Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика, динамика и равновесие

    Предлагаемый вниманию читателей сборник составлен из статей, направленных в Журнал прикладной химии. Несмотря на естественное разнообразие в подходе авторов к излагаемым проблемам, в статьях особенно большое внимание уделяется важнейшим в этой области вопросам получения и изучения пористых ионитов, кинетике, динамике и равновесию ионного обмена, направленным на решение прежде всего технологических задач, а также различным важным областям применения ионитов. [c.4]


    КИНЕТИКА, ДИНАМИКА И РАВНОВЕСИЕ ИОНООБМЕННОЙ СОРБЦИИ [c.88]

    В связи с этим возникает задача — описать класс кинетик, для которых основные черты кинетики действия масс (единственность и устойчивость равновесия и т. п.) сохраняются, но кинетический закон может существенно отличаться от закона действия масс. Зная решение этой задачи, исследователь может выбрать кинетику, которая наилучшим образом описывает динамику изучаемой системы, даже в том случае, когда закон действия масс несправедлив. [c.113]

    Особенностью адсорбционных систем является совокупность стационарных и нестационарных математических моделей, описывающих физико-химические процессы (равновесие), кинетику и динамику таких систем. [c.9]

    В зависимости от задач оптимизации критерии оптимизации для циклических адсорбционных процессов подразделяются на несколько классов. Это связано с тем, что универсальность адсорбционных процессов определяется двумя типами процессов 1) стационарными (адсорбционное равновесие) 2) нестационарными (кинетика и динамика). [c.12]

    Детальное рассмотрение системы корректных уравнений (П.5.1) для адсорбционных процессов в случае непроизвольно наложенного нестационарного температурного поля при взаимосвязанном тепломассопереносе показало меньшее влияние тепловых процессов на кинетику и динамику массообмена, определяемого наличием разности концентраций — фактической и равновесной. В этом случае концентрационный фронт движется в направлении достижения равновесия. Полученные математические модели неизотермической адсорбции отличаются характером приближений, однако особого внимания требуют приближенные математические модели кинетики и динамики неизотермической адсорбции, пригодные для инженерной практики. Приближенные математические модели для инженерного расчета неизотермической адсорбции позволяют на основе повышения точности методов расчета аппаратуры решить проблему конструирования адсорбционной аппаратуры с максимальной производительностью единицы объема и максимальной мощностью единичного агрегата. Кроме того, получение приближенных математических моделей неизотермической адсорбции, учитывающих основные физические фрагменты процесса, позволяет решить задачу постановки эксперимента и оценки параметров. С целью разработки инженерной методики расчета неизотермической адсорбции на основе приближенных математических моделей необходимо процесс разбить на два основных этапа  [c.240]


    Учение о химической динамике включает основные вопросы термодинамики химических процессов, фазовых и химических равновесий, химической кинетики. В этом разделе рассмотрены закономерности, описывающие поведение химических реакций. [c.3]

    Перенос вещества через колонку нонита может происходить в равновесных или неравновесных условиях. Поэтому существуют теория равновесной ионообменной динамики сорбции и хроматографии и теория неравновесной динамики ионообменной сорбции и хроматографии. Отсутствие равновесия при хроматографическом процессе может быть вызвано в основном тремя причинами диффузией внутрь зерен ионита, диффузией через жидкую пленку (стр. 99), окружающую каждое зерно ионита, и кинетикой процессов сорбции — десорбции. [c.126]

    Основным инструментом для проектирования является математическое описание физико-химических закономерностей химического процесса, т. е. уравнения кинетики, гидродинамики, фазовых равновесий,тепло-и массопереноса, на базе которых формируются вычислительные блоки или модули, обеспечивающие расчет отдельных характеристик или параметров процесса в соответствии с конкретной постановкой задачи. При этом можно выделить некоторые модули, являющиеся обязательными элементами комплексной программы проектирования любого химического реактора программу расчета выходных потоков и параметров их состояния для различных типов реакторов программу расчета конструктивных размеров аппаратов при заданных параметрах входных и выходных потоков программу расчета стационарных состояний и тепловой устойчивости программу расчета динамики реакторных блоков. [c.176]

    Для того чтобы соединить лабораторные (химические) эксперименты и теоретические (математические) модели, мы предлагаем рассмотреть данные, представленные в табл. 1. Обычно химики-экспериментаторы рассматривают системы, приведенные в колонке I таблицы. Химиков интересуют особенности реагентов и получаемых продуктов реакций, тогда как математиков, т. е. большинство теоретиков, специалистов в области действительных и комплексных переменных и т. д., интересуют особенности переменных. Можно сравнить химиков, раскрывающих механизм реакции на основании изучения ее кинетики, с математиками, исследующими динамику. Наконец, химики, заинтересованные в получении конечных результатов исследования химических реакций, подобны математикам, рассматривающим и классифицирующим критические решения систем. При исследовании химических реакций обычно стремятся к достижению состояния равновесия, т. е. устойчивого стацио- [c.8]

    Другой областью применения динамики является химическая кинетика, которая исследует скорость приближения химической системы к равновесию. Изучая скорости реакций, можно получить информацию о механизме, по которому они протекают. Располагая данными о влиянии температуры на скорость реакции, можно выявить, какие ограничения на скорость реакции накладывает энергия активации, а также определить изменения энергии, сопровождающие образование промежуточных веществ. [c.257]

    ИОНООБМЕННОЕ РАВНОВЕСИЕ, КИНЕТИКА И ДИНАМИКА ИОННОГО ОБМЕНА [c.216]

    Одна из основных задач прн определении технологического режима адсорбционной установки — это расчет условий адсорбционного равновесия, т. е. расчет изотермы адсорбции. Зависимость количества адсорбированного вещества от равновесной концентрации в растворе необходимо знать при расчете кинетики и динамики адсорбции, а также при расчете удельного расхода адсорбента при любом способе технологического оформления адсорбционного процесса. [c.93]

    При анализе данных о динамике белков и химическим превращениям в активных центрах ферментов представляется целесообразным исходить из представлений химической кинетики с учетом специфических особенностей ферментативного катализа. Молекулярной динамике отводится первостепенная роль в реализации элементарного акта химического превращения в конденсированной фазе. Коротко эта роль сводится к созданию условий для электронно-ядерного соответствия при протекании указанного акта. Энергия системы РЦ - среда в значительной степени зависит от двух типов взаимодействий между электронной и ядерной системами электронно-вибронного и электронно-ориентационного. При первом типе взаимодействий состояние равновесия между электронами и ядерными системами достигается за время одного колебания (у = = с). Ориентация электрических диполей окружения [c.558]

    Обобщение накопленных данных о порядках реакций, константах скоростей движения химических систем к равновесию, о положениях равновесия в газах и растворах и об их зависимостях от температуры провел в 1884 г. Я, Вант-Гофф. Он сумел увидеть глубокую связь статики и динамики (термодинамики и кинетики) химических превращений. Уравнение зависимости константы равновесия Кр или К, [c.14]


    Оптимальные условия для разделения рзэ соответствуют наибольшей многократности элементарных процессов сорбции и десорбции ионов при условиях равновесия или близких ему и в пределах необходимого времени эксперимента. На хроматографический процесс влияет много факторов, но все они в конечном счете определяют кинетику, статику и динамику обмена ионов водной фазы и фазы ионообменника. [c.96]

    Модель прецессии предсказывает вечное движение момента М. Поскольку это невозможно. Блох предположил, что такое состояние вектора суммарной намагниченности М является в реальных системах неравновесным. Детализируя динамику возвращения к равновесию (т. е. процесс релаксации), Блох предположил, что Мг стремится к Мо со скоростью Ни подчиняясь правилам кинетики реакций первого порядка. Формально этот процесс описывается дифференциальным уравнением [c.18]

    Четвертая Всесоюзная конференция по теоретическим вопросам адсорбции состоялась в Ленинграде с 29-го января по 2-е февраля 1974 г. Она была организована Научным советом по синтезу, изучению и применению адсорбентов Отделения общей и технической химии Академии наук СССр Институтом физической химии АН СССР и Ленинградским технологическим институтом им. Ленсовета. В отличие от трех предыдущих конференций, на которых рассматривались вопросы адсорбционных равновесий в однокомпонентных и многокомпонентных системах, вопросы кинетики и динамики адсорбции. Четвертая конференция была посвящена проблеме адсорбции и пористости. [c.5]

    Вся сумма задач, возникающих при решение вопроса об эффективности применения адсорбционной технологии для осуществления конкретного промышленного процесса и при проектировании адсорбционных установок, требует сведений как об адсорбционных равновесиях в заданной системе адсорбент — раствор, так и о кинетике и динамике адсорбции компонентов раствора в конкретных гидродинамических условиях проведения процесса. Однако многие данные, в том числе и параметры, наиболее важные для разработки проектного задания (а иногда и технического проекта адсорбционной установки), могут быть с достаточной точностью получены без выполнения каких-либо экспериментов — расчетным путем только на основе рассмотренных в предыдущих разделах этой книги характеристик адсорбционного равновесия — табличных значений инкрементов стандартного уменьшения дифференциальной мольной свободной энергии адсорбции из водных растворов для отдельных структурных элементов молекул и функциональных групп (in AF°) и растворимости извлекаемых продуктов (если она известна). [c.203]

    Все эти процессы требуют одинаковой трактовки с точки зрения фазового равновесия и кинетики массопередачи. Анализ динамики потоков в массообменных аппаратах также одинаков для многих типов процессов в системах газ—жидкость. [c.7]

    Таким образом, за время первого (подготовительного) периода истории кинетики были намечены основные пути ее развития в XIX в., дано отграничение области химической динамики и созданы предпосылки для возникновения учения о скоростях реакции. Но для развития целенаправленных исследований скоростей реакций нужно было более глубоко исследовать химическую статику (и в первую очередь химические равновесия), уточнить основные химические понятия, разработать теорию химического строения соединений, получить более четкие представления о механизмах реакций. Многие из таких задач были решены во время второго периода истории химической кинетики. [c.146]

    Гоффа. В 1883 г. Аррениус, а через год Оствальд ввели представление об определяющей роли в жидкофазных органических реакциях активных молекул [1J. Но только после того, как Вант-Гофф в классической монографии Очерки по химической динамике (1884 г.) воспользовался связью, которую равновесие устанавливает между изучением хода превращения и термодинамикой, чтобы получить при ее посредстве соотношение между температурой и константой скорости [355, стр. 108—109 , стало возможным окончательное постулирование нового основополагающего понятия в кинетике. [c.149]

    Поскольку эволюция геохимических процессов определяется законами равновесия и кинетики (скорости) соответствующих физических и химических явлений, в физической геохимии следует выделять следующие основные разделы 1) геохимическую термодинамику 2) геохимическую кинетику 3) геохимическую динамику. В геохимической термодинамике исследуется равновесие природных химических реакций в геохимической кинетике — их скорости геохимическая динамика изучает эволюцию природных химических реакций и геохимических процессов, их развитие в пространстве и времени. [c.6]

    В силу интенсивного развития сравнительно новой области экстракции не только не установились определенные понятия и обозначения, но еще и мало сделано в области выявления коренных, принципиальных закономерностей процесса. В целях предоставления читателям возможности сопоставления и сравнения идей в выпусках сборника публикуются статьи, отражающие различные взгляды на механизм процесса экстракции, различные подходы к обработке экспериментальных данных, к расчету и конструированию аппаратуры. Так, в теоретическом разделе первого выпуска сборника, наряду со статьей А. М. Розена, в которой развиваются представления по термодинамике экстракции, основанные прежде всего на строгом учете коэффициентов активности компонентов системы, публикуются статьи, в которых экстракционные системы рассматриваются чисто химически (связь коэффициентов распределения с химическим составом экстрагентов, предсказание выбора экстрагента на основе состава внутрикомплексных соединений, оксо-ниевый механизм извлечения ионов кислородсодержащими растворителями). В разделе экстракционной аппаратуры, наряду с работой по равновесной динамике процесса экстракции, помещены статьи, в одной из которых отмечается необходимость учета химической кинетики при расчете аппаратуры, а в другой дается аналитический метод расчета числа теоретических степеней, исходящий из величины константы равновесия реакции. [c.4]

    Одиннадцать глав книги охватывают почти все вопросы жидкостной хроматографии. Изложение начинается с описания современных ионообменников — ионообменных смол, их синтеза, свойств, стабильности и областей применения. Вопросам статики (равновесия), кинетики и динамики уделяется несколько глав, снабженных обширными библиографическими списками. Вариантам применения ионного обмена в гетерогенных системах посвящены последующие разделы книги. В них описаны неорганические и жидкие ионообменники, читатель знакомится с ионообменными бумагами, тонкослойной ионообменной хроматографией и т. п. Все эти материалы предлагаются отнюдь не в описательной форме обсуждается теория процесса, метод рассматривается с количественной точки зрения и иногда в нескольких вариантах. Последняя глава книги посвящена изучению комплексных ионов при помощи ионообменной хроматографии в колонке, на бумаге и с применением мембран. [c.5]

    Сложность оптимизации промышленного процесса рекуперации заключается в необходимости учитывать все факторы, влияющие на оптимальный вариант <гехнологического цикла в целом. Если для расчета основных стадий адсорбции и десорбции, можно использовать зависимости, учитывающие многочисленные и разнообразные аспекты — равновесие, кинетику, динамику и т. д. этих явлений, то для расчета экономической эффективности цикла в целом этого недостаточно. Необходимо связать все затраты, связанные с проведением процесса рекуперации, воедино с учетом как основных, так и вспомогательных фаз сушки, охлаждения, разделения (конденсации) и т. п. [c.173]

    Анализ температурных режимов работы неизотермического полимеризатора идеального смешения был произведен с использованием разработанной математической модели. Данная динамическая модель учитывает перегрев жидкости и зависимость скорости полимеризации от температуры и основывается на совместном решении уравнений теплового и материального балансов, химической кинетики, фазового равновесия и динамики пароооразования. [c.83]

    Адсорбционные процессы разпосторонни. Уже при расчете и выборе технологии основной стадии (адсорбции) инженеру необходимо учитывать многочисленные и разнообразные аспекты (равновесие, кинетика, динамика, гидравлика п т. д.). Еще сложнее создать оптимальный вариант технологического цикла в целом. [c.9]

    Известные решения динамики сорбции, базирзлощиеся па системе, включающей уравнения материального ба,ланса. кинетики и равновесия, представляют собой семейство безраз ерных выходных кривых в координатах с сц—Т. Подробно методика ис-пользоваиия этих решений для расчета конкретных задач описана в [71]. Здесь остановимся лишь иа осповных этапах расчета. [c.57]

    Один из наиболее эффективных и универсальных методов очистки и разделения газовых и жидких сред — адсорбционный метод, связанный с механизмом физико-химического взаимодействия адсорбента и адсорбата. Однако успешное внедрение его в промышленность зависит, в частности, от эффективности эксплуатируемых и проектируемых адсорбционных установок, совершенствования действующих процессов, инженерных методов расчета равновесия систем адсорбент — адсорбат, кинетики в отдельном зерне адсорбента и динамики макрослоя адсорбентов, конструктивных решений и методов оптимизации циклических адсорбционных процессов. Основными особенностями циклических адсорбционных процессов являются их многостадий-ность (стадии адсорбции и десорбции целевых компонентов, стадии сушки и охлаждения, адсорбентов, т. е. стадии, взаимно влияющие одна на другую), разнообразие типов технологических схем, различие энергозатрат для проведения стадий процесса. Вследствие этого важным звеном разработки циклических адсорбционных процессов как на этапе проектирования, так и на этапе промышленной эксплуатации служит выбор оптимальных вариантов аппаратурного оформления процессов, режимов проведения различных стадий процесса для конкретных условий применения. Выполнение указанных задач полностью определяет технико-экономические оценки выбираемых вариантов. [c.4]

    В работе [4] приведены результаты исследования динамики десорбции гидрофильных растворителей (этанол, пропанол, бута-Бол, ацетон, метилэтилкетон) из угля АР-3 водяным паром при температуре 102—110°С и скорости потока 0,1 м/с, причем растворители существенно различаются по сорбируемости. Установлено, что процесс десорбции растворителей сопровождается логлощением водяного пара, предельные величины адсорбции которого определяются изобарой (рис. 2.20,/). Одновременно была определена кинетика поглощения водяного пара активным углем (рис. 2.20,//). Можно видеть, что при t= 130 °С и выше равновесие устанавливается уже через 4—5 мин, и величиной адсорбции водяного пара (<0,02 г/г угля) можно пренебречь. В этом случае процесс десорбции водяным паром практически не отличается от десорбции несорбирующимися (малосорби-рующимися) газами (например, N2). [c.90]

    Теория ионообменной хроматографии сложна вследст вие многообразия химических и физических явлений, характерных для обменного поглощения ионов на ионообменных сорбентах. В соответствии с природой этих явлений она слагается из статики (равновесия), кинетики и динамики ионообменных процессов. Ниже рассматриваются элементы теории ионообменно-хроматографического метода [c.172]

    Книга включает две части. В первой части адсорбционный процесс рассмотрен как комплекс равновесных и кинетических закономерностей адсорбционно-десорб-ционного цикла и вспомогательных стадий. Здесь освещены вопросы теории равновесия при адсорбции индивидуальных компонентов промышленных газов и их смесей, кинетики и динамики прямого (адсорбция) и обратного (десорбция) процессов, изложены закономерности адсорбции под высоким давлением и в жидкой среде. Вторая часть посвящена технологии и аппаратурному оформлению, а также технико-экономическим показателям современных адсорбционных процессов очистки, осушки, разделения газов, паров и жидкостей, в том числе в движущемся слое адсорбента. Большое внимание уделено процессам, позволяющим обезвредить промышленные выбросы, рекуперировать из них ценные продукты и решить проблему защиты биосферы. В дополнительном разделе рассмотрены примеры применения адсорбентов для снижения загрязнения атмосферы и гидросферы токсичными веществамн. Рассмотрены новые каталитические процессы на основе промышленных адсорбентов. [c.10]

    А.Н. Колмогорова и другими стохастическими уравнениями (см. 7.5). Большое число работ посвящено непосредственному решению уравнений типа Фоккера — Планка численными методами. Работы этого направления выделяются в особую ветвь науки — молекулярную динамику [110, 111]. В работах Цинмайстера [112], Л.Н. Александрова [113], Б.И. Кидярова [104] и других исследователей развивается модель образования и гибели кластеров на основе теории статистической надежности, порядковых статистик [114] и теории массового обслуживания [115]. В работе И.М. Лифшица и др. [116] развивается квантовая теория фазовых превращений. Существуют статистические теории конденсации [117, 118], в которых не рассматривается равновесие между исходной фазой и зародышем. Л.Я. Щербаков и др. [цит. по 99] развивают теорию для кластеров, в которых нельзя, как в сферической капле, выделить объемную и поверхностную составляюпще термодинамического потенциала. Теория кинетики зародышеобразования из расплава разработана Тарнбаллом, Фишером [цит. по 120, 121] и др. Кинетика образования зародышей в жидких и твердых растворах изучалась в [103, 120-122], а в атмосфере — в [119]. Большой интерес представляет создание теории полиморфных превращений [110, 121]. Теория поверхностных явлений уже сформировалась как самостоятельная ветвь науки [117]. Интенсивно развивается также направление, связанное с термодинамикой необратимых процессов [97]. [c.827]

    Гл. 1 этой книги можно в известной мере рассматривать как своеобразное подведение итогов целого периода экспериментальных исследований распада небольших молекул в ударных волнах. Первая задача этого периода заключалась в том, чтобы подавить всевозможные вторичные процессы и в наиболее чистых условиях получить константу скорости мономолекулярного распада ка. Вторая задача состояла в том, чтобы на основании измеренной зависимости от плотности и температуры получить сведения о механизме активации исходных молекул. Поскольку в настоящее время нет достаточно развитой теории обмена энергией при столкновениях возбужденных многоатомных молекул, механизм активации обычно моделируется путем задания функции распределения для переданной энергии. Здесь детально рассмотрены два предельных механизма механизм сильных столкновений и механизм ступенчатого возбуждения. Известно довольно много приближенных теорий, основанных на модели сильных столкновений. Наиболее распространенной среди них является теория Райса — Рамспергера — Касселя — Маркуса (РРКМ). В настоящее время значительный интерес представляет исследование различных отклонений от теории РРКМ, связанных главным образом с тем, что константу скорости превращения активных молекул нельзя считать зависящей только от полной энергии молекулы, а необходимо учитывать динамику внутримолекулярного перераспределения энергии. В книге эти вопросы освещены явно недостаточно, и, чтобы восполнить этот пробел, читателю можно рекомендовать монографию Никитина [2], а также работы Банкера (например, [3]). Другое весьма общее ограничение направления, использующего предположение о сильных столкновениях, отмечено в работах Кузнецова [4] и связано с тем, что с повышением температуры все больше нарушается равновесное распределение по внутренним степеням свободы частиц в процессе их диссоциации. Тем не менее имеются случаи, когда даже при сильном отклонении от равновесия возможно описание кинетики реакции на основе представления о равновесной константе скорости. Если среди распадающихся молекул происходит быстрый обмен колебательными квантами, то неравновесность выражается лишь в том, что система характеризуется не одной, а двумя или несколькими колебательными температурами. При температурах ниже некоторой критической температуры То константа скорости мономолекулярного распада определяется кинетикой переходов на верхние колебательные уровни, где обмен колебательными квантами не играет существенной роли, и только для таких температур константа скорости может быть вычислена [c.6]

    II р е в р а щ е и и я исходных веществ при достижении равновесия. Однако па практике равновесные соотношения обычно не достигаются. В условиях крекинга протекает ряд конкурирз ющих параллельных процессов и выходы продуктов реакции опреде- ляются не только термодинамическим равновесием, но и скоростью химической реакции в данном направлении. Изучением скоростей химических процессов занимается кинетика или химическая динамика. [c.197]

    Другой подход к анализу процессов, протекаюш,их в условиях линейной неидеальной хроматографии, был развит еще в первых работах нобелевских лауреатов Мартина и Синджа [71], предложивших в 1941 г. тарелочную теорию жидкостной распределительной хроматографии, распространенную затем на газо-жидкостную хроматографию Джеймсом и Мартином [72]. При этом слой неподвижной фазы рассматривается как совокупность последовательно соединенных элементарных ступеней ( тарелок ),на каждой из которых устанавливается межфазовое равновесие. Хотя теория тарелок и объясняет, почему профиль хроматографической зоны в случае линейной изотермы распределения для достаточно больших времен элюирования приближается к форме гауссовской кривой, однако она не позволяет непосредственно связать размывание с параметрами хроматографического опыта. Дальнейшее свое развитие тарелочная теория получила за рубежом в работах Майера [73], Глюкауфа [74—75] и Винка [76] и в исследованиях советских авторов [77—80], однако, вследствие указанного выше формального характера, она все больше уступает свои позиции теории скоростей , существенный вклад в которую сделан Жуховицким с сотрудниками [81—83] и Томасом [84], изучавшими процесс динамики сорбции вещества слоем зерпеного материала из потока инертного газа. В работе [82] приведено полное решение для процесса, лимитируемого внешнедиффузиоиной кинетикой при линейной изотерме адсорбции. Для изотермы Лэнгмюра задачу удалось решить только численно [67]. Отметим, что внутридиффузионные задачи в динамике сорбции еще в середине и конце тридцатых годов исследовались Викке [85] и Дам-коллером [86], причем было показано, что предложенный механизм хорошо описывает опыты при низких давлениях, при повышенном же давлении процесс, видимо, начинает контролироваться внешней диффузией. [c.88]

    В книге сведены основные результаты исследований по диффузии веществ в породах, равновесию, кинетике и динамике процессов взаимодействия веществ с породами, выпоаиеннык в СССР и за границей. [c.3]

    Необходимо подчеркнуть, что высокая эффективность адсорбционных методов очистки сточных вод была достигнута только в тех случаях, когда технология разработана на базе теории адсорбции и подкреплена правильно поставленными исследова-. ниями равновесия, кинетики и динамики адсорбции компонентов раствора. При таких исследованиях нужно учитывать условия существования молекул извлекаемых веществ в водном растворе, т. е. степень ионизации, ассоциацию, присутствие других соединений в реальной многокомпонентной системе. Пренебрежение же основами теории адсорбции растворенных веществ или некритическое применение представлений адсорбции газов и паров к адсорбции растворенных веществ — наиболее распространенная причина неудачных попыток решения экологических задач при помощи адсорбционных процессов. [c.6]

    В реальной динамике адсорбции растворенного эещества из потока неадсорбируемой жидкости ситуация усложняется тем, что скоростью достижения адсорбционного равновесия, т. е. кинетикой адсорбции, пренебрегать нельзя. При выпуклой изотерме адсорб ции учет кинетики массопереноса приводит к формуле, описывающей скорость перемещения стационарного фронта адсорбции вдоль слоя адсорбента  [c.223]

    В 1884 г. Вант-Гофф опубликовал книгу Очерки по химической динамике , в которой обосновал важнейшие положения теории химической кинетики. Он опирался на выведенное Гульдбергом и Вааге кинетическое выражение закона действия масс. Вант-Гофф определял химическое равновесие как результат двух обратимых процессов. Ему удалось разработать аналитическое (математическое) выражение для скоростей MOHO- и бимолекулярных реакций. [c.89]

    Ясность изложения Вант-Гоффом всех этих важнейших вопросов, касающихся скоростей химических реакций, определяемых числом активных (возбужденных) молекул реагирующих веществ, большой экспериментальный материал, приведенный в книге Очерки по химической динамике и, наконец, плодотворное применение законов химической термодинамики к трактовке механизма реакций и химического равновесия,— все это привлекло широкое внимание химиков к работе Вант-Гоффа. Со времени появления книги в разных странах мира начались интенсивные исследования по химической кинетике и по изучению равновесий, которые принесли богатые научные и практические плоды. В дальнейшем на основе законов и положений, установленных Вант-Гоффом, Аррениусом и их сотрудниками, были решены важнейшие производственные нроблемы, такие, например, как синтез аммиака. [c.440]


Смотреть страницы где упоминается термин Кинетика, динамика и равновесие: [c.855]    [c.444]    [c.100]    [c.444]   
Смотреть главы в:

Иониты и ионный обмен -> Кинетика, динамика и равновесие




ПОИСК





Смотрите так же термины и статьи:

Динамика



© 2025 chem21.info Реклама на сайте