Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование связей углерод — кислород и углерод—сера

    ОБРАЗОВАНИЕ СВЯЗЕЙ УГЛЕРОД - КИСЛОРОД И УГЛЕРОД - СЕРА [c.275]

    Образование связей углерод — кислород и углерод — сера [c.275]

    Реакция гидрирования идет с разрывом связей углерод — кислород и образованием углеводородов и воды. Гидрирование кислородсодержащих соединений не требует жестких условий как правило, кислород удаляется легче, чем азот. С увеличением молекулярной массы кислородсодержащих соединений их гидрирование облегчается, поэтому очистка масляных фракций от этих соединений не вызывает затруднений. Основное количество высокомолекулярных веществ в сырье для цроизводства масел составляют смолы. Большая молекулярная масса и значительное содержание кислорода, азота и серы обусловливают относительно легкое разложение смол в условиях гидрогенизационных процессов. При этом образуются углеводороды различных групп и соединения гетероатомов с водородом — вода, аммиак и сероводород. [c.296]


    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Для углерода характерны прочные ковалентные связи между собственными атомами (С—С) и с атомом водорода (С—Н) (см. табл. 17.23), что нашло отражение в обилии органических соединений (несколько сот миллионов). Кроме прочных связей С—Н, С—С в различных классах органических и неорганических соединений, широко представлены связи углерода с азотом, серой, кислородом, галогенами, металлами (см. табл. 17.23). Столь высокие возможности образования связей обусловлены малыми размерами атома углерода, позволяющими его валентным орбиталям 25 2р максимально перекрываться. Важнейшие неорганические соединения углерода приведены ниже. [c.459]

    Образование связи между атомом углерода и гетероатомом наиболее часто происходит в результате процессов алкилпрования или ацилирования атомов азота, серы или кислорода Для азотсодержащих макроциклов важное значение имеют также реакции образования оснований Шиффа [c.25]

    В тех случаях, когда реакция проходит с предпочтительным образованием карбокатионных интермедиатов, в первую очередь происходит разрыв связи углерод—кислород, а не сера кисло-род. Так, например, бензгидриловый эфир я-толуолсульфиновой [c.501]

    К числу важнейших электрофилов относятся соли металлов, доноры протонов, галогены, кислород, сера, двуокись серы, галогениды трехвалентного фосфора, кремния и бора, двуокись углерода, галоидангидриды кислот, эфиры карбоновых кислот, альдегиды, кетоны, нитрилы и амиды. Многие из приведенных в этой главе реакций, включающих образование углерод-углеродных связей, более подробно обсуждены в гл. 13, посвященной нуклеофильному присоединению к ненасыщенному углероду. Как было указано ранее (стр. 192), в том случае, когда отрицательный и положительный углерод реагирует с образованием связи углерод — углерод, реакция может быть классифицирована либо как нуклеофильная, либо как электрофильная в зависимости от произвольного распределения ролей (реагента или субстрата) между обоими реагирующими соединениями. [c.251]

    За исключением материала о молекулярных соединениях и сведений о металлоорганических производных, большинство данных в этих главах относится к органическим соединениям, а большинство рассматриваемых связей — к связям между элементами первого периода, например к связям углерод — водород, углерод — кислород, углерод — галоген и др. Если связь образована элементом второго периода, например кремнием, фосфором или серой, то возникает резкое различие, заключающееся в том, что становится более вероятным образование кратных связей за счет З -электронов. Это отражается и в изменении энергий связи и величин тепловых эффектов реакций. В заключительной главе рассматриваются некоторые термохимические данные, имеющиеся для кремния, фосфора и серы, где могут возникать вышеупомянутые типы кратных связей. [c.26]

    В этой главе рассматриваются такие реакции ацетилена, при которых исчезает тройная связь вследствие присоединения атомов неметаллов (за исключением V глерода) или их соединений. Присоединение металлов и их соединений рассматривалось во 11 главе, а реакции, сопровождающиеся исчезновением тройной связи с образованием новой связи углерода с углеродом, описаны как реакции конденсации и полимеризации в главе V. К ацетилену способны присоединяться водород, гало-, лды, кислород, сера, азот и многие соединения перечисленных элементов. Весьма важную группу среди присоединяющихся к ацетилену веществ занимают вода и гидроксильные соединения. При помощи реакций присоединения ацетилен может быть превращен либо в олефиновые, либо в насыщенные соединения иногда присоединение сопровождается разрывом молекулы ацетилена, например во время реакции присоединения при высокой температуре азота, кислорода, серы. [c.151]

    Синтетазы катализируют образование углероД-уГЛе-родных связей связей углерод — азот, углерод — кислород, углерод — сера. [c.22]

    Линейные полимеры могут быть в некоторой степени сшиты и поперечно это достигается химическим путем или действием излучения с высокой энергией. Например, полиэтилен может быть. сшит действием или у-лучей, которые вырывают атомы водорода, что приводит к образованию связей углерод — углерод непосредственно между соседними цепями цепи фосфонитрилхлорида могут быть сшиты действием кислорода, который делит электроны с атомами фосфора в соединяемых цепях. Когда для двух полимерных цепей образуется более одной поперечной связи, то возникают бесконечные трехмерные сетки. Другим примером образования поперечных связей служит очень хорошо известная вулканизация натурального каучука серой. Интересно отметить, что вулканизованный каучук можно рассматривать как гибридный полимер в том смысле, что он состоит из органических цепей, неорганически сшитых серой. С другой стороны, виниловые силиконы представляют собой неорганические полимеры с органическими поперечными связями. Могут быть получены и многие другие типы химических поперечных связей. Это в особенности справедливо для неорганических полимерных ценей. [c.22]


    В то же самое время, при образовании связи между сериновым кислородом и карбонильным углеродом, происходит ослабление связи между карбонильным углеродом и амидным азотом, и этому ослаблению способствует наличие поблизости атома водорода, ранее принадлежавшего сери-ну, а теперь связанного с азотом гистидина. Когда пептидная связь, N—С, разрывается, этот атом водорода присоединяется к азоту, завершая образование группы —НН2 на конце удаляющейся цепочки, которая на стадии 4 обозначена как продукт 1. Половина цепи субстрата теперь отщепляется, а другая половина остается присоединенной к сериновой боковой цепи фермента. Конфигурация связей вокруг карбонильного атома углерода снова становится плоской тригональной и среди них снова имеется двойная связь С=0. [c.320]

    Окружающий нас мир представляет собой материю, существующую в бесконечном разнообразии видов, которые непрерывно переходят друг в друга. Например, в недрах звезд и нашего Солнца прк температурах 10— 20 млн. градусов происходит превращение водорода в гелий. При этом освобождаются колоссальные количества энергии, которые в виде излучения достигают Земли. Под влиянием энергии солнечного света растения превращают диоксид углерода в сложные органические соединения и освобождают кислород. Кислород участвует в процессах окисления, которые всегда идут с выделением тепла. Из этих примеров видно, что материя и энергия неразрывно связаны. Все процессы, совершающиеся в природе, в ходе которых изменяется состояние материи, сопровождаются и изменение энергии. Большинство подобных процессов включают в себя химические реакции. Образование залежей каменных углей и нефти связано с цепью сложных химических реакций, в которых участвовали остатки растений и морских животных и другие вещества, находившиеся миллионы лет под воздействием тепла Земли и высоких давлений. Происхождение залежей руд также связано с протеканием многочисленных химических реакций. По мере остывания расплавленного вещества Земли тяжелые металлы, взаимодействуя с кислородом и серой, образовали сульфидно-оксидный слой, расположившийся над железо-никеле- [c.13]

    Атомы кислорода и серы в циклах фурана и тиофена образуют по две ковалентные связи с углеродными атомами цикла и каждый из этих гетероатомов сохраняет две неподеленные электронные пары (стр. 27) атом азота в цикле пиррола образует три ковалентные связи — две с атомами углерода и одну с атомом водорода — и сохраняет одну неподеленную электронную пару. Такие неподеленные электронные пары гетероатомов взаимодействуют с я-электронами атомов углерода (стр. 31) в результате в пятичленных гетероциклах возникает единое шестиэлектронное облако —секстет обобщенных электронов, в образовании которого принимают участие две пары я-электронов от двух двойных связей и одна неподеленная электронная пара от гетероатома. Сказанное можно представить схемой [c.413]

    Таким образом, в процессе исследований А. Е. Порай-Кошиц показал возможность замещения, четвертичной аминогруппы с образованием новых связей углерод—кислород, углерод—сера, углерод—углерод или углерод—азот. В этот же период (1914 г.) Л. А. Чугаев и В. Г. Хлопин[ ] показали, что при нагревании лейкотропа О с тел-луридом натрия получается дибензилтеллурид. [c.610]

    Оказывается, таким образом, что в отношении реакции с карбонильными соединениями арсониевые илиды занимают положение, промежуточное между фосфониевыми и сульфоние-выми илидами. Первая стадия одинакова для всех трех типов илидов образуется промежуточный бетаин IX (2 — ониевая группа). Однако эти три типа бетаинов ведут себя по-разному. Фосфониевые бетаины (2 = КзР) распадаются по пути (а), включающему передачу кислорода ониевой группе. Очевидно, движущей силой этой стадии является образование связи фосфор— кислород высокой энергии [33]. С другой стороны, сульфониевые бетаины (2 = К25) реагируют по пути (б), включающему атаку углерода, несущего ониевую группу, отрицательно заряженным кислородом (см. гл. 9). Очевидно, что образование связи сера — кислород не настолько выгодно, чтобы направить реакцию по пути (а). [c.316]

    Кобальтмолибденовый катализатор на окиси алюминия широко применяется в промышленных процессах гидроочистки, так как он обладает высокой активностью в реакциях разрыва связей углерод — сера и высокой термической стойкостью, вследствие чего имеет весьма большой срок службы. Кроме того, этот катализатор имеет вполне приемлемую активность в реакциях насыщения алкеновых двойных связей, разрыва связей углерод — азот и углерод — кислород. Вместе с тем он весьма малоактивен в нежелательных реакциях разрыва связей углерод — углерод, так что образуются крайне незначительные количества низкокипящих компонентов нри обычных условиях гидроочистки его активность в реакциях тина полимеризации или конденсации низка. Поэтому после того, как начальная чрезмерно высокая активность катализатора будет снижена операцией сульфидирования, коксо-образование при процессах приближается к нулю. Важным преимуществом этого универсального катализатора является нрактически полная нечувствительность его к потенциальным каталитическим ядам. [c.144]

    Очевидно, связь углерод — кислород менее прочна, чем связь углерод — сера. Поэтому образование циклогексантиола можно объяснить первоначальным гидрогенолизом связей углерод — кислород с последующим разрывом одной из связей углерод— сера. [c.137]

    Многие органические соединения серы, т. е. соединения со связью углерод — сера, представляют собой аналоги кислородсодержащих соединений. Подобное сходство обусловлено тем, что сера раснолон ена в периодической системе сразу после кислорода. Однако в отличие от устойчивых соединений кислорода, имеющих не более трех связей с этим элементом, в соединениях серы может быть шесть связей с серой, и такие соединения будут устойчивыми (например, SFe). Подобное свойство серы объясняется тем, что нри образовании связей она в отличие от кислорода использует свои Зй-обритали. Вот почему все соединения серы можно разделить на Д Ю группы имеющие кислородные аналоги и не имеющие их. [c.326]

    В отличие от реакций образования связей углерод - азот и углерод - кислород, число которых весьма мало, существует много методов образования связей углерод - сера с помощью литийорганических соединений. Один из них - тиофильное присоединение к тиокарбонильной группе - рассмотрен в разд. [c.132]

    В реакциях первого типа атака нуклеофильного реагента направлена на атом серы, что приводит к расщеплению эфира сульфоновой кислоты с регенерацией исходного спирта. В реакциях второго типа атаке подвергается атом углерода, что приводит к расщеплению связи углерод — кислород по 5 у2 механизму. Наконец, нуклеофильное замещение суль-фоноэфирной группы может сопровождаться реакцией элиминирования с образованием непредельного соединения по схеме  [c.141]

    В отличие от реакций образования связей углерод - азот и углерод - кислород, число которых весьма мало, существует много методов образования связей углерод - сера с помощью литийорганических соединений. Один из них - тиофильное присоединение к тиокарбонильной группе - рассмотрен в разд. 7.2. Среди прочих широко и успешно используются реакции с элементной серой и расщепление дисульфидов. Менее распро-страненными являются реакции с галогенидами серы (и родственные реакции с сульфенилгалогенидами и тиоизоцианатами). Среди различных реакций с соединениями, содержащими двойные связи сера - кислород, особенно важна реакция с 802. Тиофильное расщепление тиоэфиров представляет ценность лишь в отдельных случаях (см. Основную литературу, Г(П)). [c.132]

    В отличие от реакции присоединения неполных эфиров кислот фосфора, приводящих к образованию эфиров фосфиновых и тиофос-финоБЫх кислот с углерод-фосфорной связью, присоединение к непредельным соединениям неполных зфиров фосфорной, дитиофосфорной и дитиофосфиновой кислот приводит к образованию полных эфиров фосфорной, дитиофосфорной и дитиофосфиновой кислот, содержащих связи углерод — кислород — фосфор и углерод — сера —фосфор. В связи с тем, что неполные эфиры фосфорных, дитиофосфорных кислот и дифенилдитиофосфиновые кислоты обладают определенно выраженным кислым характером, реакции присоединения их по кратным связям и к циклическим соединениям [c.70]

    Диалкилаллилткофосфаты также подвергаются термиче ской изомеризации, механизм которой, по А. Н. Пудовику , состоит в образовании промежуточных активных шестичленных комплексов с пониженной энергией активации, распад которых приводит к раз рьшу связи углерод — кислород и образованию связи углерод — сера  [c.154]

    Вероятный механизм стабилизации свободных радикалов следующий. При термодеструкцни в результате отрыва боковых цепей у соединений с конденсированными ядрами образуются активные структурные звенья, способные к далг--нейшему росту за счет образования новых связей углерод — углерод. Образовавшиеся вторичные свободные радикалы также будут расти до тех пор, пока при некотором оптимальном размере они не подвергнутся стабилизации и >1е превратятся в неактивные радикалы, неспаренный электрон которых экранирован алкильными или какими-либо другими группами. Рекомбинация таких сложных радикалов между собой затруднена, но при определенных условиях они могут вступать п реакцию с диффундирующими в кристаллиты углерода молекулами газов и паров серы, кислорода, азота, галогенов и др. [c.150]

    И сам углерод, и его аналоги могут существовать в нескольких аллотропических модификациях. Если для типичных неметаллов, например кислорода и серы, явление аллотропии связано с возможностью образования молекул различного состава, то в простых телах кристаллической структуры, например у у1 лерода, олова, кремния, аллотропия связана с возможностью построения кристаллических решеток различного типа. Так, в кристаллической структуре алмаза каждый атом углерода связан четырьмя связями с другими атомами таким образом, что все углы между связями равны 109,5°. Модель кристаллической решетки алмаза можно получить, если поместить атом углерода в центр тетраэдра на пересечении его высот и соединить его с четырьмя Е ершинами тетраэдра, поместив в них еще четыре атома углерода рассматривая каждый из этих атомов как центр нового тетраэдра, можно таким путем воспроизвести всю решетку. [c.95]

    Различия связаны с тем, что ряд электродных потенциалов учитывает дополнительные процессы, связанные с гидратацией ионов. Так, образование иона Н+ из атома Н совершенно невыгодно (потенциал ионизации Н- Н+, = 13,6 эВ больше, чем потенциалы ионизации хлора, 1 13,1 эВ серы, =10,4 эВ углерода, 1 =11,3 эВ и равен потенциалу ионизации кислорода. У=13,6 эВ, потенциалы ионизации серебра и меди ниже, чем потенциалы ионизации гораздо более активр ых железа и цинка), ио в энергетику образования иона в растворе входит энергия, выделяющаяся в процессе образования связей в гидратах  [c.224]

    Химическое строение молекулы азота с позиций МВС и ММО характеризуется исключительной прочностью, несравнимой ни с какими другими двухатомными молекулами. Особая устойчивость молекулярного азота во многом определяет химию этого элемента. И кратность, и порядок связи в молекуле азота равны трем . Кроме того, на разрыхляюш,их молекулярных орбиталях нет ни одного электрона. Все это является причиной очень большой величины энтальпии диссоциации молекул азота и высокой их термической устойчивости. Поэтому азот не горит и не поддерживает горения других веществ. Напротив, он сам в молекулярном виде является конечным продуктом окисления многих азотсодержащих веществ. При комнатной температуре азот реагирует лишь с литием с образованием нитрида лития LigN. В условиях повышенных температур он взаимодействует с другими активными металлами также с образованием нитридов. Образующийся при электрических разрядах атомарный азот уже при обычных условиях взаимодействует с серой, фосфором, ртутью. С галогенами азот непосредственно не соединяется. Химическая активность азота резко повышается в условиях высоких температур (2500—3000 °С), тлеющего и искрового электрического разряда и в присутствии катализаторов. Так, при повышенных температурах и давлениях и в присутствии катализаторов азот непосредственно соединяется с водородом, кислородом, углеродом и другими элементами. [c.248]

    Атомы Х и У, участвующие в Н-связяхмежду X—Н и Y. С улучшением методов исследования выяснилось, что круг атомов, способных участвовать в образовании-Н-связей, очень широк. В качестве атома X может фигурировать любой атом, образующий с водородом обычную химическую связь фтор, кислород, азот, хлор, бром, сера, фосфор, углерод и т. д. Наиболее ярко способгюсть участвовать в Н-связях проявляется обычно у тех групп X—Н, где атом X обнаруживает сильное сродство к электрону. Таковы фтор, кислород и азот. Атомами У, вероятно, могут быть любые атомы, даже атомы инертных газов. Например, А. В. Иогансен и Э. В. Броуп показали, что НВг и НС образуют слабые водородные связи с аргоном и ксеноном. Изменение энергии системы при образовании этих связей составляет около 4 кДж/моль. Роль У могут выполнять и ароматические циклы углерода (связи X—Н... п-орбитали), группы [c.56]

    Построение очень большого первого основною раздела этой части книги, Реакции, протекающие без изменения углеродного скелета , очень упростилось, после того как оказалось, что в нем должны рассматриваться только связи углерода с водородом, галогенами, кислородом," азотом, серой, фосфором и металлами. Здесь же рассматривается образование кратных С—С-связей в неизменном углеродном скелете. В подраз-n ejjax далее рассматриваются два типа реакций присоединение и обмен. [c.20]


Смотреть страницы где упоминается термин Образование связей углерод — кислород и углерод—сера: [c.200]    [c.70]    [c.12]    [c.322]    [c.93]    [c.238]   
Смотреть главы в:

Органическая химия -> Образование связей углерод — кислород и углерод—сера




ПОИСК





Смотрите так же термины и статьи:

Связь кислород кислород

Углерод связи

Углерод, образование связей



© 2025 chem21.info Реклама на сайте