Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация олефинов, влияние давления на нее

    Этилен. Опыты более ранних исследователей [2, 12, 57] показали, что этилен разлагается при температурах 450—500° и атмосферном давлении, при этом образуется лишь небольшое количество жидких продуктов. При температуре же 600° этилен дает лишь несколько капель жидкого продукта, в остаточном газе обнаруживаются продельные углеводороды. Только в результате исследований о влиянии давления было установлено, что этилен [21] может легко нолимеризоваться. При нагревании в автоклаве высокого давления этилен начинает нолимеризоваться в жидкий продукт уже при 325° и давлении 70 ат, а при температуре 380—400" полимеризация идет с большой скоростью. Образовавшийся продукт состоит из 80 % сложной смеси жидких парафинов, олефинов и циклопарафинов, выкипающих в пределах 24—280°, и 20% жидкости, выкипающей выше 280°. [c.187]


    Как уже отмечалось, изученные пентены (за исключением пен-тена-2) были подвергнуты термической полимеризации при различных давлениях. Оказалось, что в интервале от 1 до 3 кбар полимеризация пентена-1 и З-метилбутена-1 ускоряется приблизительно в 3,5—4 раза, а полимеризация 2-метилбутена-2 и 2-метил-бутена-1 — приблизительно в 5 раз. Такой результат согласуется с сформулированной выше закономерностью как видно из строения изученных олефинов, 2-метилбутен-1 и 2-метилбутен-2 при термической полимеризации, по-видимому, преодолевают более значительные пространственные затруднения, чем олефины с не-экранированной двойной связью (пентен-1 и З-метилбутен-1). Авторы отмечают изомеризацию наиболее пространственно затрудненного 2-метилбутена-2 в 2-метилбутен-1 в изученных условиях однако это не изменяет основного результата рассматриваемого исследования. Следует, конечно, оговориться, что сопоставление скорости полимеризации различных олефинов и ее изменения с давлением можно осуществить достаточно строго лишь на основе изучения влияния давления на скорость отдельных стадий полимеризации, а не на скорость суммарного процесса. Некоторые примеры такого анализа будут приведены в главе, посвященной полимеризации при высоких давлениях. [c.278]

    Так как скорость процесса контролируется в основном диффузией, порядок реакции близок к первому, скорость реакции пропорциональна парциальному давлению олефинов. В табл. 6.3 приведены данные, характеризующие влияние давления на процесс полимеризации смеси пропилена и бутенов. [c.196]

    Повышение давления влечет за собой непосредственно два следствия. Во-первых, оно подавляет дегидрирование — обратимую реакцию, в которой из одной молекулы исходного вещества образуются две молекулы продуктов (реакция разрыва цепи необратима, и поэтому увеличение давления не оказывает влияния на ее скорость). Во-вторых, повыш ше давления благоприятствует протеканию вторичных реакций полимеризации и конденсации. Поэтому, когда основной целью является максимальный выход жидких продуктов, процесс желательно проводить под повышенным давлением. Наоборот, пониженное общее давление или пониженное парциальное давление паров углеводородов способствует наибольшему выходу низших олефинов. Изменение давления оказывает влияние на течение реакции разрыва цепи. При более высоком давлении разрыв цепи чаще происходит ближе к середине углеродной цепи. При низких давлениях цепь разрывается ближе к ее концу. [c.108]


    Тропш, Томас и Эглофф [48] исследовали влияние давления на термическую конверсию газообразных парафинов и нашли, что природный газ при 550° С и одинаковой конверсии за цикл дает более высокие выходы жидких продуктов при повышении давления от 17,5 до 70,5 K2 M и соответственно более низкие выходы газообразных олефинов. Влияние давления на процессы полимеризации и конденсации больше, чем на реакции разложения. [c.187]

    Большое влияние на состав продуктов термического расщепления оказывает также время контакта. Поскольку образование водорода, метана, ароматических веществ и кокса, а также полимеризация олефинов являются последовательными по отношению к первичному расщеплению сырья, то при прочих равных условиях увеличение времени контакта ведет к усиленному развитию этих процессов и к снижению выхода олефинов. Примерно так же влияет давление при его уменьшении полимеризация и, конденсация первичных продуктов замедляются и растет выход олефинов. [c.40]

    В табл. 17 показано влияние давления на количество и состав газов, образуюш ихся при суспензоид-крекинге. Здесь опять отчетливо обнаруживается ускоряемая давлением термическая полимеризация олефинов, которая сильнее всего заметна в случае очень быстро реагируюш его этилена. [c.24]

    На процесс полимеризации олефинов с применением в качестве катализатора фосфорной кислоты оказывают влияние такие параметры, как концентрация кислоты (наилучшие результаты достигаются при концентрации кислоты 100—108%) давление (повышение давления приводит к образованию более низкокипящего полимера) температура (с повышением температуры на 40° С скорость реакции полимеризации удваивается повышение температуры приводит к образованию высококипя-ших полимеров, но срок службы катализаторов при этом сокращается). [c.225]

    На первый взгляд кажется, что эти заключения находятся в противоречии с известным и теоретически ожидаемым влиянием давления на реакции алкилирования, полимеризации и гидрогенизации, рассмотренные в 1 и 3 главах. Однако следует помнить, что положительный эффект давления на все эти реакции наблюдается только при особых условиях, которые не существуют при обычном крекинге. Например, гидрогенизация ароматических з глеводородов наблюдается при очень высоком давлении водорода и в присутствии специального катализатора. Алкилирование парафинов олефинами проводится а присутствии большого избытка парафинов при очень высоких давлениях. Только полимеризация олефинов и некоторые реакции конденсации олефинов и ароматических углеводородов встречаются в условиях крекинга при высоком давлении, поэтому в результате наблюдается уменьшение выходов бензина, как было указано выше. [c.121]

    Первые наблюдения по полимеризации олефинов были сделаны очень давно [1]. В 1873 г. А. М. Бутлеровым была открыта полимеризация изобутилена в диизобутилен в 1884 г. Г. Г. Густавсон наблюдал полимеризацию олефинов под влиянием хлористого алюминия, то же самое наблюдал и И. Л. Кондаков, применявший в своих реакциях хлористый цинк. В 1913 г. В. Н. Ипатьев впервые получил полимеры этилена, применив повышенное давление [2]. В 1912—1915 гг. Л. Г. Гуревич отметил полимеризующее действие на олефины алюмосиликатов, а в 1922—1934 гг. С. В. Лебедев провел уже большие работы по полимеризации изобутилена на алюмосиликатных катализаторах. Полимеризацией изобутилена при низких температурах Лебедев впервые получил полимеры с мол. весом до 4000. Ряд работ по полимеризации пропилена на синтетических алю- [c.60]

    При давлении выше одной атмосферы полимеризация олефинов ускоряется. Это влияние, оказываемое давлением на реакции крекинга, будет рассмотрено дальше в этой же главе, [c.115]

    Важнейшими параметрами процесса полимеризации олефинов в при- сутствии фосфорнокислых катализаторов являются концентрация кислоты, применяемой в качестве катализатора, температура реакции, давление, продолжительность контакта, состав сырья. Эти параметры определяют не только степень превращения, но и качество и состав получаемого полимера. Несмотря на важное значение этих параметров, количественное -влияние их на процесс полимеризации почти не освещено в литературе [c.231]

    Процесс полимеризации газообразных олефинов под влиянием фосфорной кислоты протекает наиболее легко с бутиленами, особенно с изобутиленом пропилен полимеризуется значительно труднее, наиболее же трудно протекает полимеризация этилена. Со смесью олефинов, находящихся в газах крекинга и пиролиза, реакцию полимеризации удобно проводить, пуская газ через стальную трубку с катализатором на носителе при температуре 230—250° и давлении 7—12 ат полезная длина трубки 60—65 см ее диаметр 2,5—4 см. Получаемые этим путем полимерные бензины — весьма высокого качества. До 150° они выкипают в количестве 60—70 %, до 200°—в количестве 80—90 %. Их октановое число-78—82. По составу они почти целиком состоят из непредельных углеводородов, а стабилизация их лучше всего достигается путем легкого гидрирования (гидроочистка). [c.782]


    Первоначально полимеризацию олефинов для получения моторного топлива проводили только под влиянием высокой температуры. Такая термическая полимеризация идет достаточно быстро при 480—540 °С, причем для увеличения равновесной степени конверсии олефина необходимо повышенное давление (около 50 ат). В таких условиях процесс имеет радикально-цепной характер и сопровождается образованием парафинов, нафтенов и даже ароматических соединений. Вследствие этого для целевого синтеза высших олефинов более перспективной оказалась катионная полимеризация, протекающая в присутствии катализаторов кислотного типа. А. М. Бутлеров впервые осуществил ее, применив серную кислоту. Впоследствии были предложены безводный фтористый водород, хлористый алюминий, гетерогенные алюмосиликатные катализаторы и т. д. Наибольшее практическое значение приобрел катализатор Ипатьева, который готовят, пропитывая кизельгур, асбест или другие материалы ортофосфорной кислотой. Она при 200—300 °С дегидратируется, в результате чего получаются пиро- и метафос-форные кислоты  [c.72]

    Алюминийорганические соединения долго не представляли практического интереса, но в последнее время получили важное значение как катализаторы анионной полимеризации олефинов. Катализаторы Циглера являются комбинацией триалкилалюминия с хлоридами некоторых металлов, например АШз+ЛСЦ. Под их влиянием полимеризация этилена, пропилена, бутадиена, изопрена и других непредельных мономеров протекает при атмосферном давлении и комнатной температуре, причем образуются стереорегулярные полимеры более высокими физико-механическими показателями и теплостойкостью, чем при других методах полимеризации. [c.438]

    При постоянных условиях проведения реакции полимеризации олефинов молекулярный вес полимера понижается при повышении количества соединений металла переменной валентности. Изменение температуры и парциального давления мономера не оказывает существенного влияния на величину молекулярного веса полиолефина. Экспериментально установлено , что молекулярный вес полипропилена зависит от концентрации триэтилалюминия. Эта зависимость при постоянном количестве треххлористого титана выражается уравнением  [c.26]

    В соответствии с растущим влиянием полимеризации и других процессов, требующих применения концентрированных олефинов, низкотемпературная ректификация под давлением приобрела за последнее время гораздо большее значение в мировом масштабе, чем низкотемпературная абсорбция. К тому же вредные примеси, мешающие дальнейшей переработке, легче удалить из нефтехимических первичных продуктов, чем из готовых продуктов. [c.47]

    Полимеризация олефиновых углеводородов этилен подвергают воздействию давления (130 ат) в течение 10 часов в присутствии катализаторов если олефины содержат влагу, то полимеризация может происходить под влиянием фтористого бора и фтористого водорода или одного фтористого бора [c.464]

    Представляет интерес выяснить влияние условий пиролиза на выход олефинов. Глубину процесса определяют три основных параметра время контакта, температура и парциальное давление углеводородов. С повышением температуры глубина процесса быстро возрастает. При постоянной температуре выход олефинов с увеличением времени контакта возрастает- до определенного момента, а затем падает. Повышение парциального давления углеводородов приводит к усилению реакций полимеризации и конденсации, к преобладанию реакций разрыва углеродной цепи посередине, приводящих к повышенному образованию жидких продуктов пиролиза, к уменьшению удельного веса реакций дегидрирования. [c.66]

    Изучение влияния объемной скорости и давления на кинетику полимеризации пропилена [1, И] показало, что константы скорости реакции не зависят от давления, концентрации олефина и продолжительности [c.233]

    При умеренных температурах (400—500° и ниже) олефины легко подвергаются полимеризации, являясь, в общем, менее устойчивыми в данных условиях, чем парафины. Существенное влияние на этот равновесный процесс оказывают уже небольшие давления (до 20 ат), смещая его в сторону образования новых количеств полимеров. С кинетической точки зрения этот процесс должен быть отнесен к реакциям второго порядка. [c.453]

    Основные факторы и параметры технологического режима работы всей установки (качество сырья и катализатора температура и давление в основных аппаратах продолжительность реакции, т. е. пребывание сырья в реакторе, и качество целевого полимерного продукта, степень извлечения олефинов и другие показатели) задаются технологической картой. Здесь кратко рассмотрим влияние отдельных факторов и параметров технологического режима на ход процесса полимеризации и качество целевого полимерного продукта. [c.35]

    А. М. Бутлеров писал Уплотнение непредельных углеводородов... представляет бесспорно одну из самых замечательных синтетических реакций, способных проходить нод сравнительно слабыми химическими влияниями [311]. Первые исследования полимеризации нри повышенных давлениях былн выполнены в конце 20-х годов. Так, в 1929 г. С. В. Лебедев и Г. Г. Коблянскнй [312] поместили жидкий изобутилен в запаянную трубку и нагревали его прп 200° в течение 14 дней. Ими было получено 6—8% тримера (триизобутплена). В 1931 г. М. Д. Тиличеев и А. Л. Фейгпн [313] исследовали полимеризацию олефинов при крекинге под давлением. Л. И. Анцус и А. Д. Петров [314] в 1933 г. изучали полимеризацию этилена в момент его образования при гидрировании ацетилена. Они установили, что ацетилен с большой легкостью гидрируется и полимеризуется над восстановленным никелем под давлением. [c.184]

    Уменьшение содержания непредельных при высоких давлениях сопровождается образованием продуктов полимеризации и нафтенов. Froli h однако придерживается того мнения, что благоприятное влияние давления на реакции полимеризации при повышении давления постепенно уравновешивается увеличением перехода олефинов высокого и среднего молекулярного веса (которые по-лимеризуются быстрее всего) в жидкую фазу, где скорости полимеризации значительно замедляются вследствие разбавления крекируемым веществом. В результате такогО перехода парообразных олефинов в жидкую фазу полимеризация и ко ксообразование лри определенных условиях возрастают с увеличением давления сперва быстро, затем — постепенно и медленнее, и наконец, перейдя через максимум, при еще более высоких давлениях коксообразование начинает падать. [c.120]

    При сравнимых условиях количество гидратированного олефина по отношению к количеству полимеризаванного было наибольшим при применении в качестве катализатора фосфорной кислоты. Увеличение времени контакта с 65 до 364 секунд при 427° лишь в слабой степени изменило процент гидратированного бутена-2 в присутствии фосфорной кислотьг, что указывает на наступление в этих условиях состояния равновесия. При более высоких температурах увеличение времени контакта приводило к уменьшению выходов продуктов гидратации и к возрастанию полимеризации. Результаты опытов, представленные в табл. 81,, устанавливающих влияние давления в присутствии различных катализаторов, показывают, что повышение давления с 210 кг/ст до 350 кг/см способствует полимеризации в большей степени, нежели гидратации. [c.344]

    Влияние высокого давления (выше 1000 кг1см ) на ход реакций широко начали изучать за последние 15 лет. Во многих реакциях, особенно в реакциях полимеризации, применение таких высоких давлений, как 10 000— 12 000 кг/см , а в некоторых случаях сверхвысоких давлений порядка 20 000—30 000 кг смР-, приводит к весьма интересным результатам. Скорости некоторых реакций настолько возрастают, что, несмотря на аппаратурную сложность осуществления процесса полимеризации при высоких давлениях, этот метод находит практическое применение. Применяя высокие давления, удалось провести такие реакции, которые другими путями не могли быть осуществлены. Это относится, например, к процессам полимеризации масляного альдегида и этилена и сополимеризации олефинов с окисью углерода. Применяя для полимеризации масляного альдегида давление, равное [c.196]

    Повышение температуры и давления приводило к заметному увеличению количеств высококипящих веществ, однако их гидроксильное числобыло низким. Таким образом, повидимому, увеличение выхода высококипящих веществ не является результатом альдольной конденсации. Было обнаружено, что небольшое количество (0,2% загрузки) метилата натрия полностью подавляет то слабое гидрирование альдегидов, которое обычно имеет место в первой стадии оксосинтеза. В незначительной степени протекают вторичные реакции—образование ацеталей из альдегидов и спиртов и полимеризация олефинов в высококипящие полимеры. Альдегиды, являющиеся главной составной частью продукта, очень реакционноспособны, и поэтому из смеси трудно выделить компоненты. Для получения индивидуальных альдегидов целесообразно сначала весь продукт прогидрировать, полученные спирты подвергнуть фракционировке, а фракции спиртов переводить в альдегиды с помощью окисления или дегидрирования. Повидимому, синтез альдегидов из олефинов и смеси окиси углерода с водородом в первой стадии, оксисинтеза является гомогенной каталитической реакцией. Так, на скорость оксосинтеза пе оказывают влияния заметные количества сернистых соединений, в то время как водный раствор аммиака полностью подавляет синтез [4]. Это явление обусловлено, повидимому, образованием комплекса кобальта с аммиаком, сопровождающееся разрушением активного катализатора, которым, вероятно, является гидрокарбонил кобальта. Одновременно с синтезом альдегидов протекает каталитическая миграция двойной связи в олефинах. [c.382]

    Влияние высоких давлений на реакции, которые в настоящее время известны как реакции радикальной полимеризации олефинов, впервые изучено Конантом, работавшим на установке Бриджмена [204]. Он обнаружил полимеризацию стирола, винилацетата, изопрена и 2,3-диметилбутадиепа при комнатной температуре и давлении 9000—12 ООО ат, хотя при атмосферном давлении реакция в этих условиях практически не идет. Впоследствии другие исследователи отметили аналогичное увеличение скорости полимеризации в целом ряде систем [205—211]. [c.182]

    Отсутствуют доказательства того, что давление, существующее в нефтепроизводящих свитах, оказывает влияние на образование нефти. В старой теории происхождения нефти, основанной иа представлении о термическом разложении растительных и животных жиров, а также жирных кислот, первоначально предложенной Уорреном и Сторером [59] и позднее поддержанной Энглером [21], предполагалось, что образующиеся олефины полимеризуются под действием высокого давления. Однако давление выше 15 ООО ат не вызывает полимеризации даже таких реакционно-способных диеиов, как бутадиен и изопрен [15], несмотря на легкое предварительное окисление кислородом воздуха с образованием перекисей, являющихся весьма эффективными катализаторами. Как будет указано в дальнейшем, полимеризация является одной из хорошо известных реакци , вызываемых кислыми силикатали . [c.85]

    Значительное влияние структуры поверхности и характера обработки катализатора указывает на то, что поверхность играет чрезвычайно важную роль и непосредственно участвует в полимеризации. При осажденных катализаторах изменение физической и химической структуры осадка непосредственно определяет молекулярный вес получаемого полимера и степень его стереорегулярности, При предварительно приготовленных окпснометаллических катализаторах характер и метод приготовления носителя с высокой удельной поверхностью оказывают сильное влияние па протекание реакции полимеризации. Низкие давления, необходимые для получения стереорегулярных полимеров, непосредственно связаны с тем, что олефины хемосорбпрованы на поверхности применяемых твердых катализаторов [96]. Следовательно, мономер концентрируется на этой поверхности даже при сравнительно низком внешнем давлении газа. Поверхность может увеличить скорость реакции роста полимера в результате повышения скорости присоединения мономерных остатков по сравнению с одновременно протекающей реакцией передачи цепи. Движущей силой реакции распространения цепп в этом случае является экзотермическая адсорбция олефпна. [c.298]

    Ряд дополнительных узлов по сравнению с технологической схемой синтеза традиционного ПЭВД имеет технологическая схема (рис. 2.2) производства линейного полиэтилена высокого давления (ЛПЭВД), представляющего собой сополимер этилена с высшим о-олефином (буте-ном-1, гексеном-1, октеном-1) и получаемого сополимеризацией по анионно-координационному механизму под влиянием комгшексных металлорганических катализаторов. Так, этилен, поступающий на установку, проходит дополнительную очистку. В возвратный газ промежуточного давления после его охлаждения и очистки вводится сомономер -а-олефин. После реактора добавляется дезактиватор, предотвращающий протекание полимеризации в системе разделения полимера и мономеров. Катализаторы подаются непосредственно в реактор. [c.15]

    Пирс и Ньюсом [ЗбЬ] нашли, что при крекинге гексана при температурах 430—520° С и при давлениях 985—1055 кг см получаются крекинг-газы, содержащие только незначительное количество олефинов. Содержание непредельных в жидких продуктах разложения при этих условиях было очень небольшим. Следует отметить, что высокое давление благоприятствует только вторичным реакциям полимеризации и конденсации. Высокая температура и продолжительное время крекинга оказывают такое же влияние на вторичные реакции. Уатерман и Перкин [54] показали, что бромные числа крекинг-бензинов и керосинов, полученных в процессе с высоким давлением, резко уменьшаются с увеличением времени крекинга при 450° С. [c.124]

    Ввиду того, что коксообразование зависит главным образом от полимеризации и от вторичных реакций крекинга, в результате которых образуются высококипящие масла с значительным содержанием асфальтоподобных веществ (дающих начало коксу), следует ожидать, что давление оказывает известное влияние и на коксообразование. Как уже было сказано выше, коксообразование,. так же как и реакции полил1еризации, возрастает с увеличением давления сперва быстро, затем все медленнее, пока наконец, переходя через максимум, оно не начинает падать. Это объясняется тем, что скорость полимеризации замедляется по мере того, как высшие олефины в результате увеличения давления переходят, растворяясь, в жидкую фазу и тем самым разбавляются. Froli h указывает на то, что реакции п-олимеризации и вторичного крекинга, предвестники коксообразования, протекают значительно медленнее при обычных температурах крекинга при давлении в 42—70 ат, по сравнению с давлением в 7—14 ат. [c.120]

    Ипатьев и Рутала исследовали влияние таких катализаторов, как хлористый алюминий и хлористый цинк, на конденсацию этилена под давлением. В присутствии хлористого цинка под давлением в 70 аг полимеризация имела место при 275°, причем жидкие продукты состояли из пентана, изопентана, гексана и высших парафинов, а также из олефинов с числом углеродных атомов [c.217]

    Этилен нри отсутствии катализаторов под влиянием умеренных темнератур (порядка 350—450°) претерпевает сначала лишь полимеризацию и уплотнение с образованием главным образом высших олефинов. При более высоких темнературах, примерно от 550°, среди продуктов превращения этилена появляются также метан, водород и, наконец, уголь, т. е. продукты разлонсения эти.7гена, а также этан как продукт его гидрирования. В зависимости от условий, т. е. температуры, давления и времени пребывания газа в зоне высокой температуры, выходы отдельных продуктов термического превращения этилена колеблются в широких пределах. Иллюстрацией может служить табл. 116, в которой сведены результаты опытов термического распада этилена при пропускании его через кварцевую трубку, причем время пребывания газа при соответствующих температурах изменялось от 46 до 58 сек. [40]. [c.450]

    Гидро- и дегидрополимеризация непредельных углеводородов, т. е- процесс полимеризации, сопровождаемый реакциями гидрирования и дегидрирования. Этот процесс приводит к образованию гидродимеров, гпдротримеров и вообще гидрополимеров предельного характера, причем одновременно, для поддержания баланса водорода, образуются продукты глубокой дегидрогенизации исходной непредельной системы. Примерами процессов гидро- и дегидрополимеризации могут служить изучаемые в нашей лаборатории реакции, претерпеваемые олефинами и нафтиленами под влиянием концентрированной серной кислоты или хлористого алюминия, а также процессы превращения этилена и его гомологов под влиянием фосфорной кислоты при повышенной температуре и давлении. [c.230]

    Выбор оптимальных условий реакции зависит от интенсивности и селективности процесса. Первый из этих показателей растет с повышением концентрации кислоты и температуры, а для газообразных олефинов — и с давлением. Эти параметры выбираются поэтому тем более высокими, чем меньше реакционная способность олефина. Однако рост концентрации серной кислоты и температуры ограничивается их отрицательным влиянием на селективность. В случае сульфатирования олефинов с целью последующего гидролиза в спирты нежелательной является только реакция полимеризации, склонность к которой сильно растет в ряду изоолефины > н-олефины > этилен. Поэтому условия процесса заметно различаются для разных олефинов (от 98%-ной H2SO4 и 70—80 °С для этилена до 60%-ной H2SO4 и О—20 °С для изоолефинов). Это позволяет использовать сульфатирование для разделения смесей олефинов. Так, в мягких условиях поглощаются только изооле-фииы, на чем основан один из методов их выделения из бутиленовых фракций (стр. 64). [c.261]


Смотреть страницы где упоминается термин Полимеризация олефинов, влияние давления на нее: [c.45]    [c.60]    [c.42]    [c.648]    [c.649]    [c.107]    [c.287]    [c.667]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.6 , c.52 , c.94 , c.120 , c.647 , c.649 , c.656 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины влияние

Олефины полимеризация

Полимеризация влияние

Полимеризация влияние давления



© 2025 chem21.info Реклама на сайте