 4.1 (данные различных зарубежных фирм [4.10-4.14]). [c.103]

    Использование катализаторов [136], способных ускорять ионные реакции, приводит к новым превращениям углеводородов, например к образованию углеводородов С4 и С5 из гексана без выделения осколков С] и С2. Механизм этих реакций пока не установлен, но при его устаиовлении ценный изобутан можно будет получать из сырья меньщей молекулярной массы. Как правило, при гидрокрекинге циклического сырья образуются циклические продукты, а из парафинового сырья — парафинистые продукты. Таким образом, характеристика продуктов гидрокрекинга в значительной мере зависит от вида сырья. Обычно неконденсированные полициклические ароматические соединения дают гораздо более низкие выходы угле водородов ряда бензола, чем конденсированные соединения. [c.212]

    Отдельно показана формула ионного детергента дезоксихолата натрия с молекулярной массой 414 холат натрия отличается от дезоксихолата наличием еще одного гидроксила в связи с полициклической частью молекулы. Отметим также, что детергент Берол 172 [c.183]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]


    Для решения некоторых частных структурных задач могут быть использованы разные методы фиксирования метастабильных ионов, т. е. ионов, образующихся не в ионном источнике, а в беспо-левом пространстве (первом или втором) масс-спектрометра с двойной фокусировкой. Так, были применены спектры метастабильных переходов для определения терпанов и стеранов во фракциях нефти [189]. Вариант техники прямого анализа дочерних ионов был использован для различения изомерных полициклических аренов [190j, дающих практически не различающиеся обычные масс-спектры. Этим же методом определяли элементы структуры ванадилпорфиринов [190]. Для анализа последних использовался и метод дефокусировки [191]. [c.134]

    Сквален — предшественник стеринов и полициклических три-терпенов. В 50-х годах Сторк и Эшенмозер предположили, что биогенетическое превращение сквалена в ланостерин включает синхронную окислительную циклизацию. Процесс катализируется кислотой и протекает через образование ряда карбониевых ионов, обеспечивающих замыкание всех четырех колец. В настоящее время существует убедительное доказательство того, что иервой стадией является селективное эиоксидирование двойной связи с образованием сквален-2,3-оксида (рис. 5.21). [c.330]

    Инициирова ние циклизации осуществляется за счет взаимодействия двойной связи с протоном (либо с другим акцептором электронов). Образующийся ион карбония взаимодействует с ближайшей двойной связью с образованием циклического иона карбония. Далее циклический ион карбония или может действовать на соседнюю двойную связь с образованием второго цикла и т. д., или в результате депротонизации образуется новая двойная связь (т. е. происходит обрыв цепи). Направление реакции будет зависеть от соотношения вероятностей самопроизвольной депротонизации и реакции циклического карбо-ниевого иона с соседней двойной связью. А это соотношение зависит от экспериментальных условий реакции, т. е. от типа полимера, растворителя и катализатора, от продолжительности реакции и температуры. Например, при циклизации поли-(2,3-диметил)-бутадиена, полиизопрена и полибутадиена в одинаковых условиях скорость циклизации будет уменьшаться в направлении к полибутадиену, но в этом же направлении будет увеличиваться средняя длина полициклических участков цепи. [c.59]

    Стадия присоединения протона необратима, так как скорость образования цикла из карбониевого иона больше скорости депротонизации. Поэтому процессы гране-изомеризации под действием протона не протекают. Показанные на схемах моноцикли-ческие структуры не очень сильно влияют на подвижность соседних сегментов макромолекулы, т. е. высокоэластчность сохраняется. С увеличением степени циклизации моноциклические структуры перехолят в полициклические  [c.292]

    В избытке НС1 пентахлорид сурьмы образует комплексное соединение H(Sb l(.). Ион Sb l " образует с органическим полициклическим веществом сложной структуры — родамином Б — соединение с еще не изученной структурой. [c.225]

    Из-за большей делокализации зарядов в соответствующих аренониевых ионах нафталин более реакционноспособен, чем бензол, и замещение протекает быстрее по обоим положениям. Аналогично антрацен, фенантрен и другие конденсированные полициклические ароматические углеводороды реагируют при замещении быстрее, чем бензол. [c.323]

    Большой заслугой Л. А. Чугаева следует считать то, что он впервые связал характер и устойчивость комплексов с конкретной группировкой атомов в органическом лиганде. Эти идеи легли в основу многочисленных работ по синтезу и аналитическому применению органических реагентов и кошлексонов . Вполне естественно, что лиганды, способные образовывать несколько циклов с одним и тем же ионом металла, должны в особенно большой степени способствовать комплексообразованию. Комплексоны и большинство органических аналитических реагентов при взаимодействии с ионами металлов образуют полициклические комплексные соединения. [c.384]

    R = 0А1С1з, Более вероятно, по-видимому, что эти ионы образуют комплекс с анионами или молекулами растворителя. Хлористый (или бромистый) алюминий в отсутствие растворителя является, вероятно, наиболее реакционноспособным реагентом и действие его может быть несколько уменьшено путем применения таких растворителей, как сероуглерод, нитробензол или нитрометан. Применение этих растворителей дает дополнительные преимущества,, поскольку комплексы, образуемые хлористым алюминием, переводятся в раствор. С другой стороны, ацилирование таких активных ароматических колец, как в анизоле, тиофене или полициклических углеводородах, может быть осуществлено при помощи иода, а в некоторых случаях вообще, в отсутствие катализатора [2]. В литературе описано очень большое число самых различных катализаторов. [c.121]

    Настоящая глава начинается с обсуждения электронного строения молекулы бензола, который является классическим примером ароматического вещества. После обсуждения бензола мы перейдем к рассмотрению правила Хюккеля и увидим, как можно применять это правило для решения вопроса о том, является ли структура ароматической. Мы рассмотрим приложение правила Хюккеля к множеству систем, включая аннулсны, ионы, полициклические системы и гетероциклы. В заключение мы рассмотрим наиболее обычный экспериментальный метод решения вопроса о том, является ли данное соединение ароматическим. Для более полного усвоения последнего раздела читатель должен быть знаком со ЯМР-спектроскопией (гл. 29). [c.558]

    Реакции хиноиового ядра не сводятся только к ионным присоединениям. Если хинон содержит двойную связь, которая не входит в состав ароматического кольца, эта связь легко вступает в реакцию Дильса — Альдера. Таким способом можно получать полициклические системы. [c.310]

    Исследователи Калифорнийского университета показали что фуллерены могут получаться в результате распада еще более крупных кластеров. Причем в качестве предшественников выступают циклические структуры. Например, бакибол js возникает из циклических молекул (ионов) С40 (рис.71). Авторы считают, что и классические фуллерены С о и Суо способны образовываться по такому же механизму сначала синтезируются линейные и полициклические углеродные цепи, которые затем при отжиге переходят в энергетически более выгодные шарообразные формы. [c.125]

    Исследованы ИК-спектры нового класса мономеров и полимеров винилариловых эфиров с полициклическими ароматическими радикалами и проведены соответствующие спектрально-структурные корреляции. Установлено, что в реакциях радикальной и ионной полимеризации моновиниловые эфиры образуют полимеры линейного строения с боковыми привесками из конденсированных ядер, а дивинило-вые эфиры — полимеры сетчатого строения. На основании ИК-спектров, а также молекулярных моделей, построенных в эффективных радиусах, доказано существование конформационных равновесий молекул в ряду полициклических винилариловых эфиров. [c.87]

    В структурной упаковке асфальтенов имеются возможности для координации ионов ванадия и никеля с гетероциклическими структурами, включенными в общую полициклическую систему с образованием соединений типа ванадилпорфина и ванадилфталоцианина. [c.50]

    При хроматографическом анализе продуктов олефиновый индикатор адсорбируется в зоне олефиновых углеводородов и в ультрафиолетовом свете дает яркожелтое свечение. Однако этот индикатор очень быстро теряет свою активность. Для предотвра-П1ения окисления индикатора в ходе его получения добавляли ионо л и гидрохинон. Следует отметить, что в результате окисления индикатор теряет способность равномерно распределяться по зоне адсорбции олефинов. Это можно объяснить тем, что полициклическая ароматика с гетероатомами кислорода обладает большей адсорбируемостью на силикагеле, нежели олефины. Характеристика индикаторов приводится в табл. 1 и 2  [c.312]

    Кук и Шентол [28] и Баджер [4, 5], основываясь на обнаруженной Криги [31] способности четырехокиси осмия гидро-ксилировать фенантрен в положении 9, 10, изучили действие этого реагента на другие полициклические ароматические углеводороды, содержащие скелет фенантрена, и на антрацен. Реакция протекает медленнее, чем с этиленовыми соединениями, причем атакуются наиболее реакционноспособные связи ароматического характера. Эта реакция резко отличается от атаки ионными реагентами, направленной на наиболее ре к-ционноспособные центры молекулы, и имеет теоретическое значение для изучения характера двойной связи в полициклических соединениях [4, 5]. Результаты окисления ароматических углеводородов четырехокисью осмия представляют особый интерес, так как образующиеся продукты напоминают продукты окислительного метаболизма указанных углеводородов [28]. Гликоли, приведенные в табл. 6, получены из указанных углеводородов [4, 5, 28, 76]. [c.124]

    Помимо высокой интенсивности молекулярнрго иона, масс-спектры ароматических соединений характеризуются довольно низкой интенсивностью всех,осколочных ионов, что позволяет обна руживать ароматические системы, например, при определении углеводородов в загрязненном воздухе [69]. Полициклические ароматические соединения в той или иной степени ведут себя аналогично. бензолу и его гомологам. По сравнению с фенильными соединениями йроизводные нафталина менее устойчивы и могут претерпевать расщепление кольца с образованием осколочных ионов, Лестер [54] изучал распад циклических ароматических систем с отщеплением ионов с массой 26 и дал теоретическое истолкование этого процесса, Рид также исследовал пути распада некоторых полициклических и полифенильных ароматических соединений и по интенсивности осколочных ионов установил различие между этими двумя рядами соединений. Интенсивность осколочного иона, образующегося в результате отщепления 26 единиц массы (Р-26), выраженную в процентах от интенсивности исходного иона (Р), предложено использовать для установления характера полициклического ароматического соединения [84]. [c.22]

    Конденсация ароматических углеводородов, даюшая соединения с более высокой молекулярной массой, вплоть до кокса, характерна для каталитического крекинга. При этом ареновый карбений ион вступает в последовательные реакции присоединения (конденсации) к ароматическим углеводородам и Н-переноса. Процесс конденсации вследствие высокой стабильности полициклического аренового карбений иона может продолжаться до обрыва цепи  [c.462]


Смотреть страницы где упоминается термин Полициклические ионы: [c.109]    [c.202]    [c.137]    [c.173]    [c.27]    [c.161]    [c.137]    [c.326]    [c.155]    [c.170]    [c.91]    [c.170]    [c.264]    [c.41]    [c.292]    [c.504]   
Общая органическая химия Т.1 (1981) -- [ c.503 , c.506 ]




ПОИСК





Смотрите так же термины и статьи:

Полициклические



© 2025 chem21.info Реклама на сайте