Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминогруппа Валин

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Установлен ряд аминокислот по их комплексообразующей способности цистеин > гистидин > аспарагин > метионин > глицин, аланин, валин, фенилаланин. Определен состав твердых соединений, выделенных из золотосодержащих растворов гистидина и фенилаланина золото в них находится в состоянии окисления (I), состав соединений отвечает формулам с соотношением золота к аминокислоте 1 1. Методом ИК-спектроскопии установлены связь металла с карбоксильной и аминогруппами в соединении золота с фенилаланином и связь металла с аминогруппой и азотом имидазольного кольца в соединении с гистидином. [c.154]

    Растворимая ферментная система, ответственная за синтез этого антибиотика, состоит из крупного белка с мол. весом 280 000, который активирует аминокислоты в виде аминоациладенилатов и переносит их на тиоловые группы молекул 4 -фосфопантетеина, ковалентно связанные с ферментом [26, 27]. Таким образом, обеспечивается связывание четырех аминокислот, а именно пролина, валина, орнитина (орнитин см. на рис. 14-2) и лейцина. Активацию фенилаланина обеспечивает другой фермент (мол. вес. 100 000). Формирование полимера инициируется, вероятно, активированным фенилаланином ) и осуществляется аналогично тому, как это имеет место в процессе удлинения цепи жирных кислот (разд. Г,6). Инициация происходит в то время, когда аминогруппа активированного фенилаланина (на втором ферменте) атакует ацильную группу аминоацилтиоэфира, при помощи которой удерживается активированный пролин. Затем свободная иминогруппа пролина атакует активированный валин и т. д., в результате чего образуется пентапептид. После этого две молекулы пентапептида связываются друг с другом, и процесс образования антибиотика завершается замыканием цикла. Последовательность аминокислот в антибиотике строго специфична, и замечательным является тот факт, что эта сравнительно небольшая ферментная система оказывается способной осуществлять все стадии процесса в требуемой последовательности. Аналогичным путем синтезируются также и некоторые другие пептидные антибиотики — тироциди-ны и полимиксины. [c.491]

    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]


    К-группы этого класса аминокислот представляют собой углеводороды, и, следовательно, они гидрофобны (рис. 5-6). К данному классу относятся пять аминокислот с алифатическими К-группами (аланин, валин, лейцин, изолейцин и пролин), две аминокислоты с ароматическими кольцами (фенилаланин и триптофан) и одна аминокислота, содержащая серу (метионин). Особого упоминания заслуживает пролин, так как его а-аминогруппа не свободна, а замещена частью К-группы, в результате чего молекула приобретает циклическую структуру (рис. 5-6). [c.115]

    Каковы перспективы борьбы с этим заболеванием Продлить жизнь больным можно, переливая кровь, но эти меры не являются радикальными. Недавно проведенные исследования показали, что цнанат реагирует с концевой аминогруппой валина в -субъединицах гемоглобина S это снижает вероятность образования серповидных клеток. Реакция описывается следующим уравнением  [c.315]

    Организм человека ограничен в своих возможностях превращать одну аминокислоту в другую. Превращение происходит в печени с помощью процессов транс-аминирования. Посредством трансаминаз аминогруппы переносятся с одной молекулы на другую. В то же время существуют аминокислоты, синтез которых в организме невозможен, и они должны быть получены с пищей это так называемые незаменимые аминокислоты лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин (для роста детей незаменимой аминокислотой является также гистидин). Только при поступлении таких аминокислот возможно со-.хранить азотистое равновесие. [c.7]

    Подобным же образом хромовая кислота окисляет только те молекулы лейцина и валина, входящие в состав казеина, которые имеют свободную ос-аминогруппу [31]. [c.126]

    Группа —NHa Lys H-10 каждой из а-субъединиц связана при помощи водородной связи с карбоксильной группой С-концевого аргинина противоположной а-цепи, гуанидиниевая же группа каждого С-концевого аргинина связана с карбоксильной группой аспарагиновой кислоты Н-9 в противоположной а-цепи. Кроме того, она связана водородной связью с неорганическим анионом (фосфатом или ионом С1 ), который в свою очередь связан (также при помощи водородной связи) с а-аминогруппой валина-1 противоположной а-цепи (пара изологических взаимодействий). На другом конце молекулы С-концевая группа гистидина-146 каждой р-цепи связана с аминогруппой лизина С-6 а-цепи, а имидазольная боковая цепь — с аспарагиновой кислотой FG-1 той же самой р-цепи. По-видимому, именно эти ионные связи обусловливают повышенную устойчивость дезоксигемоглобина и ответственны за высокое значение константы L. [c.307]

    Соединение представляет собой дипептид, образуюшийся в результате взаимодействия карбоксильной группы фенилаланина с аминогруппой валина. Чтобы осушествить целенаправленное образование этой пептидной связи (амидная связь), аминокислота, используемая в качестве кислотного компонента, должна быть блокирована по аминогруппе (Р-17г) и активирована по карбоксильной группе (Р-17д). В аминокислоте, используемой в качестве аминного компонента, карбоксильная группа должна быть блокированной, а аминогруппа - свободной и активированной (ср. Р-236) [656]. [c.561]

    Аминокислотный состав церулоплазмина человека приведен в табл. 10.1. О последовательности аминокислот в его белковой цепи данных пока не имеется. Вторичная структура имеет р-кон-фигурацию и беспорядочную укладку с небольшой примесью а-спи-ралей или при их отсутствии. Судя по гидродинамическим свойствам церулоплазмина (табл. 10.2), третичная структура его молекулы представляет собой очень плотную упаковку. Недавно Саймонс и Берн [29] на основании своих исследований предложили тетрамерную модель четвертичной структуры белка, которая включает две полипептидные цепи с молекулярной массой 15 900 и Ы-концевыми аминогруппами валина и две полипептидные цепи с молекулярной массой 59 ООО, в которых в качестве М-концевых выступают остатки лизина. В табл. 10.3 и 10.4 представлены некоторые оптические, электрофоретические и кристаллографические свойства церулоплазмина человека. [c.365]

    Описано цианэтилирование некоторых р-аминонитрилов 4 , причем реакция идет по аминогруппе. i-Аминокислоты также могут вступать в реакцию цианэтилирования, в частности описано цианэтилирование (по аминогруппе) N-метилглицина глицина, аланина, валина и др., которое гладко идет в присутствии эквивалентного количества щелочи [c.78]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]


    Из приведенного выше обсуждения очевидно, что аминокислотная последовательность пептида может быть определена по его масс-спектру, если можно идентифицировать пики, обусловленные расщеплением пептидной связи. Идентификация пиков аминокислотного типа фрагментации может быть облегчена подходящим выбором защитных групп. Ацилирование М-концевой аминогруппы пептида эквимолекулярной смесью уксусной и три-дейтероуксусной кислот (или смесью СОз-и СНз-декановых кислот) [25] приводит к появлению пар пиков равной интенсивности, отличающихся на 3 м. ед., которые соответствуют ионам аминокислотного типа фрагментации. Можно использовать другие смешанные реагенты, содержащие ацильные группы, например такие, как эквимолекулярная смесь гепта- и октадекано-вых кислот [18], которые для всех ацилсодержащих ионов дают пары пиков, отличающихся на 14 м. ед,, тем самым облегчая интерпретацию масс-спектров. В некоторых природных олигопептидах дублеты с разницей в 14 м. ед, могут быть вызваны присутствием различных аминокислотных гомологов, например валин или изолейцин в грамицидинах А, В и С [32]. Однако лучше использовать смешанные, содержащие СНз- и СОз-ациль-ные цепи. [c.198]

    Определены первичные структуры многочисленных анормальных гемоглобинов человека некоторые из них изучены методом рентгеноструктурного анализа, что сделало возможным объяснение патологических следствий генетических ошибок на молекулярном уровне. Серповидная анемия, названная так вследствие того, что эритроциты пациентов при низких значениях р(02) сплющиваются, приобретая форму серпа, является причиной смерти примерно 80 000 детей ежегодно. Анормальный гемоглобин ИЬЗ содержит в р-цепи Уа1-6 вместо 01и-6. Деоксигенированная форма НЬ8, по-видимому, агрегирует с образованием нерастворимого полимера. Один из предложенных методов лечения анемии заключается во введении низких концентраций цианат-иона, что, как полагают, вызывает карбомоилирование аминогруппы Л -концевых остатков валина-1 в а- и р-цепях. Первый из этих остатков участвует в межцепочечном взаимодействии в дезоксигемоглобине, а второй образует электростатическую связь с 2,3-дифосфоглицератом. Кар-бамоилирование предотвращает оба типа взаимодействий, способствуя тем самым сдвигу в сторону конформации оксигемоглобина и уменьшению риска агрегирования. [c.559]

    Ацилирование аминокислотой аминокислоты пептида обозначают путем добавления названия радикала ацилирующей кислоты перед тривиальным названием исходного пептида с указанием положения ацилирования с помощью буквенных локантов. Например, Л -Val означает, что второй по счету аминокислотный остаток (начиная с TV-терминальной аминокислоты) проацилирован валином по 6-аминогруппе аналогичным образом могут быть указаны и другие заместители в аминокислотных остатках пептида, например, Af -метилноменклатурин. [c.324]

    Таким образом, пенициллины относятся к производным пенама. Биогенетически они происходят из дипептида цистинил-валина, в котором аминогруппа цистина может быть ацилирована различными аминокислотами, главным образом, а-аминоадипиновой. Существует множество пенициллинов, отличающихся друг от друга природой радикала R в формуле 6.44. В практике одно время наибольшее распространение получили бензилпени- [c.438]

    Известно, что следующие аминокислоты выделяют аммиак при облучении [36, 39—42] аланин, аргинин, аспарагин, аспарагиновая кислота, а-аминоизомасляная кислота, цистин, глутаминовая кислота, глицин, гистидин, лейцин, лизин, метионин, фенилаланин, серин, тирозин и валин. Цистеин [4-3] не способен к дезаминированию, вероятно, нз-за преобладающей реакции тиоловой группы (см. ниже). Пролин не образует аммиака [36]. Глицилглицин образует несколько больше аммиака на единицу дозы облучения, чем глицин, а его хлорид — значительно меньше [44]. Возможно, что дезаминирование может происходить как за счет амидной группы, так и за счет свободной аминогруппы в полипептидной цепи оно вызовет разрыв самой цепи. Предложен [36] следующий механизм для реакций дезаминирования свободной аминогруппы [c.220]

    Относительную чувствительность аминокислотных остатков в инсулине к "[-излучению исследовали Дрейк и его сотрудники [69]. Как указывалось ранее, интенсивное исследование инсулина особенно желательно, поскольку он является единственным белком, строение которого полностью известно. На основании результатов определений концевых групп, изучения спектров поглощения и хроматографии аминокислот на бумаге в образцах, подвергнутых облучению дозами до 40 мегафэр, были сделаны выводы 1) что цистин, тирозин, фенилаланин, пролин и гистидин обладают высокой радиочувствительностью 2) что лейцин, изолейцин, валин, лизин и аргинин заметно разрушаются при наиболее высоких дозах и 3) глицин и фенилаланин, Н-концевые аминокислоты (т. е. имеющие свободные а-аминогруппы) дезаминируются. [c.227]

    Для многих пептидов было изучено влияние стерических факторов на скорость гидролиза 10 н. соляной кислотой в присутствии равного объема ледяной уксусной кислоты. Наиболее важными факторами, влияющими на скорость гидролиза, были размер боковых цепей аминокислот и их положение относительно пептидной связи [70, 173]. Так, например, пептиды, содержащие валин, для которого характерно наличие объемистой изонронильной. группы, были наиболее стабильны пептиды с более отдаленными боковыми группами по отношению к пептидной связи, как, например, в лейцине, были менее устойчивы в то же время пептиды,, обладающие наименее объемистыми группировками, т. е. пептиды, содержащие такие аминокислоты, как аланин или глицин, были еще более лабильны. Если боковая цепь входит в состав того аминокислотного остатка, карбоксильная группа которого участвует в образовании пептидной связи, то эта боковая цепь оказывает большее влияние на скорость гидролиза, чем в том случае, когда она входит в состав аминокислотного остатка, у которого в образовании пептидной связи участвует аминогруппа [190]. [c.389]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Грамицидин С выделен Т. Ф. Гаузе и М. Г. Бражниковой в 1942 г. из штамма споровой палочки Ba illus brevis, найденного в огородных почвах Подмосковья. Изучение химической природы грамицидина показало, что грамицидин построен из пяти различных аминокислот 1-пролина, 1-валина, 1-орнитина, 1-лейцина и d-фенилаланина, соединенных между собой по типу циклопептида. Свободная б-амипогруппа орнитина, обусловливающая основные свойства грамицидина С, способна вступать в реакцию с пикриновой кислотой с образованием пикрата и реагировать с азотной кислотой по типу первичных аминов. Блокирование этой аминогруппы вызывает инактивацию грамицидина С. В структуре грамицидина установлено следующее чередование аминокислот  [c.310]

    Каждая из 20 аминокислот, которые обьино обнаруживают как продукты гидролиза белков, содержит -карбоксильную группу, а-аминогруппу и специфическую для данной аминокислоты -группу, замещающую водород при а-атоме углерода. а-Атом углерода во всех аминокислотах (за исключением глицина) является асимметрическим, и, следовательно, каждая из этих аминокислот может существовать по меньшей мере в двух стереоизомерных формах. В белках встречаются только Ь-стереои-зомеры, соответствующие по своей конфигурации Ь-глицеральдегиду. Классификация аминокислот основана на различиях в полярности их К-групп. К классу неполярных аминокислот принадлежат аланин, лейцин, изолейцин, валин, пролин, фенилаланин, триптофан и метио-ний. В класс полярных нейтральных аминокислот входят глицин, серин, треонин, цистеин, тирозин, аспарагин и глутамин. Класс отрицательно заряженных (кислых) аминокислот включает аспарагиновую и глутаминовую кислоты, а класс положительно заряженных (ос-нбвных) аминокислот-аргинин, лизин и гистидин. [c.132]

    Правильность структуры кислоты А подтверждается тем, что она не содержит свободных аминогрупп, устойчива к щелочам и при ее частичном кислотном гидролизе отщепляется лейцин, а не валин. Кислота В не содержит свободных аминогрупп, устойчива к щелочи, и при ее частичном кислотном гидролизе образуется Ы-метиллейцин. [c.692]

    В этом случае имеет место обычная реакция присоединения фенилизо-цианата к аминогруппе, приводящая к образованию соединения (147). Последнее при восстановлении водородом в присутствии катализатора Ренея превращалось (с отщеплением атома серы) в соединение (148), оказавшееся идентичным с фенилуреидом -валина. Таким образом, было выяснено пространственное расположение заместителей у одного из трех асимметрических атомов углерода, имеющихся в молекулах пенициллинов. [c.99]

    Наибольшие затруднения представляет синтез дипептидов, содержащих остаток орнитина, так как в данном случае необходимо предварительно защищать 8-аминогруппу этой аминокислоты. Именно поэтому целесообразно рассмотреть в виде примера метод получения а-(/-валил)-/-орнитина (276). Здесь в качестве исходного соединения был взят монохлоргидрат /-орнитина (272). Последний был превращен действием углекислой меди в соответствующую медную комплексную соль, которая была затем проацилирована в присутствии едкого натра хлорангидридом монобензилового эфира угольной кислоты (см. такжеПосле разложения полученной медной комплексной соли 8-карбобензокси-/-орнитина сероводородом был выделен 6-карбобензокси-/-орнитин (486), этерификация которого абсолютным метиловым спиртом в присутствии хлористого водорода привела к образованию хлоргидрата его метилового эфира (488). С другой стороны, /-валин (27 ) был превращен в карбобензокси-/-валин (485) и далее в соответствующий хлорангидрид (487), который и был сконденсирован с полученным ранее метиловым эфиром (488). В результате этой реакции был выделен метиловый эфир а-(карбо-бензокси-/-валил)-8-карбобензокси-/-орнитина (489), омыленный затем раствором едкого натра до а-(карбобензокси-/-валил)-8-карбобензокси-/-орнитина (490). Его каталитическое гидрирование в присутствии палладия и привело в конечном итоге к образованию -(/-валил)-/-орнитина (276). [c.360]

    Для того чтобы выявить реакции переаминирования, обычно выясняют, служит ли в них а-кетоглутарат в качестве акцептора аминогруппы от целого ряда различных аминокислот иначе говоря, сначала обнаруживают реакции, обратные тем, при которых синтезу той или иной аминокислоты предшествует образование глутамата в ходе восстановительного аминирования. Использование именно этого метода обусловлено тем, что, в то время как все 20 протеиногенных аминокислот имеются в продаже, из кетокислот можно приобрести лишь некоторые. Однако при всем том можно сделать вывод о важной роли переаминирования в синтезе аминокислот, ибо показано, что лучше всего изученные реакции переаминирования обратимы, другие же реакции переаминирования считаются обратимыми. Показано, что в случае аспартат-глутамат- и аланин-глутамат — аминотрансфераз из зародышей пшеницы равновесие реакций сдвинуто в сторону синтеза соответственно аспартата и аланина [16] Из сравнения с бактериальными системами биосинтеза аминокислот [67] явствует, что у высших растений переаминирование, возможно, является последней ступенью в биосинтезе глицина, аланина, валина, лейцина, изолейцина, аспартата, фенилаланина, тирозина, а также, возможно, серина. Если такие реакции переаминирования действительно происходят in vivo, то следует предполагать, что соответствующие а-кетокислотные аналоги аминокислот должны присутствовать в растительных клетках [c.212]

    АМИНОКИСЛОТЫ. Производные карбоновых кислот, в которых один или два атома углеводородного радикала замещены аминогруппой NHj. Входят в состав белков, которые являются полимерами А. По числу карбоксильных групп (СООН) различаются moho- и дикарбоновые А., по числу аминных групп различаются MOHO- и диаминовые А. В зависимости от положения аминогрупп различают альфа-, бета- и гамма-кислоты. Получаются синтетически или выделяются из белков. А. занимают центральное место в обмене азотистых соединений в животных, растениях и микроорганизмах, так как служат источником образования белков, гормонов, ферментов и многих других соединений. В настоящее время известно более 90 природных А. В белках содержится лишь около 20 А. Растения и автотрофные микроорганизмы способны синтезировать все входящие в их состав А. Животные могут синтезировать лишь следующие А. аланин, аргинин, аспарагиновую кислоту, глутаминовую кислоту, гистидин, глицин, серин, тирозин, цистеин, цистин и так называемые иминокислоты — пролин и оксишролин. А., которые могут синтезироваться в организме животных, называются заменимыми. Для всех видов животных безусловно незаменимыми являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, валин, изолейцин. Ряд А. используется в кормлении с.-х. животных. [c.22]

    Первый вопрос решался с помощью радиоактивно меченных аминокислот. Существенно то, что нам известно концевое звено цепи гемоглобина, содержащее КН2-группу, — это валин. Опыт ставился следующим образом препарат отмытых рибосом (большая часть, свьппе 80%, имеет константу седиментации 70 э) подвергался инкубации на среде с набором аминокислот и меченным С валином. Синтез шел сравнительно короткое время, что доказывает кинетический характер эксперимента. После извлечения синтезированного рибосомами белка у последнего определялась общая радиоактивность и активность N-кoнцeвoй аминокислоты путем реакции концевой аминогруппы с динитро-фторбензолом или фенилизотиоцианатом, отщепления меченой концевой группы и ее хроматографической очистки. Молекула гемоглобина (кролика) состоит из 670 аминокислотных звеньев, из которых 46 являются валинами, в том числе 4 валина — КНа-концевой группы (в молекуле гемоглобина содержится [c.453]

    Наоборот, Хорнуфф и Флат [98], проводя опыты с триазино-выми красителями, определили, что другая концевая аминокислота — валин — вступает с ними в реакцию, а аспарагиновая и глутаминовая кислоты — нет. Они обнаружили, что в боковых цепях реагируют аргинин и гистидин, но не лизин. Хилле [105] считает активными центрами, в боковых цепях гистидин, серин и ци-стеин, а Дербишир и Тристрам [108], работавшие с акриламидными красителями, что в реакцию вступает только свободная аминогруппа связанного лизина. Они не могли полностью исключить реакцию с цистеином из-за низкого содержания его в шерсти. Возможную реакцию с имидазольной группой гистидина изучить не удалось, так как не смогли подобрать соответствующую модель, а проведенные Муром и Стейном анализы не дали никаких результатов. Реакцию с концевыми аминогруппами также не исследовали, так как их количество настолько мало, что они не могут оказать заметного влияния на результаты крашения. [c.256]

    Время денатурации этого гемоглобина равно 60 мин. [186]. Кристаллы гемоглобина взрослого человека [187] и гемоглобина новорожденного ребенка имеют различную форму (фиг. 44 и 45) [186]. Концевые аминогруппы гемог.яобина зародыша человека образованы валином, причем число их равно 2,6 на каждые 4 атома железа [184]. Отношение 2,6 4 указывает на то, что упомянутый гемоглобин не является однородным соединением. [c.252]

    Физико-химические свойства антител очень близки к физикохимическим свойствам [ глобулинов нормальной сыворотки. В большинстве случаев их изоэлектрическая точка лежит около pH 6 [38]. Молекулярный вес антител крови кроликов и обезьян равен 157 ООО, а крови лошади, овцы и быка 920 ООО [39]. При гидролизе антител получаются те же самые аминокислоты, которые удается обнаружить в гидролизате нормальных т-глобули-нов [40]. В глобулинах нормальной сыворотки кролика и в антителах крови кроликов аминокислоты расположены в одной и той же последовательности. Оба белка содержат аспарагиновую кислоту, валин, лейцин, а на концах пептидных цепей находится аланин со свободной аминогруппой [41]. [c.335]


Смотреть страницы где упоминается термин Аминогруппа Валин : [c.76]    [c.708]    [c.497]    [c.561]    [c.394]    [c.407]    [c.220]    [c.191]    [c.185]    [c.192]    [c.67]    [c.43]    [c.125]    [c.209]   
Курс органической химии (1965) -- [ c.82 , c.379 ]

Курс органической химии (1967) -- [ c.379 , c.382 ]

Органическая химия (1972) -- [ c.397 , c.429 ]

Органическая химия (1972) -- [ c.397 , c.429 ]




ПОИСК





Смотрите так же термины и статьи:

Аминогруппа

Валин



© 2025 chem21.info Реклама на сайте